A Flexible Learning System for “Wrapping” Tables and Lists

or
How to Write a Really Complicated Learning Algorithm

Without Driving Yourself Mad

William W. Cohen
Matthew Hurst

Lee S. Jensen

WhizBang Labs — Research

A Flexible Learning System for “Wrapping” Tables and Lists

or
How to Write a Really Complicated Learning Algorithm

Without Driving Yourself Mad

William “Don’t call me Dubya” Cohen (me)
Matthew Hurst

Lee S. Jensen

WhizBang Labs — Research

Learning “Wrappers”

e A “wrapper” is a program that makes (part of) a web site look

like (part of) a database.

For instance, job postings on microsoft.com might be converted

to tuples from a relation:

Job title Location Employer

C# software developer Seattle, WA Microsoft
Receptionist Seattle, WA Microsoft

Research Scientist Beijing, China Microsoft—Asia

Learning “Wrappers”

e Reasons for wanting wrappers:

— Collect training data for an IE system from lots of websites.

— IE from not-too-many websites O(10%-10%)

— Boost performance of IE on “important” sites.

e Ways of creating wrappers:
— Code them up (in Perl, Java, WebL,, ...,)

— Learn them from examples

What’s Hard About Learning Wrappers

e A good wrapper induction sys- WheezeBong.com:
tem should generalize across fu- Contact info

ture pages as well as current

pages.

Currently we have offices in

two locations:
e Pittsburgh, PA
e Provo, UT

What’s Hard About Learning Wrappers

e A good wrapper induction sys- WheezeBong.com:
tem should generalize across fu- Contact info

ture pages as well as current

pages.

Currently we have offices in

three locations:

Many generalizations of the first e Pittsburgh, PA

two examples are possible, but
WO exaiip re POSSIbIe, bl e Provo, UT

e Honololu, HI

only a few will generalize.

Prior solutions: hand-crafted

learning algorithms and care-

fully chosen heuristics.

Our Approach to Wrapper Induction

e Premise: A wrapper learning system needs careful engineering

(and possibly re-engineering).

— 6 hand-crafted languages in WIEN (Kushmeric A1J2000)
— 13 ordering heuristics in STALKER (Muslea et al AA1999)

e Approach: architecture that facilitates hand-tuning the “bias”
of the learner.
— Bias is an ordered set of “builders”.
— Builders are simple “micro-learners”.

— A single master algorithm co-ordinates learning.

Our Approach: Document Representation*

body

2/ I |

|/

a a

"Pittsburgh,PA" "Provo, UT"

"Currently we..."

Structured documents (e.g. HTML) are labeled trees (DOMs).

*Slightly over-simplified...

Our Approach: Document Representation

AN

ul

nl\ I
S

(text) (text)

""Pittsburgh” // / / \\UT

"PA" "Provo"

Imagine the DOM extended with a new node for each token of text...

Our Approach: Document Representation

AN

ul

nl\ I
A

a

begin

(text) (text)

"Pittsburgh” /// /\\UT

"PA" "Provo"

end

A “span” is defined by a start node and an end node...

Our Approach: Document Representation

AN

ul

/

a

begin end

(text) (text)

"Pittsburgh” /// /\\UT

"PA" "Provo"

...and the start node and end node might be identical (a “node span”).

Our Approach: Representing Extractors

e A predicate is a binary relation on spans: p(s{,sy) means
that so 1s extracted from sj.

e Membership in a predicate can be tested:

— Given (s1, 82), is p(s1, s2) true?

e Predicates can be executed:

— EXECUTE(p,s1) is the set of so for which p(s1, s2) is true.

Example Predicate

Example:

e p(s1,s2) iff so are the tokens be-

low an 1i node inside s7.

e EXECUTE(p,s1) extracts
— “Pittsburgh, PA”
— “Provo, UT”

WheezeBong.com:

Contact info

Currently we have offices in

two locations:
e Pittsburgh, PA
e Provo, UT

Our Approach: Representing Bias

e The hypothesis space of the learner is built up from simple
sublanguages.

Liyacker: p is defined by a pair of strings (¢,7), and py(s1, S2),

is true iff s, is preceded by ¢ and followed by r.

EXECUTE(piW,,ZOCat’iOTL87 81) — { “tWO” }

Liagpatn: p is defined by tagi,. .., tagk, and prag, ... tag, (51, 52) is
true iff s; and s2 correspond to DOM nodes and ss is reached from

s1 by following a path ending in tagi,..., tagk.

EXECUTE(pu1,11,51) = { “Pittsburgh, PA”, “Provo, UT” }

Our Approach: Representing Bias

For each sublanguage L there is a builder B; which implements a

few simple operations:

e LGG(positive examples of p(s1,s3)): least general p in L that

covers all the positive examples.

For Lpracket, longest common prefix and suffix of the examples.

e REFINE(p, examples): a set of p’s that cover some but not
all of the examples.

For Liagpath, extend the path with one additional tag that

appears in the examples.

Our Approach: Representing Bias

Builders can be composed: given By, and By, one can

automatically construct

e a builder for the conjunction of the two languages, L1 A Lo

e a builder for the composition of the two languages, L1 o Lo

Requires an additional input: how to decompose an example (s1, S2)

of p1 o p2 into an example (s1,s’) of p; and an example (s’, s2) of pa.

So, complex builders can be constructed by combining simple ones.

Example of combining builders

e Consider composing builders for

Ltagpath and Lbracket-

e The LGG of the locations would
be ptags © pe,r
where
— tags=ul,li
— (=«

— = cc)n

Jobs at WheezeBong:
To apply, call:
1-(800)-555-9999

e Webmaster (New York).

Perl,servlets a plus.

e Librarian (Pittsburgh).
MLS required.

e Ditch Digger (Palo Alto).

No experience needed.

Limitations of DOMs

e The “real” regularities are at the level of the visual appearance

of the document.

e What if the underlying DOM doesn’t show the same

regularities?

(b)(i)Provo(/i){/b) versus (i)(b)Pittsburgh(/b)(/i)

Limitations of DOMs

“Actresses”

Lucy Lawless images

Angelina Jolie images

“Singers”

Madonna, images

Brittany Spears images

How can you easily express “links to pages about singers”?

Fancy Builders: Understanding Table Rendering

. Classify HTML tables nodes as “data tables” or “non-data
tables”.

On 339 examples, precision/recall of 1.00/0.92 with Winnow and

features ...
. Render each data table.
. Find the logical cells of the table.

. Construct geometric model of table: an integer grid, with each

logical cell having co-ordinates on the grid.

. Tag each cell with (some aspects) of its role in the table.

e Currently, “cut-in cells”.

Fancy Builders: Understanding Table Rendering

“Actresses”

cutin,1.1-1.1

Lucy
2.1-2.1

Lawless

2.2-2.2

images

2.3-2.3

Angelina
3.1-3.1

Jolie

3.2-3.2

images

3.3-3.3

“Singers”

cutin,4.1-4.1

Madonna

5.1-5.2

images

5.3-5.3

Brittany
6.1-6.1

images

6.3-6.3

Table builders:

Element name 4+ words
in last cut-in (e.g.,
“table cells where

the last cut-in

contains ‘singers”’)

“Tagpath” builder
extended to condition
on (x,y) co-ordinates
(e.g., “table cells
with y-coordinates
‘3-3” inside . ..)

The Learning Algorithm

Inputs:

e an ordered list of builders By, B.
e positive examples (s, s2) of the predicate to be learned

e information about what parts of each page have been

completely labeled (implicit negative examples)

The Learning Algorithm

Algorithm:

e Compute LGG of positive examples with each builder B;.

o If any LGG is consistent with the (implicit) negative data, then

return 1t*.

e Otherwise, execute the best* LGG to get explicit negative
examples, then apply a FOIL-like learning algorithm, using
LGG and REFINE to create “features™”.

* Break ties in favor of earlier builders. With few positive examples there are

lots of ties.

Experimental results

Problem# || WIEN(=) | STALKER(x) | WL?(=)
S1 46
S2 274

1
6
S3 00 00 1
4

S4 00 00

Examples needed to learn accurate extraction rules for all parts of a
wrapper for WIEN (Kushmerick ’00), STALKER, (Muslea, Minton,
Knoblock ’99), and the WhizBang Labs Wrapper Learner (WL?).

Experimental results

=
Eo

Problem
CLASS1
CLASS2
CLASS3
CLASS4
CLASS5
CLASS6

Problem
JOBI1
JOB2
JOB3
JOB4
JOBb5
JOB6
JOB7

N |~ © N N = o= W

median median 3

WL? on representative real-world wrapping problems.

Experimental results

#‘problems‘

=k

£
1S
=
=
0
S
Q
=
o
S
HH

WL? on representative real-world wrapping problems.

Experimental results

Baseline —+—

No format -

Variants of WL? on real-world wrapping problems:

average accuracy versus number of training examples.

Conclusions/Summary

e Wrapper learners need tuning. Structuring the bias space
provides a principled approach to tuning.

“Builders” let one mix generalization strategies based on

different views of the document:
as DOM
as sequence of tokens
as sequence of rendered fragments of text

as geometric model of table

e Performance seems to be better than previous systems.

