Learning to Generate

Fast Signal Processing Implementations

Bryan Singer

Joint work with Manuela Veloso

Shorter version to be presented at ICML-2001

Overview

e Background and Motivation

e Key Signal Processing Observations
e Predicting Leaf Cache Misses

e Generating Fast Formulas

e Conclusions

Signal Processing

Many signal processing algorithms:
e take as input a signal X as a vector

e produce transformation of signal Y = A X

Issue:

e Nalve implementation of matrix multiplication is slow

Example signal processing applications:
e Real time audio, image, speech processing

e Analysis of large data sets

Factoring Signal Transforms

e [ransformation matrices are highly structured
e Can factor transformation matrices

e Factorizations allow for faster implementations

Walsh-Hadamard Transform (WHT)

Highly structured, for example:

101 1 1
1 -1 1 -1
WHT(2®) = |1 1 1]
1 -1 -1 1

Factorization or break down rule:

t
1=

for positive integers n; such that n=n1+--- 4+ n¢

WHT Example

WHT(2°) = [WHT(23) ® I,2][I,3 ® WHT(27)]
{(WHT(21) @ I2) (1,1 @ WHT(22))} ® 1]
I3 @ {(WHT(2") ® I;1)(I,1 ® WHT(2"))}]

We can visualize this as a split tree:

O

N

3 2

/N /N

1 2 1 1

1-1 correspondence between split trees and formulas

Search Space

Large number of factorizations:
e WHT(2") has ©((4 4+ v/8)"/n3/2) different split trees
e WHT(2™) has ©(5"/n3/2) different binary split trees
e WHT(219) has 51,819 binary split trees

Varying Performance

Varying performance of factorizations:
e Formulas have very different running times
e Small changes in the split tree can lead to

significantly different running times

e Optimal formulas across machines are different

Reasons:
e Cache performance
e Utilization of execution units

e Number of registers

Histogram of WHT(21®) Running Times

400

350

w
o
o

N
)
o

Number of formulas
- N
(@]] (@)
o o

=
o
o

50

1

1.5 2 2.5 3
Running time in CPU cycles x 10"

Problem

Huge search space of formulas

Want to find the fastest formula
e FOr a given transform
e FOr a given size
e FOr a given machine

e But for any input vector

Our Approach: Learn to generate fast formulas
e Learn to predict cache misses for leaves
e Use this as the base cases for determining values of
different splittings

e Construct fast formulas by choosing best splittings

Overview

e Background and Motivation

e Key Signal Processing Observations
e Predicting Leaf Cache Misses

e Generating Fast Formulas

e Conclusions

Run Times and Cache Misses

Runtime in CPU Cycles

3e+07

2.5e+07

2e+07

1.5e+07

1le+07

5e+06

| L | | L |

1.0e+05

2.0e+05 3.0e+05 4.0e+05 5.0e+05
Level 1 Data Cache Misses

Run Times and Cache Misses

e Fastest formula has minimal number of cache misses

e Minimizing cache misses produces small group of

formulas which contains the fastest formula

WHT Leaves

e WHT leaves are implemented as unrolled code
(sizes 21 to 29)

e Internal nodes recursively call their children

e All run time and cache misses occur in the leaves
e [otal run time or cache misses of a formula is the

sum of that incurred by the leaves

e If we can predict for leaves,

then we can predict for entire formulas

Leaf Cache Misses: WHT(216) example

8000

6000

4000

2000

0 214 215 216 217
Level 1 Data Cache Misses

Leaf Cache Misses

e [he number of cache misses incurred by leaves is
only of a few possible values

e [hese values are fractions of the transform size

e \We can predict one of a few categories instead of
real valued number of cache misses

e \We can learn across different sizes by learning the
categories corresponding to fractions of the

transform size

Review of Observations

e Fastest formula has minimal number of cache misses
e All computation performed in the leaves
e |Leaf cache misses only have a few values

e |Leaf cache misses are fractions of transform size

Overview

e Background and Motivation

e Key Signal Processing Observations
e Predicting Leaf Cache Misses

e Generating Fast Formulas

e Conclusions

Predicting Leaf Cache Misses

e \Want to learn to accurately predict leaf cache misses
e Should then be able to predict cache misses for

entire formulas

Learning Algorithm

1. Collect cache misses for leaves of WHT formulas

2. Classify (cache misses / transform size) as:

80—

e near-zero if less than 1/8

[=]
=]
]

12000

o
o
o

e near-quarter if less than 1/2

Number of Leaves
D

e near-whole if less than 3/2

N B D o]
o o o =]
o =] o =]
<]] <] <]

o

e |large otherwise. d

216 217
Level 1 Data Cache Misses

3. Train a classification algorithm to predict one of the

four classes given a leaf

Features for WWHT Leaves

Need to describe WHT leaves with features

Could use:
e Size of the given leaf

e Stride of the given leaf

Stride:
e Determines how a node accesses its input and
output data
e Greatly impacts cache performance

e Determined by location of node in split tree

More Features for WHT Leaves

e Size and stride of the given leaf
e Size and stride of the parent of the given leaf

e Size and stride of the common parent

A
ComPar: -
B C
ComPar: A ComPar: -
PrevLeaf: F PrevLeaf: -
D E F G
ComPar: B ComPar: A ComPar: C ComPar: -

PrevLeaf: E PrevLeaf: F PrevLeaf: G Prevl eaf: -

Review: Learning Algorithim

1. Collect cache misses for leaves of WHT formulas
2. Classify (cache misses / transform size) as:
e near-zero if less than 1/8
e near-quarter if less than 1/2
e near-whole if less than 3/2
e |large otherwise.
3. Describe leaves with features
4. Train a classification algorithm to predict one of the

four classes given features for a leaf

Evaluation

e Trained a decision tree
e Used a random 10% of leaves of all binary
W HT(210) split trees with no leaves of size 21
e Evaluated performance using subsets of formulas

known to be fastest

e Can not evaluate over all formulas because there are

too many possible formulas

Leaf Cache Miss Category Performance

Error rates for predicting cache miss category incurred

by leaves

Binary No-21-Leaf

Size

Errors

212
~13
214
215
216

0.5%
1.7%
0.9%
0.9%
0.7%

Binary No-21-Leaf Rightmost

Size

Errors

217
218
219
220
221

1.7%
1.7%
1.7%
1.6%
1.6%

Trained on one size, performs well across many!

Predicting Cache Misses for Entire Formulas

Average percentage error for predicting cache misses

for entire formulas

Binary No-21-Leaf Binary No-21-Leaf Rightmost
Size | Errors Size | Errors
212112.7% 2171 8.2%

2131 8.6% 2181 8.2%
2141 6.7% 2191 7.9%
2151 5.2% 220 8.1%
2161 4.6% 221 110.4%

Error = mxzeﬂstset ai— pz', where a; and p; are the actual and

predicted number of cache misses for formula z.

Runtime Versus Predicted Cache Misses

Actual Running Time in CPU Cycles

5e+06

4e+06

3e+06

2e+06

1le+06

Binary No-21-Leaf
WHT(21%)

I
+

2.0e+04 4.0e+04 6.0e+04 8.0e+04 1.0e+05
Predicted Number of Cache Misses

Binary No-21-Leaf
Rightmost WHT (229)

3

5 4e+08
>

@)

-

o 3.5e+08
O

=

o 3e+08
£

|_

o 2.5e+08
=

c

% 2e+08
T e

E

5 1.5e+08
<

O

HAH

B I
o

S

-

2.0e+06

4.0e+06

6.0e+06

Predicted Number of Cache Misses

Review: Predicting Cache Misses

By learning to predict leaf cache misses:
e Accurately predict cache misses for entire formulas
e Fastest formulas have fewest predicted cache misses
e Predict accurately across many transform sizes while

trained on one size

Overview

e Background and Motivation

e Key Signal Processing Observations
e Predicting Leaf Cache Misses

e Generating Fast Formulas

e Conclusions

Generating Fast Formulas

e Can now quickly predict cache misses for a formula
e Fastest formulas have minimal cache misses

e But still MANY formulas to search through

Can we learn to generate fast formulas?

Generating Fast Formulas: Approach

Control Learning Problem:
e Learn to control the generation of formulas to

produce fast ones

Want to grow the fastest WHT split tree:

e Begin with a root node of the desired size

Generating Fast Formulas: Approach

Control Learning Problem:
e Learn to control the generation of formulas to

produce fast ones

Want to grow the fastest WHT split tree:

e Begin with a root node of the desired size

e Grow best possible children /O\

4 16

Generating Fast Formulas: Approach

Control Learning Problem:
e Learn to control the generation of formulas to

produce fast ones

Want to grow the fastest WHT split tree:

e Begin with a root node of the desired size

e Grow best possible children 0
e Recurse on each of the children
4 16

/N

2 2

Generating Fast Formulas: Approach

e [ry to formulate in terms of Markov Decision

Processes (MDPs) and Reinforcement Learning (RL)

e Final formulation not an MDP

e Final formulation borrows concepts from RL

MDPs

An MDP is a tuple (S, A, T,C):
e § IS a set of states
e A is a set of actions
e I"Sx A— S is a transition function that maps the
current state and action to the next state
e (S xA— R is a cost function that maps the

current state and action onto its real valued cost

Markov Property: T' and C' only depend on the current

state and action

MDPs and RL

Agent:
e Observes current state
e Selects action to take
e Receives the cost for that action in that state

e Observes next state, and repeat

Reinforcement learning provides methods for finding a
policy m: S — A that selects the best action at each

state that minimizes the sum of costs incurred

Basic Formulation

Given a size, want to grow a fast WHT split tree

e States = unexpanded nodes in split tree
e Start state = root node of given size w/ no children
e Actions = ways to split a node, giving it children
OR, make the node a leaf
e Cost Function =
e Zero when giving children to a node
e T he leaf’s run time when making a node a leaf

e Goal = minimize sum of costs

Detail: State Space Representation

States = unexpanded nodes in split tree

But how to represent the states?7??

Modified leaf features for arbitrary nodes:
e Size and stride of the given node
e Size and stride of the parent of the given node

e Size and stride of the common parent to this node

Detail: Cost Function

Ideal Cost Function =
e Zero when giving children to a node
e [he |leaf’'s run time when making a node a leaf

But, a leaf’'s runtime is not easily obtained
However, we can predict cache misses for leaves!

Used Cost Function =
e Zero when giving children to a node
e [he |leaf’'s predicted cache misses when making a

node a leaf

Now we really minimize the number of cache misses

Difficulty: Transition Function

What is the transition function for this problem?

Given that 2 children of the root are grown:
e \Which node is the next state?
e When will we transition back to the sibling?
e Where to transition to from a leaf node?

e And still maintain the Markov property?

We depart from the MDP framework here ...

Our Approach

Problem advantages:
e Deterministic and known actions
e Deterministic and known cost function

(learned decision tree)

Approach:
e Define an optimal value function on states
e Run DP to determine value function

(basically like solving an MDP)

Value Function

Define an optimal value function on states:
e Value of a state is the cost of the best subtree
e Value of root node is the cost of the best formula

e Choose children that have minimal sum of values

Mathematically: Value Function on States

State = unexpanded node in split tree,

described by 6 features

The optimal value of a state is:

V*(state) = min > CacheMisses(leaf)
subtrees lea f Esubtree

e Min over all possible subtrees of the given state

e CacheMisses() returns the predicted number of

cache misses for the given leaf

Recursive Formulation of Value Function

Define:

LeafCM (state)
. {CacheMisses(state), if state can be a leaf

oo, If state cannot be a leaf
and

SplitV (state) = min > V*(child)
splittings .pi1de splitting

Then:

V*(state) = min{LeafC M (state), SplitV (state)}

Computing the Value Function

Use dynamic programming to calculate value function:
e Consider all possible sets of children of the root
e Recursively call DP on each of the children,
memoizing results
e Determine set of children with minimal sum of values

e Root’'s value is this minimal sum of values

Generating Fast Formulas

Generate split tree with minimal Value (or near minimal)
e Consider all possible sets of children of the root
e Choose those that have the minimal sum of values

e Recurse on children

Evaluation

Difficulty:
e Do not know what the optimal formula is

e TOoO many formulas to exhaust at larger sizes

Possible:
e Exhaust over limited subspaces
e Limit based on signal processing knowledge and prior
experience from using different search methods

e Compare my method with best found by this limited

exhaust

Fast Formula Generation Results

Number of Generated # of Fastest
Formulas Included the Formulas
Size | Generated | Fastest Known | in Generated
212 101 yes 77
213 86 yes 4
p14 101 yes 70
215 86 yes 11
216 101 yes 68
217 86 yes 15
218 101 yes 25
219 86 yes 16
220 101 yes 16

Number of Formulas

N
o

Histograms: W HT(229)

)]
T

D
T

(0]
o
T

N
T

(@)
=)
Number of Formulas
w

-
T

20

s 2 25 3 3.5 4 1.6 18 2 2.2 2.4
Running Time in CPU Cycles 108 Running Time in CPU Cycles 108

Limited Exhaust Our method
Binary No-21-Leaf Rightmost

Overview

e Background and Motivation

e Key Signal Processing Observations
e Predicting Leaf Cache Misses

e GGenerating Fast Formulas

e Conclusions

Conclusions

e New method for constructing fast WHT formulas

e GGenerates fastest known formulas!

e Method can be trained on data for one size and
perform well across many sizes

e AlsSO, can learn to accurately predict cache misses of

formulas

On going and future work:
e [est and extend to other architectures

e Extend to other transforms

Acknowledgements

SPIRAL group:
e JOosé Moura, ECE, CMU
e Manuela Veloso, CS, CMU
e Jeremy Johnson, MCS, Drexel
e Bob Johnson, MathStar
e David Padua, CS, University of Illinois
e Viktor Prasanna, CS, USC
e Markus Puschel, ECE, CMU
e Gavin Haentjens, ECE, CMU
e David Sepiashvili, ECE, CMU

e Jianxin Xiong, CS, University of Illinois

Questions?

	Title
	Background
	WHT
	Search Space
	Problem

	Observations
	Predicting
	Alg
	Features
	Eval

	Generating
	MDPs
	Basic
	Details
	Value
	Algorithm
	Evaluation

	Conclusions

