
Learning to Generate

Fast Signal Processing Implementations

Bryan Singer

Joint work with Manuela Veloso

Shorter version to be presented at ICML-2001

Overview

• Background and Motivation

• Key Signal Processing Observations

• Predicting Leaf Cache Misses

• Generating Fast Formulas

• Conclusions

Signal Processing

Many signal processing algorithms:

• take as input a signal X as a vector

• produce transformation of signal Y = AX

Issue:

• Näıve implementation of matrix multiplication is slow

Example signal processing applications:

• Real time audio, image, speech processing

• Analysis of large data sets

Factoring Signal Transforms

• Transformation matrices are highly structured

• Can factor transformation matrices

• Factorizations allow for faster implementations

Walsh-Hadamard Transform (WHT)

Highly structured, for example:

WHT (22) =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



Factorization or break down rule:

WHT (2n) =
t∏

i=1
(I

2n1+···+ni−1 ⊗WHT (2ni)⊗ I
2ni+1+···+nt)

for positive integers ni such that n = n1 + · · ·+ nt

WHT Example

WHT (25) = [WHT (23)⊗ I22][I23 ⊗WHT (22)]

= [{(WHT (21)⊗ I22)(I21 ⊗WHT (22))} ⊗ I22]

[I23 ⊗ {(WHT (21)⊗ I21)(I21 ⊗WHT (21))}]

We can visualize this as a split tree:

5

3 2

21 1 1

1-1 correspondence between split trees and formulas

Search Space

Large number of factorizations:

• WHT (2n) has Θ((4 +
√

8)n/n3/2) different split trees

• WHT (2n) has Θ(5n/n3/2) different binary split trees

• WHT (210) has 51,819 binary split trees

Varying Performance

Varying performance of factorizations:

• Formulas have very different running times

• Small changes in the split tree can lead to

significantly different running times

• Optimal formulas across machines are different

Reasons:

• Cache performance

• Utilization of execution units

• Number of registers

Histogram of WHT (216) Running Times

0.5 1 1.5 2 2.5 3

x 10
7

0

50

100

150

200

250

300

350

400

Running time in CPU cycles

N
um

be
r

of
 fo

rm
ul

as

Problem

Huge search space of formulas

Want to find the fastest formula

• For a given transform

• For a given size

• For a given machine

• But for any input vector

Our Approach: Learn to generate fast formulas

• Learn to predict cache misses for leaves

• Use this as the base cases for determining values of

different splittings

• Construct fast formulas by choosing best splittings

Overview

• Background and Motivation

• Key Signal Processing Observations

• Predicting Leaf Cache Misses

• Generating Fast Formulas

• Conclusions

Run Times and Cache Misses

5e+06

1e+07

1.5e+07

2e+07

2.5e+07

3e+07

1.0e+05 2.0e+05 3.0e+05 4.0e+05 5.0e+05

R
un

tim
e

in
 C

P
U

 C
yc

le
s

�

 Level 1 Data Cache Misses

Run Times and Cache Misses

• Fastest formula has minimal number of cache misses

• Minimizing cache misses produces small group of

formulas which contains the fastest formula

WHT Leaves

• WHT leaves are implemented as unrolled code

(sizes 21 to 28)

• Internal nodes recursively call their children

• All run time and cache misses occur in the leaves

• Total run time or cache misses of a formula is the

sum of that incurred by the leaves

• If we can predict for leaves,

then we can predict for entire formulas

Leaf Cache Misses: WHT (216) example

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Level 1 Data Cache Misses

N
um

be
r

of
 L

ea
ve

s

214 215 216 2170

Leaf Cache Misses

• The number of cache misses incurred by leaves is

only of a few possible values

• These values are fractions of the transform size

• We can predict one of a few categories instead of

real valued number of cache misses

• We can learn across different sizes by learning the

categories corresponding to fractions of the

transform size

Review of Observations

• Fastest formula has minimal number of cache misses

• All computation performed in the leaves

• Leaf cache misses only have a few values

• Leaf cache misses are fractions of transform size

Overview

• Background and Motivation

• Key Signal Processing Observations

• Predicting Leaf Cache Misses

• Generating Fast Formulas

• Conclusions

Predicting Leaf Cache Misses

• Want to learn to accurately predict leaf cache misses

• Should then be able to predict cache misses for

entire formulas

Learning Algorithm

1. Collect cache misses for leaves of WHT formulas

2. Classify (cache misses / transform size) as:

• near-zero if less than 1/8

• near-quarter if less than 1/2

• near-whole if less than 3/2

• large otherwise. 0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Level 1 Data Cache Misses

N
um

be
r

of
 L

ea
ve

s

214 215 216 2170

3. Train a classification algorithm to predict one of the

four classes given a leaf

Features for WHT Leaves

Need to describe WHT leaves with features

Could use:

• Size of the given leaf

• Stride of the given leaf

Stride:

• Determines how a node accesses its input and

output data

• Greatly impacts cache performance

• Determined by location of node in split tree

More Features for WHT Leaves

• Size and stride of the given leaf

• Size and stride of the parent of the given leaf

• Size and stride of the common parent

A
PrevLeaf: -
ComPar: -

PrevLeaf: -
ComPar: -

CB
ComPar: A

F G
PrevLeaf: -
ComPar: -

D E

PrevLeaf: F

ComPar: C
PrevLeaf: GPrevLeaf: F

ComPar: A
PrevLeaf: E
ComPar: B

Review: Learning Algorithm

1. Collect cache misses for leaves of WHT formulas

2. Classify (cache misses / transform size) as:

• near-zero if less than 1/8

• near-quarter if less than 1/2

• near-whole if less than 3/2

• large otherwise.

3. Describe leaves with features

4. Train a classification algorithm to predict one of the

four classes given features for a leaf

Evaluation

• Trained a decision tree

• Used a random 10% of leaves of all binary

WHT (216) split trees with no leaves of size 21

• Evaluated performance using subsets of formulas

known to be fastest

• Can not evaluate over all formulas because there are

too many possible formulas

Leaf Cache Miss Category Performance

Error rates for predicting cache miss category incurred

by leaves

Binary No-21-Leaf Binary No-21-Leaf Rightmost
Size Errors
212 0.5%
213 1.7%
214 0.9%
215 0.9%
216 0.7%

Size Errors
217 1.7%
218 1.7%
219 1.7%
220 1.6%
221 1.6%

Trained on one size, performs well across many!

Predicting Cache Misses for Entire Formulas

Average percentage error for predicting cache misses

for entire formulas

Binary No-21-Leaf Binary No-21-Leaf Rightmost
Size Errors
212 12.7%
213 8.6%
214 6.7%
215 5.2%
216 4.6%

Size Errors
217 8.2%
218 8.2%
219 7.9%
220 8.1%
221 10.4%

Error = 1
|TestSet|

∑
i∈TestSet

|ai−pi|
ai

, where ai and pi are the actual and

predicted number of cache misses for formula i.

Runtime Versus Predicted Cache Misses

Binary No-21-Leaf Binary No-21-Leaf
WHT (214) Rightmost WHT (220)

1e+06

2e+06

3e+06

4e+06

5e+06

2.0e+04 4.0e+04 6.0e+04 8.0e+04 1.0e+05A
ct

ua
l R

un
ni

ng
 T

im
e

in
 C

P
U

 C
yc

le
s

�

Predicted Number of Cache Misses

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

4e+08

2.0e+06 4.0e+06 6.0e+06A
ct

ua
l R

un
ni

ng
 T

im
e

in
 C

P
U

 C
yc

le
s

�

Predicted Number of Cache Misses

Review: Predicting Cache Misses

By learning to predict leaf cache misses:

• Accurately predict cache misses for entire formulas

• Fastest formulas have fewest predicted cache misses

• Predict accurately across many transform sizes while

trained on one size

Overview

• Background and Motivation

• Key Signal Processing Observations

• Predicting Leaf Cache Misses

• Generating Fast Formulas

• Conclusions

Generating Fast Formulas

• Can now quickly predict cache misses for a formula

• Fastest formulas have minimal cache misses

• But still MANY formulas to search through

Can we learn to generate fast formulas?

Generating Fast Formulas: Approach

Control Learning Problem:

• Learn to control the generation of formulas to

produce fast ones

20

Want to grow the fastest WHT split tree:

• Begin with a root node of the desired size

Generating Fast Formulas: Approach

Control Learning Problem:

• Learn to control the generation of formulas to

produce fast ones

20

4 16

Want to grow the fastest WHT split tree:

• Begin with a root node of the desired size

• Grow best possible children

Generating Fast Formulas: Approach

Control Learning Problem:

• Learn to control the generation of formulas to

produce fast ones

20

4 16

2 2

Want to grow the fastest WHT split tree:

• Begin with a root node of the desired size

• Grow best possible children

• Recurse on each of the children

Generating Fast Formulas: Approach

• Try to formulate in terms of Markov Decision

Processes (MDPs) and Reinforcement Learning (RL)

• Final formulation not an MDP

• Final formulation borrows concepts from RL

MDPs

An MDP is a tuple (S,A, T, C):

• S is a set of states

• A is a set of actions

• T :S ×A → S is a transition function that maps the

current state and action to the next state

• C:S ×A → < is a cost function that maps the

current state and action onto its real valued cost

Markov Property: T and C only depend on the current

state and action

MDPs and RL

Agent:

• Observes current state

• Selects action to take

• Receives the cost for that action in that state

• Observes next state, and repeat

Reinforcement learning provides methods for finding a

policy π:S → A that selects the best action at each

state that minimizes the sum of costs incurred

Basic Formulation

Given a size, want to grow a fast WHT split tree

• States = unexpanded nodes in split tree

• Start state = root node of given size w/ no children

• Actions = ways to split a node, giving it children

OR, make the node a leaf

• Cost Function =

• Zero when giving children to a node

• The leaf’s run time when making a node a leaf

• Goal = minimize sum of costs

Detail: State Space Representation

States = unexpanded nodes in split tree

But how to represent the states???

Modified leaf features for arbitrary nodes:

• Size and stride of the given node

• Size and stride of the parent of the given node

• Size and stride of the common parent to this node

Detail: Cost Function

Ideal Cost Function =

• Zero when giving children to a node

• The leaf’s run time when making a node a leaf

But, a leaf’s runtime is not easily obtained

However, we can predict cache misses for leaves!

Used Cost Function =

• Zero when giving children to a node

• The leaf’s predicted cache misses when making a

node a leaf

Now we really minimize the number of cache misses

Difficulty: Transition Function

What is the transition function for this problem?

Given that 2 children of the root are grown:

• Which node is the next state?

• When will we transition back to the sibling?

• Where to transition to from a leaf node?

• And still maintain the Markov property?

We depart from the MDP framework here . . .

Our Approach

Problem advantages:

• Deterministic and known actions

• Deterministic and known cost function

(learned decision tree)

Approach:

• Define an optimal value function on states

• Run DP to determine value function

(basically like solving an MDP)

Value Function

Define an optimal value function on states:

• Value of a state is the cost of the best subtree

• Value of root node is the cost of the best formula

• Choose children that have minimal sum of values

Mathematically: Value Function on States

State = unexpanded node in split tree,

described by 6 features

The optimal value of a state is:

V ∗(state) = min
subtrees

∑
leaf∈subtree

CacheMisses(leaf)

• Min over all possible subtrees of the given state

• CacheMisses() returns the predicted number of

cache misses for the given leaf

Recursive Formulation of Value Function

Define:

LeafCM(state)

=

CacheMisses(state), if state can be a leaf

∞, if state cannot be a leaf

and

SplitV (state) = min
splittings

∑
child∈splitting

V ∗(child)

Then:

V ∗(state) = min{LeafCM(state), SplitV (state)}

Computing the Value Function

Use dynamic programming to calculate value function:

• Consider all possible sets of children of the root

• Recursively call DP on each of the children,

memoizing results

• Determine set of children with minimal sum of values

• Root’s value is this minimal sum of values

Generating Fast Formulas

Generate split tree with minimal Value (or near minimal)

• Consider all possible sets of children of the root

• Choose those that have the minimal sum of values

• Recurse on children

Evaluation

Difficulty:

• Do not know what the optimal formula is

• Too many formulas to exhaust at larger sizes

Possible:

• Exhaust over limited subspaces

• Limit based on signal processing knowledge and prior

experience from using different search methods

• Compare my method with best found by this limited

exhaust

Fast Formula Generation Results

Number of Generated # of Fastest
Formulas Included the Formulas

Size Generated Fastest Known in Generated
212 101 yes 77
213 86 yes 4
214 101 yes 70
215 86 yes 11
216 101 yes 68
217 86 yes 15
218 101 yes 25
219 86 yes 16
220 101 yes 16

Histograms: WHT (220)

1.5 2 2.5 3 3.5 4

x 10
8

0

20

40

60

80

100

120

140

160

180

Running Time in CPU Cycles

N
um

be
r

of
 F

or
m

ul
as

1.6 1.8 2 2.2 2.4

x 10
8

0

1

2

3

4

5

6

Running Time in CPU Cycles

N
um

be
r

of
 F

or
m

ul
as

Limited Exhaust Our method
Binary No-21-Leaf Rightmost

Overview

• Background and Motivation

• Key Signal Processing Observations

• Predicting Leaf Cache Misses

• Generating Fast Formulas

• Conclusions

Conclusions

• New method for constructing fast WHT formulas

• Generates fastest known formulas!

• Method can be trained on data for one size and

perform well across many sizes

• Also, can learn to accurately predict cache misses of

formulas

On going and future work:

• Test and extend to other architectures

• Extend to other transforms

Acknowledgements

SPIRAL group:

• José Moura, ECE, CMU

• Manuela Veloso, CS, CMU

• Jeremy Johnson, MCS, Drexel

• Bob Johnson, MathStar

• David Padua, CS, University of Illinois

• Viktor Prasanna, CS, USC

• Markus Püschel, ECE, CMU

• Gavin Haentjens, ECE, CMU

• David Sepiashvili, ECE, CMU

• Jianxin Xiong, CS, University of Illinois

Questions?

	Title
	Background
	WHT
	Search Space
	Problem

	Observations
	Predicting
	Alg
	Features
	Eval

	Generating
	MDPs
	Basic
	Details
	Value
	Algorithm
	Evaluation

	Conclusions

