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e Develop scalable RL algorithms that learn near optimal controls for
POMDPs without prior knowledge of the model. This is hard!

e Demonstrate these algorithms on a large scale, real world problems:
— speech processing;

— robot navigation.
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‘ Historical Perspective | I

Bellman’'s Equation
Richard Bellman (1957)

J*=r+ gPJ*.
Describes ng equations with ns unknowns (ns = states).
Model must be known.

This formulation is for MDPs only.

Intractable for more than a few tens of states.



Historical Perspective Il I

Policy Iteration
Bellman (1957) and Howard (1960)

Finds a solution to the Bellman equation via dynamic programming.
Practical for much larger state spaces.
Related method: value iteration.

Function approximation for RL in use by 1965 (Waltz and Fu 1965).



‘ Historical Perspective Il I

Simulated Methods
e Do not require the environment model. They learn from experience.
e Q| ear ni ng (Watkin's 1989).

e Eligibility traces: TD( \) (Sutton 1988).



Historical Perspective IVI

Policy Gradient Methods
Learns the policy directly.
Nice convergence properties, even for function approximators.
Variance in the gradient estimates is a problem.
REI NFORCE (Williams 1992).
GPOVDP (Baxter & Bartlett 1999).

Hybrids: VAPS (Baird & Moore 1999).



Historical Perspective VI

Exact POM DP methods
Astrom (1965), Sondik (1971)

e Re-introduces the environment model.
e Modified Bellman equation computes the value of belief states.
e At least PSpace-complete so approximate methods are needed.

Controlling POMDPs sans model, with infinite state and action spaces, is
about as general as it gets.



Failings of current methods I

The drawbacks of current approximate POMDP methods include:
e Assumption of a model of the environment.
e Only recalling events finitely far into the past.

e Use of an independent internal state model that does not aim to
maximise the long term reward.

e Do not easily generalize to continuous observations and actions.

e Applications to toy problems only:.
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‘ The GPOVDP algorithm I

GPOMVDP is a policy gradient approach to reinforcement learning.

GPQOVDP is an algorithm for of estimating the gradient of
T

1 i i
— Z rt] with respect to the parameters of the policy.
t=1

n= lim E

T— o0

Estimates the infinite horizon average reward gradient by using a
parameter 8 which is equivalent to discounting.

1 ~T—1 Vi (uelb,yt) T s—t—1
Computes & > ;o ~pu,10.0,) Dos—ti1 D Ts-

Works for POMDP environments if observations are belief states.

Similar to REI NFORCE (Williams 1992) and VAPS (Baird & Moore
1999), (Marbach & Tsitsiklis 1999).
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GPOVDP with memory

GPOVDP implements a memoryless controller, which is not always
sufficient

\/r:100001®
U L

(Peshkin, Meuleau, K aebling 1999)

GPOVDP has been extended with |-states b, € 5.
w(bsr1|a, by, y¢) gives the next I-state probabilities.
p(ug|6, bya 1) gives action probabilities.

GPOVDP computes the gradient w.r.t # and o independently.

15



Environment

A

(27 “t
Y re = R(it)
v(ye|is) VT
Vin
Yt *
4 N

> w(bet+1|cx, by, yt)
Vbes1

= p(ug)0,bi11)

Agent

16



Outline I

GPOMDP, a policy gradient RL algorithm

Motivation

GPQOVDP with |-state

The Load-Unload problem

Related Work

Pros and Cons of GPQVDP with I-state
Repairing I-state GPOVDP

The Heaven-Hell problem

(?) Using prior knowledge to reduce gradient variance

17



Policy graph learnt for the Load/Unload problem.
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Average reward vs iterations
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Convergence of the Load/Unload problem using 4 I-States.
(Averaged over 100 runs.)
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\ Related Work.

Use HMMs to learn the model (Chrisman 1992).

Recurrent Neural Networks (Lin & Mitchell 1992).

Differentiable approx. to piecewise function (Parr & Russell 1995).
U- Tr ee’s: Dynamic finite history windows (McCallum 1996).

External memory setting actions (Peshkin, Meuleau, Kaebling 1999).
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\ Pros of GPOVDP with |-states I

Converges to the optimal policy that can be learnt with n; I-states.
Does not require a model of the POMDP.

|-states can remember occurrences infinitely far into the past.
Works with continuous state and action spaces.

Theoretically scales to large problems.
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Cons of GPOVDP with I-states I

1. GPOVDP has a large variance as 3 — 1.

2. |-states increase the mixing time of the overall system.
e Importance Sampling;
e replace p with an MDP alg. that works on the I-states;
e eligibility trace filtering to incorporate prior knowledge;

o deterministic u(wu¢|bii1, ys, ar).

3. Internal states are initially undifferentiated, resulting in Vn = 0.

e Define a sparse internal finite state machine.
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Undifferentiated I-states | I

[(A0), (B.1)] [(B,0), (B.1)]

i Internal states

Figure 1: Possible I-state trajectories for observation/action trajectories.
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\ Undifferentiated I-states Il I

[(A,0), (B.1)] [(B,0), (B.1)]

Figure 2: Alternate, equally likely, I-state trajectories.
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Sparse transitions for I-states I

[(A,0), (B.1)] [(B,0), (B.1)]

Figure 3: Reduced number of possible I-state trajectories.
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‘ Signpost problem description I

X r=-1 r=1 \/ \/ r=1 r=—1 X

= =

Figure 4: Simplified Heaven-Hell problem. Agent must visit lower state to
determine which way to move at the top of the T (Thrun 2000), (Geffner &
Bonet 1998).
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‘ |-states Trajectory Probabilities I

|-state trajectory probabilities: random fully-connected FSM

|-state trajectory probabilities: uniform fully-connected FSM 1500l
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Figure 5: Histogram of probabilities of 10,000 I-state trajectories sampled
from the signpost problem. Shown for 2 sets of observations.

29



Sparse transitions for I-states I

|-state trajectory probabilities: random degree 5 FSM
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Figure 6: I-state trajectory histograms for sparse I-state transitions.
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A simple POMDP? I

r=10
P @ OO o O oY
NN NG/ AN AN/
r=11

0 O Y p@ @ O
NN N AN/ NN AN/
P r=12

NN/ N/

Figure 7. A UMDP which requires 8 > 0.97 for GPOVDP to learn to act
optimally.
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‘ GPOMVDP Eligibility Trace Update I
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Standard discounting I

Impulse response of standard discounting 3 = 0.97
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We know the minimum delays from key action until rewards are issued.
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Alternative filter | I

Impulse Response of optimal filter for p=0.0
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Figure 8: A bias optimal FIR filter for P = 0.
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\Alternative filter Il I

Impulse response for IIR filter, p=0.5
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Figure 9: A “good” IR filter for P = 0.5.
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Arbitrary IIR Trace FiIterI
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\ Results I

Trace Testlp=0 | Testllp=0.5
type Bias  var | Bias var
6=0.9 176° 123 | 176° 18.4
B =0.99 14.7° 2090 | 14.7° 2140
FIR 0.107° 7.72 | 4.35° 59.5
IR 13.9° 10.71

Table 1: Results of eligibility trace filtering tests. Note reduced variance
of the filtered traces.
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Key Conclusions I

00— 1tis possible to perform a search for the optimal policy graph
directly.

O— RL algorithms can be extended with I-states to perform this
search.

O—m A tough problem has been solved, using the sparse
Initialization trick to avoid the problem of low initial gradients.

0—v We can use eligibility trace filtering to add prior knowledge
and hence reduce the gradient estimate variance.
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Future Work.

|-state GPQOVDP for larger problems from the literature.
I-state GPQVDP for speech processing.

|-state trained using EM like algorithm.

Bounds on policy error introduced by too few I-states.

Automatic selection of 7.
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