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Reinforcement Learning

Models agent interacting with its environment .

1. Agent receives information about its state .

2. Agent chooses action or control based on state-
Information.

3. Agent receives a reward .
4. State Is updated.

5. Goto ??.



Reinforcement Learning

Goal: Adjust agent’s behaviour to maximize long-term
average reward.

Key Assumption: state transitions are Markov .



State: Board position.
Control: Move pieces.

State Transitions: My move, followed by opponent’s
move.

Reward: WIin, draw, or lose.



Call Admission Control

Telecomms carrier selling bandwidth: queueing problem.
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State: Mix of call types on channel.
Control: Accept calls of certain type.
State Transitions: Calls finish. New calls arrive.

Reward: Revenue from calls accepted.



Cleaning Robot

State: Robot and environment (position, velocity, dust
levels, ...).

Control: Actions available to robot.

State Transitions: depend on dynamics of robot and
statistics of environment.

Reward: Pick up rubbish, don’t damage the furniture.



Summary

Previous approaches:

Dynamic Programming can find optimal policies In
small state spaces.

Approximate Value-Function based approaches currently
the method of choice in large state spaces.

Numerous practical successes, BUT

Policy performance can degrade at each step.



Summary

Alternative Approach:

Policy parameters 8 € RE, Performance: n(0).
Compute Vn(0) and step uphill (gradient ascent).

Previous algorithms relied on accurate reward baseline
Or recurrent states .



Summary

Our Contribution:

Approximation Vzn(0) to Vn(0).

Parameter 3 € [0,1) related to Mixing Time of
problem.

Algorithm to approximate Vi1 (@) via simulation (POMDPG)

Line search in the presence of noise.



Partially Observable Markov Decision
Processes (POMDPS)

States: S={1,2,...,n} X;e S
Observations: Y= {1,2,...,M} Y;e)y
Actions or Controls: u={1,2,...,N} U,elU

Observation Process v: Pr(Y; = y|X; = )= v,(2)

Stochastic Policy p: Pr(U; = u|Y; = y)= po(, y)
Rewards: r+S§ —R

Adjustable parameters: c rRE



POMDP

Transition Probabilities:

Pr(Xi11 = 3| Xt = 4, Uy = u) = pij(u)
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POMDP

Environment O
r(Xy
Y
Yt Agent ] Ut
Policy: M J
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The Induced Markov Chain

Transition Probabilities:

Pz‘j( ):PI' (Xt—l—l — j|Xt = Z)
=Ey v (x3) Bu~p(o,y) Pij(w)

Transition Matrix:

P(0) = [pi;(0)]
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Stationary Distributions

q = [q1- - gn]" € R" is adistribution over states.

X~ q
/
= Xt_|_1N q P(H)

Definition: A probabillity distribution = € R™ IS a
stationary distribution  of the Markov chain If

7' P(0) = «’.
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Stationary Distributions

Convenient Assumption: For all values of the
parameters 6@, there Is a unique stationary distribution
7(0).

Implies the Markov chain mixes :
For all X, the distribution of X; approaches = (0).

Inconvenient Assumption: Number of states n
“essentially infinite”.

Meaning: forget about storing a number for each state, or
Inverting n X m matrices.



Measuring Performance

Average Reward:
n(0) = )  mi(9)r(i)
i=1

Goal: Find 8 maximizing n(80).
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Summary

Partially Observable Markov Decision Processes.
Previous approaches: value function methods.
Direct gradient ascent

Approximating the gradient of the average reward.
Estimating the approximate gradient: POMDPG.
Line search in the presence of noise.

Experimental results.
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Approximate Value Functions

Discount Factor 3 € [0, 1), Discounted value of state
¢ under policy p:

Jh(i) = E, [r(Xo) + Br(Xy) + B%r(X2) + -+ | Xo = i

ldea: Choose restricted class of value functions
J(0,1), 0 cRrE, i€ S (e.g neural network with
parameters 6).



Policy lteration
lterate:

Given policy p, find approximation J (6, -) to J.

Many algorithms for finding 6: TD()\), Q-learning,
Bellman residuals, . ...

Simulation and non-simulation based.
Generate new policy p’ using J (0, -):

. (0,1) = 1 < u* = argmax, oy » pij(u)J (6, j)
JES
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Approximate Value Functions

The Good:

x Backgammon (world-champion), chess (International
Master), job-shop scheduling, elevator contral, . ..
*x Notion of “backing-up” state values can be efficient.

The Bad:

x Unless ‘j(e, 1) — Jg(i)‘ = 0 for all states ¢, the new

policy u” can be a lot worse than the old one.
*x “Essentially Infinite” state spaces means we are likely
to have very bad approximation error for some states.
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Summary

Partially Observable Markov Decision Processes.
Previous approaches: value function methods.
Direct gradient ascent.

Approximating the gradient of the average reward.
Estimating the approximate gradient. POMDPG.
Line search in the presence of noise.

Experimental results.



Direct Gradient Ascent

Desideratum:  Adjusting the agent’s parameters 6
should improve its performance.

Implies. ..

Adjust the parameters In the direction of the
gradient of the average reward:

0:= 0+ ~Vn(6)
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Direct Gradient Ascent: Main Results

. Algorithm to estimate approximate gradient(Vsn) from a
sample path.

. Accuracy of approximation depends on parameter of the
algorithm (3); bias/variance trade-off.

. Line search algorithm using only gradient estimates.
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Related Work
Machine Learning: Williams’ REINFORCE algorithm (1992).

Gradient ascent algorithm for restricted class of MDPs.
Requires accurate reward baseline, I.1.d. transitions.

Kimura et. al. , 1998: extension to infinite horizon.

Discrete Event Systems: Algorithms that rely on recurrent
states. MDPs: (Cao and Chen, 1997), POMDPs: (Marbach and
Tsitsiklis, 1998).

Control Theory: Direct adaptive control using derivatives
(Hjalmarsson, Gunnarsson, Gevers, 1994), (Kammer, Bitmead,
Bartlett, 1997), (DeBruyne, Anderson, Gevers, Linard, 1997).
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Summary

Partially Observable Markov Decision Processes.
Previous approaches: value function methods.
Direct gradient ascent.

Approximating the gradient of the average reward.
Estimating the approximate gradient: POMDPG.
Line search in the presence of noise.

Experimental results.



Approximating the gradient

Recall: For 3 € [0, 1), Discounted value of state z is

JB(Z) = E [’I"(Xo) —|— ,BT(Xl) —|— ,Bz’r(Xz) —I— © o ‘ X() — ’L}

Vector notation: Jg = (Jg(1), ..

’ Jﬁ(n))

H/—/
estimate

Theorem: Forall 3 € [0,1),
Vin(0)= Br’'(0)VP(0)Js + (1 — B)V='(0)Js.

= BVn(0) + (1 — B)V«'(0)Js.

—0as (—1
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Mixing Times of Markov Chains
¢,-distance: |If p, g are distributions on the states,

lp — g1 := Z p(3) — q(i)]

d(t)-distance: Let p’(z) be the distribution over states
at time t, starting from state 2.

d(t) := max Ip"(2) — p*(4) 1

Unique stationary distribution =- d(t) — O.



Approximating the gradient

Mixing time: 7 := min {t: d(t) < 6_1}

Theorem: Forall 3 € [0,1), 6 € R*,

IVn(8) — Vim(6)|| < constant x 7*(6)(1 — ).

That is, if 1 /(1 — 3) is large compared with the mixing
time 7*(0), Vsn(0) accurately approximates the gradient
direction Vn(0).
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Summary

Partially Observable Markov Decision Processes.
Previous approaches: value function methods.
Direct gradient ascent.

Approximating the gradient of the average reward.
Estimating the approximate gradient: POMDPG.
Line search in the presence of noise.

Experimental results.
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Estimating Vsn(0): POMDPG
Given: parameterized policies, u,(0,y),8 € [0,1):
1. Setzg = Ag =0 & RE.

2. for each observation y;, control u;, reward r(z;,1) do

| Vl'l'ut(gv yt)

3. Set z;11 = Bz (eligibility trace)
l’l’ut(07 yt)

4, Set At_|_1 = A; t—|1—1 [’I"(’l:t_|_1)Zt_|_1 — At]

5. end for



Convergence of POMDPG

Theorem: Forall 3 € [0,1), 6 € RE,
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Explanation of POMDPG

Algorithm computes:

1 T-1 27

Ar = T Z - (”“(’it+1) + Br(tsy2)+- - “|‘5T_t_lr(iT))
N ——————————— ——————————————————
t=0 Hut Estimate of discounted value ‘due to’ action uy,

V ., (0, y:) is the direction to increase the probability of
the action wu;.

It IS weighted by something Involving subsequent
rewards, and

divided by p.,,: ensures “popular” actions don’'t dominate



POMDPG: Bias/Variance trade-off

t—o0 B8—1

Ay —— Vgn(0) — Vn(0) |

Bias/Variance Tradeoff: 3 = 1 gives:

~ Accurate gradient approximation (Van close to Vn),
but
x Large variance in estimates A; of Vin for small ¢.
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POMDPG: Bias/Variance trade-off

t—o0 p—1

Ay —— Vgn(0) — Vn(0) |.

Recall: 1/(1 — 3) = 7*(08) (mixing time).

*~ Small mixing time =- small 3 = accurate gradient
estimate from short POMDPG simulation

= Large mixing time = large (3 = accurate gradient
estimate only from long POMDPG simulation

Conjecture: Mixing time Is an Intrinsic constraint on
any simulation-based algorithm.



Example: 3-state Markov Chain

Transition Probabilities: _
0 4/5 1/5
0 4/5 1/5

Observations: (¢1(2), ¢2(2)):

0 1/5 4/5
1/5 0 4/5
1/5 4/5

0

34

State 1:(2/3,1/3) State 2:(1/3,2/3) State 3:(5/18,5/18)

Parameterized Policy: 6 € R?

e(0191(2)+02¢2(7))

“u1(99 z): 1+ (0101 (i) +0202 (1)) Nuz(ev 7’): 1 — “u1(09 7’)

Rewards: (r(1),7(2),7(3)) = (0,0,1)
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Relative Norm Difference

Bias/Variance Trade-off
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Summary

Partially Observable Markov Decision Processes.
Previous approaches: value function methods.
Direct gradient ascent.

Approximating the gradient of the average reward.
Estimating the approximate gradient. POMDPG.
Line search in the presence of noise.

Experimental results.
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Line-search in the presence of noise

Want to find maximum of (@) in direction Vzn(0).

Usual method: find 3 points

0, =0 + 'Yivﬁn(e)a 1 =1,2,3,

with v; < ~2 < ~3 such that:

n(62) > n(61), mn(02) > n(03) and interpolate.

Problem: (@) only available by simulation (e.g. nr(8)),
SO Noisy:

lim var [sign (nr(02) — nr(61))] = 1

601 —0-



Line-search in the presence of noise

Solution: Use gradients to bracket (POMDPG).
Ven(601) - Van(0) > 0, Van(62) - Vsn(0) < 0

Variance independent of |62 — 64 ]|.
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Example: Call Admission Control

Telecommunications carrier selling bandwidth: queueing
problem.

From (Marbach and Tsitsiklis, 1998).

Three call types, with differing arrival rates (Poisson),
bandwidth requirements, rewards, holding times (exponentiz

State = observation = mix of calls.

Policy = (squashed) linear controller.



Direct Reinforcement Learning: Call

CONJGRAD Final Reward

0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45

Admission Control

1000 10000

Total Queue Iterations

100000
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Direct Reinforcement Learning: Puck World

Puck moving around mountainous terrain.
Aim Is to get out of a valley and on to a plateau
reward = O everywhere except plateau (=100)

Observation = relative location, absolute location,
velocity.

Neural-Network Controller

Insufficient thrust to climb directly out of valley, must
learn to “oscillate”.



Direct Reinforcement Learning: Puck World

Average Reward
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Direct Reinforcement Learning

Philosophy:

x Adjusting policy should improve performance.

*x View average reward as function of policy parameters:
n(0).

x For suitably smooth policies: Vn(8) exists.

x Compute Vn(0) and step uphill.
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Direct Reinforcement Learning

Main results:

x Approximation Vzn(0) to Vn(0).

~ Algorithm to accurately estimate Vsn from a single
sample path (POMDPG).

*x Accuracy of approximation depends on parameter of
the algorithm (3 € [0, 1)); bias/variance trade-off.

x 1/(1 — 3) relates to mixing time of underlying Markov
chain.

*x Line search using only gradient estimates.

* Many successful applications.
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Papers available from http://csl.anu.edu.au.

Two research positions available in the Machine
Learning Group at the Australian National University.
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