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Learning “Wrappers”

• A “wrapper” is a program that makes (part of) a web site look
like (part of) a database.

For instance, job postings on microsoft.com might be converted
to tuples from a relation:

Job title Location Employer

C# software developer Seattle, WA Microsoft

Receptionist Seattle, WA Microsoft

Research Scientist Beijing, China Microsoft–Asia

. . . . . . . . .

3



Learning “Wrappers”

• Reasons for wanting wrappers:

– Collect training data for an IE system from lots of websites.

– IE from not-too-many websites O(102-103)

– Boost performance of IE on “important” sites.

• Ways of creating wrappers:

– Code them up (in Perl, Java, WebL, . . . , )

– Learn them from examples
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What’s Hard About Learning Wrappers

• A good wrapper induction sys-

tem should generalize across fu-

ture pages as well as current

pages.

WheezeBong.com:

Contact info

Currently we have offices in

two locations:

• Pittsburgh, PA

• Provo, UT
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What’s Hard About Learning Wrappers

• A good wrapper induction sys-

tem should generalize across fu-

ture pages as well as current

pages.

• Many generalizations of the first

two examples are possible, but

only a few will generalize.

• Prior solutions: hand-crafted

learning algorithms and care-

fully chosen heuristics.

WheezeBong.com:

Contact info

Currently we have offices in

three locations:

• Pittsburgh, PA

• Provo, UT

• Honololu, HI

6



Our Approach to Wrapper Induction

• Premise: A wrapper learning system needs careful engineering
(and possibly re-engineering).

– 6 hand-crafted languages in WIEN (Kushmeric AIJ2000)

– 13 ordering heuristics in STALKER (Muslea et al AA1999)

• Approach: architecture that facilitates hand-tuning the “bias”
of the learner.

– Bias is an ordered set of “builders”.

– Builders are simple “micro-learners”.

– A single master algorithm co-ordinates learning.
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Our Approach: Document Representation∗

body

ul

li li

a

p

"Provo, UT""Pittsburgh,PA"

"Currently we..."

h2

a

"WheezeBong.com: ..."

Structured documents (e.g. HTML) are labeled trees (DOMs).

∗Slightly over-simplified...
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Our Approach: Document Representation

ul

li li

aa

(text) (text)

"," "PA" ","

"UT"""Pittsburgh"

"Provo"

Imagine the DOM extended with a new node for each token of text...
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Our Approach: Document Representation

ul

li li

aa

(text)

","

"UT"

begin

end

"Pittsburgh"

"," "PA" "Provo"

(text)

A “span” is defined by a start node and an end node...
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Our Approach: Document Representation

ul

li li

aa

(text)

","

"UT"

"Provo"

begin end

"," "PA"

"Pittsburgh"

(text)

...and the start node and end node might be identical (a “node span”).
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Our Approach: Representing Extractors

• A predicate is a binary relation on spans: p(s1, s2) means
that s2 is extracted from s1.

• Membership in a predicate can be tested:

– Given (s1, s2), is p(s1, s2) true?

• Predicates can be executed:

– EXECUTE(p,s1) is the set of s2 for which p(s1, s2) is true.
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Example Predicate

Example:

• p(s1, s2) iff s2 are the tokens be-

low an li node inside s1.

• EXECUTE(p,s1) extracts

– “Pittsburgh, PA”

– “Provo, UT”

WheezeBong.com:

Contact info

Currently we have offices in

two locations:

• Pittsburgh, PA

• Provo, UT
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Our Approach: Representing Bias

• The hypothesis space of the learner is built up from simple
sublanguages.

• Lbracket: p is defined by a pair of strings (`, r), and p`,r(s1, s2),
is true iff s2 is preceded by ` and followed by r.

EXECUTE(pin,locations , s1) = { “two” }
• Ltagpath: p is defined by tag1,. . . , tagk, and ptag1,...,tagk

(s1, s2) is

true iff s1 and s2 correspond to DOM nodes and s2 is reached from

s1 by following a path ending in tag1,. . . , tagk.

EXECUTE(pul,li,s1) = { “Pittsburgh, PA”, “Provo, UT” }
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Our Approach: Representing Bias

For each sublanguage L there is a builder BL which implements a
few simple operations:

• LGG( positive examples of p(s1, s2) ): least general p in L that
covers all the positive examples.

For Lbracket, longest common prefix and suffix of the examples.

• REFINE( p, examples ): a set of p’s that cover some but not
all of the examples.

For Ltagpath, extend the path with one additional tag that
appears in the examples.
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Our Approach: Representing Bias

Builders can be composed: given BL1 and BL2 one can
automatically construct

• a builder for the conjunction of the two languages, L1 ∧ L2

• a builder for the composition of the two languages, L1 ◦ L2

Requires an additional input: how to decompose an example (s1, s2)

of p1 ◦ p2 into an example (s1, s
′) of p1 and an example (s′, s2) of p2.

So, complex builders can be constructed by combining simple ones.
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Example of combining builders

• Consider composing builders for

Ltagpath and Lbracket.

• The LGG of the locations would

be ptags ◦ p`,r

where

– tags=ul,li

– `= “(”

– r= “)”

Jobs at WheezeBong:

To apply, call:

1-(800)-555-9999

• Webmaster (New York).

Perl,servlets a plus.

• Librarian (Pittsburgh).

MLS required.

• Ditch Digger (Palo Alto).

No experience needed.
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Limitations of DOMs

• The “real” regularities are at the level of the visual appearance
of the document.

• What if the underlying DOM doesn’t show the same
regularities?

〈b〉〈i〉Provo〈/i〉〈/b〉 versus 〈i〉〈b〉Pittsburgh〈/b〉〈/i〉

18



Limitations of DOMs

“Actresses”

Lucy Lawless images links

Angelina Jolie images links

. . . . . . . . . . . .

“Singers”

Madonna images links

Brittany Spears images links

. . . . . . . . . . . .

How can you easily express “links to pages about singers”?
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Fancy Builders: Understanding Table Rendering

1. Classify HTML tables nodes as “data tables” or “non-data
tables”.

On 339 examples, precision/recall of 1.00/0.92 with Winnow and

features . . .

2. Render each data table.

3. Find the logical cells of the table.

4. Construct geometric model of table: an integer grid, with each
logical cell having co-ordinates on the grid.

5. Tag each cell with (some aspects) of its role in the table.

• Currently, “cut-in cells”.
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Fancy Builders: Understanding Table Rendering

“Actresses”

cutin,1.1-1.1

Lucy Lawless images links

2.1-2.1 2.2-2.2 2.3-2.3 2.4-2.4

Angelina Jolie images links

3.1-3.1 3.2-3.2 3.3-3.3 3.4-3.4

“Singers”

cutin,4.1-4.1

Madonna images links

5.1-5.2 5.3-5.3 5.4-5.4

Brittany Spears images links

6.1-6.1 6.2-6.2 6.3-6.3 6.4-6.4

Table builders:

Element name + words

in last cut-in (e.g.,

“table cells where

the last cut-in

contains ‘singers”’)

“Tagpath” builder

extended to condition

on (x,y) co-ordinates

(e.g., “table cells

with y-coordinates

‘3-3’ inside . . . )
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The Learning Algorithm

Inputs:

• an ordered list of builders B1, Bk.

• positive examples (s1, s2) of the predicate to be learned

• information about what parts of each page have been
completely labeled (implicit negative examples)
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The Learning Algorithm

Algorithm:

• Compute LGG of positive examples with each builder Bi.

• If any LGG is consistent with the (implicit) negative data, then
return it∗.

• Otherwise, execute the best∗ LGG to get explicit negative
examples, then apply a FOIL-like learning algorithm, using
LGG and REFINE to create “features∗”.

∗ Break ties in favor of earlier builders. With few positive examples there are

lots of ties.
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Experimental results

Problem# WIEN(=) STALKER(≈) WL2(=)

S1 46 1 1

S2 274 8 6

S3 ∞ ∞ 1

S4 ∞ ∞ 4

Examples needed to learn accurate extraction rules for all parts of a

wrapper for WIEN (Kushmerick ’00), STALKER (Muslea, Minton,

Knoblock ’99), and the WhizBang Labs Wrapper Learner (WL2).
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Experimental results

Problem WL2 Problem WL2

JOB1 3 CLASS1 1

JOB2 1 CLASS2 3

JOB3 1 CLASS3 3

JOB4 2 CLASS4 3

JOB5 2 CLASS5 6

JOB6 9 CLASS6 3

JOB7 4

median 2 median 3

WL2 on representative real-world wrapping problems.
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Experimental results
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Experimental results
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Variants of WL2 on real-world wrapping problems:

average accuracy versus number of training examples.
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Conclusions/Summary

• Wrapper learners need tuning. Structuring the bias space
provides a principled approach to tuning.

• “Builders” let one mix generalization strategies based on
different views of the document:

– as DOM

– as sequence of tokens

– as sequence of rendered fragments of text

– as geometric model of table

– . . .

• Performance seems to be better than previous systems.
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