
A Flexible Learning System for “Wrapping” Tables and Lists
or

How to Write a Really Complicated Learning Algorithm

Without Driving Yourself Mad

William W. Cohen

Matthew Hurst

Lee S. Jensen

WhizBang Labs – Research

1

A Flexible Learning System for “Wrapping” Tables and Lists
or

How to Write a Really Complicated Learning Algorithm

Without Driving Yourself Mad

William “Don’t call me Dubya” Cohen (me)
Matthew Hurst

Lee S. Jensen

WhizBang Labs – Research

2

Learning “Wrappers”

• A “wrapper” is a program that makes (part of) a web site look
like (part of) a database.

For instance, job postings on microsoft.com might be converted
to tuples from a relation:

Job title Location Employer

C# software developer Seattle, WA Microsoft

Receptionist Seattle, WA Microsoft

Research Scientist Beijing, China Microsoft–Asia

.

3

Learning “Wrappers”

• Reasons for wanting wrappers:

– Collect training data for an IE system from lots of websites.

– IE from not-too-many websites O(102-103)

– Boost performance of IE on “important” sites.

• Ways of creating wrappers:

– Code them up (in Perl, Java, WebL, . . . ,)

– Learn them from examples

4

What’s Hard About Learning Wrappers

• A good wrapper induction sys-

tem should generalize across fu-

ture pages as well as current

pages.

WheezeBong.com:

Contact info

Currently we have offices in

two locations:

• Pittsburgh, PA

• Provo, UT

5

What’s Hard About Learning Wrappers

• A good wrapper induction sys-

tem should generalize across fu-

ture pages as well as current

pages.

• Many generalizations of the first

two examples are possible, but

only a few will generalize.

• Prior solutions: hand-crafted

learning algorithms and care-

fully chosen heuristics.

WheezeBong.com:

Contact info

Currently we have offices in

three locations:

• Pittsburgh, PA

• Provo, UT

• Honololu, HI

6

Our Approach to Wrapper Induction

• Premise: A wrapper learning system needs careful engineering
(and possibly re-engineering).

– 6 hand-crafted languages in WIEN (Kushmeric AIJ2000)

– 13 ordering heuristics in STALKER (Muslea et al AA1999)

• Approach: architecture that facilitates hand-tuning the “bias”
of the learner.

– Bias is an ordered set of “builders”.

– Builders are simple “micro-learners”.

– A single master algorithm co-ordinates learning.

7

Our Approach: Document Representation∗

body

ul

li li

a

p

"Provo, UT""Pittsburgh,PA"

"Currently we..."

h2

a

"WheezeBong.com: ..."

Structured documents (e.g. HTML) are labeled trees (DOMs).

∗Slightly over-simplified...

8

Our Approach: Document Representation

ul

li li

aa

(text) (text)

"," "PA" ","

"UT"""Pittsburgh"

"Provo"

Imagine the DOM extended with a new node for each token of text...

9

Our Approach: Document Representation

ul

li li

aa

(text)

","

"UT"

begin

end

"Pittsburgh"

"," "PA" "Provo"

(text)

A “span” is defined by a start node and an end node...

10

Our Approach: Document Representation

ul

li li

aa

(text)

","

"UT"

"Provo"

begin end

"," "PA"

"Pittsburgh"

(text)

...and the start node and end node might be identical (a “node span”).

11

Our Approach: Representing Extractors

• A predicate is a binary relation on spans: p(s1, s2) means
that s2 is extracted from s1.

• Membership in a predicate can be tested:

– Given (s1, s2), is p(s1, s2) true?

• Predicates can be executed:

– EXECUTE(p,s1) is the set of s2 for which p(s1, s2) is true.

12

Example Predicate

Example:

• p(s1, s2) iff s2 are the tokens be-

low an li node inside s1.

• EXECUTE(p,s1) extracts

– “Pittsburgh, PA”

– “Provo, UT”

WheezeBong.com:

Contact info

Currently we have offices in

two locations:

• Pittsburgh, PA

• Provo, UT

13

Our Approach: Representing Bias

• The hypothesis space of the learner is built up from simple
sublanguages.

• Lbracket: p is defined by a pair of strings (`, r), and p`,r(s1, s2),
is true iff s2 is preceded by ` and followed by r.

EXECUTE(pin,locations , s1) = { “two” }
• Ltagpath: p is defined by tag1,. . . , tagk, and ptag1,...,tagk

(s1, s2) is

true iff s1 and s2 correspond to DOM nodes and s2 is reached from

s1 by following a path ending in tag1,. . . , tagk.

EXECUTE(pul,li,s1) = { “Pittsburgh, PA”, “Provo, UT” }

14

Our Approach: Representing Bias

For each sublanguage L there is a builder BL which implements a
few simple operations:

• LGG(positive examples of p(s1, s2)): least general p in L that
covers all the positive examples.

For Lbracket, longest common prefix and suffix of the examples.

• REFINE(p, examples): a set of p’s that cover some but not
all of the examples.

For Ltagpath, extend the path with one additional tag that
appears in the examples.

15

Our Approach: Representing Bias

Builders can be composed: given BL1 and BL2 one can
automatically construct

• a builder for the conjunction of the two languages, L1 ∧ L2

• a builder for the composition of the two languages, L1 ◦ L2

Requires an additional input: how to decompose an example (s1, s2)

of p1 ◦ p2 into an example (s1, s
′) of p1 and an example (s′, s2) of p2.

So, complex builders can be constructed by combining simple ones.

16

Example of combining builders

• Consider composing builders for

Ltagpath and Lbracket.

• The LGG of the locations would

be ptags ◦ p`,r

where

– tags=ul,li

– `= “(”

– r= “)”

Jobs at WheezeBong:

To apply, call:

1-(800)-555-9999

• Webmaster (New York).

Perl,servlets a plus.

• Librarian (Pittsburgh).

MLS required.

• Ditch Digger (Palo Alto).

No experience needed.

17

Limitations of DOMs

• The “real” regularities are at the level of the visual appearance
of the document.

• What if the underlying DOM doesn’t show the same
regularities?

〈b〉〈i〉Provo〈/i〉〈/b〉 versus 〈i〉〈b〉Pittsburgh〈/b〉〈/i〉

18

Limitations of DOMs

“Actresses”

Lucy Lawless images links

Angelina Jolie images links

.

“Singers”

Madonna images links

Brittany Spears images links

.

How can you easily express “links to pages about singers”?

19

Fancy Builders: Understanding Table Rendering

1. Classify HTML tables nodes as “data tables” or “non-data
tables”.

On 339 examples, precision/recall of 1.00/0.92 with Winnow and

features . . .

2. Render each data table.

3. Find the logical cells of the table.

4. Construct geometric model of table: an integer grid, with each
logical cell having co-ordinates on the grid.

5. Tag each cell with (some aspects) of its role in the table.

• Currently, “cut-in cells”.

20

Fancy Builders: Understanding Table Rendering

“Actresses”

cutin,1.1-1.1

Lucy Lawless images links

2.1-2.1 2.2-2.2 2.3-2.3 2.4-2.4

Angelina Jolie images links

3.1-3.1 3.2-3.2 3.3-3.3 3.4-3.4

“Singers”

cutin,4.1-4.1

Madonna images links

5.1-5.2 5.3-5.3 5.4-5.4

Brittany Spears images links

6.1-6.1 6.2-6.2 6.3-6.3 6.4-6.4

Table builders:

Element name + words

in last cut-in (e.g.,

“table cells where

the last cut-in

contains ‘singers”’)

“Tagpath” builder

extended to condition

on (x,y) co-ordinates

(e.g., “table cells

with y-coordinates

‘3-3’ inside . . .)

21

The Learning Algorithm

Inputs:

• an ordered list of builders B1, Bk.

• positive examples (s1, s2) of the predicate to be learned

• information about what parts of each page have been
completely labeled (implicit negative examples)

22

The Learning Algorithm

Algorithm:

• Compute LGG of positive examples with each builder Bi.

• If any LGG is consistent with the (implicit) negative data, then
return it∗.

• Otherwise, execute the best∗ LGG to get explicit negative
examples, then apply a FOIL-like learning algorithm, using
LGG and REFINE to create “features∗”.

∗ Break ties in favor of earlier builders. With few positive examples there are

lots of ties.

23

Experimental results

Problem# WIEN(=) STALKER(≈) WL2(=)

S1 46 1 1

S2 274 8 6

S3 ∞ ∞ 1

S4 ∞ ∞ 4

Examples needed to learn accurate extraction rules for all parts of a

wrapper for WIEN (Kushmerick ’00), STALKER (Muslea, Minton,

Knoblock ’99), and the WhizBang Labs Wrapper Learner (WL2).

24

Experimental results

Problem WL2 Problem WL2

JOB1 3 CLASS1 1

JOB2 1 CLASS2 3

JOB3 1 CLASS3 3

JOB4 2 CLASS4 3

JOB5 2 CLASS5 6

JOB6 9 CLASS6 3

JOB7 4

median 2 median 3

WL2 on representative real-world wrapping problems.

25

Experimental results

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9

#p
ro

bl
em

s
w

ith
 m

in
=

k

k

#problems

WL2 on representative real-world wrapping problems.

26

Experimental results

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16 18 20

Baseline
No tables
No format

Variants of WL2 on real-world wrapping problems:

average accuracy versus number of training examples.

27

Conclusions/Summary

• Wrapper learners need tuning. Structuring the bias space
provides a principled approach to tuning.

• “Builders” let one mix generalization strategies based on
different views of the document:

– as DOM

– as sequence of tokens

– as sequence of rendered fragments of text

– as geometric model of table

– . . .

• Performance seems to be better than previous systems.

28

