15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

UNDECIDABLE PROBLEMS THURSDAY Feb 13

Definition: A Turing Machine is a 7-tuple T = (Q, Σ , Γ , δ , q_0 , q_{accept} , q_{reject}), where:

Q is a finite set of states

 Σ is the input alphabet, where $\square \notin \Sigma$

 Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subset \Gamma$

 $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\}$

 $q_0 \in Q$ is the start state

 $q_{accept} \in Q$ is the accept state

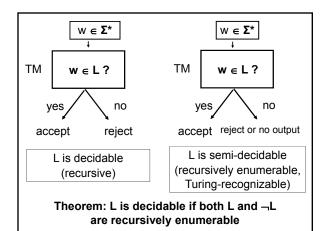
 $q_{reject} \in Q$ is the reject state, and $q_{reject} \neq q_{accept}$

A TM recognizes a language if it accepts all and only those strings in the language

A language is called Turing-recognizable or recursively enumerable, (or r.e. or semidecidable) if some TM recognizes it

A TM decides a language if it accepts all strings in the language and rejects all strings not in the language

A language is called decidable or recursive if some TM decides it

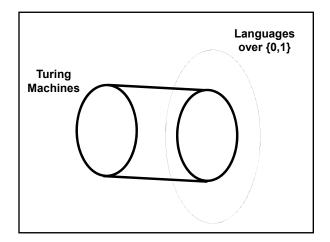


There are languages over {0,1} that are not decidable

If we believe the Church-Turing Thesis, this is MAJOR: it means there are things that computers inherently cannot do

We can prove this using a counting argument. We will show there is no onto function from the set of all Turing Machines to the set of all languages over $\{0,1\}$. (Works for any Σ) Hence there are languages that have no decider.

Then we will prove something stronger: There are semi-decidable (r.e.) languages that are NOT decidable



Let L be any set and 2^L be the power set of L Theorem: There is no onto map from L to 2^L

Proof: Assume, for a contradiction, that there is an onto map $f: L \rightarrow 2^L$

Let
$$S = \{ x \in L \mid x \notin f(x) \}$$

If S = f(y) then $y \in S$ if and only if $y \notin S$

Let L be any set and 2^L be the power set of L Theorem: There is no onto map from L to 2^L

Proof: Assume, for a contradiction, that there is an onto map $f: L \rightarrow 2^L$

If S = f(y) then $y \in S$ if and cally if $y \notin S$

Can give a more constructive argument!

Theorem: There is no onto function from the positive integers to the real numbers in (0, 1)

Proof: Suppose f is any function mapping the positive integers to the real numbers in

(0, 1;1 → 0.28347279... 2 → 0.88388384...

0.77635284...

4 → 0.11111111...

5 --- 0.12345678...

 $[n-th digit of r] = \begin{cases} 1 & \text{if } [n-th digit of } f(n)] \neq 1 \\ 2 & \text{otherwise} \end{cases}$

 $f(n) \neq r$ for all n (Here, r = 11121...) So f is not onto

THE MORAL:
No matter what L is,
2^L always has more elements than L

Not all languages over {0,1} are decidable, in fact:
not all languages over {0,1} are semi-decidable

{decidable languages over {0,1}}

{semi-decidable languages over {0,1}}

{Turing Machines}

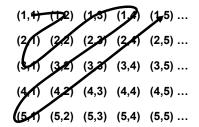
{Strings of 0s and 1s}

Set L

Set of all subsets of L: 2L

Let Z^+ = {1,2,3,4...}. There exists a bijection between Z^+ and $Z^+ \times Z^+$ (or Q^+)

Let $Z^+ = \{1,2,3,4...\}$. There exists a bijection between Z^+ and $Z^+ \times Z^+$ (or Q^+)



THE ACCEPTANCE PROBLEM

A_{TM} = { (M, w) | M is a TM that accepts string w }

Theorem: \mathbf{A}_{TM} is semi-decidable (r.e.) but NOT decidable

A_{TM} is r.e.:

Define a TM U as follows:

On input (M, w), U runs M on w. If M ever accepts, accept. If M ever rejects, reject.

NB. When we write "input (**M**, **w**)" we really mean "input code for (code for **M**, **w**)"

THE ACCEPTANCE PROBLEM

 $A_{TM} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \}$

Theorem: A_{TM} is semi-decidable (r.e.) but NOT decidable

A_{TM} is r.e.:

Define a TM U as follows: U is a universal TM

On input (M, w), U runs M on w. If M ever accepts, accept. If M ever rejects, reject.

Therefore,

U accepts $(M,w) \Leftrightarrow M$ accepts $w \Leftrightarrow (M,w) \in A_{TM}$ Therefore, U recognizes A_{TM}

 A_{TM} = { (M,w) | M is a TM that accepts string w } A_{TM} is undecidable: (proof by contradiction) Assume machine H decides A_{TM}

$$H((M,w)) = \begin{cases} Accept & \text{if M accepts w} \\ Reject & \text{if M does not accept w} \end{cases}$$

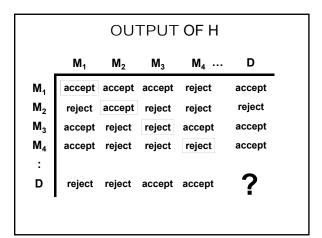
Construct a new TM D as follows: on input M, run H on (M,M) and output the opposite of H

 A_{TM} = { (M,w) | M is a TM that accepts string w } A_{TM} is undecidable: (proof by contradiction) Assume machine H decides A_{TM}

$$H((M,w)) = \begin{cases} Accept & \text{if M accepts w} \\ Reject & \text{if M does not accept w} \end{cases}$$

Construct a new TM D as follows: on input M, run H on (M,M) and output the opposite of H

OUTPUT OF H M₁ M_2 M_3 M₄ ... M₁ accept accept accept reject accept M_2 reject reject accept reject reject M_3 accept reject reject accept accept M_4 accept reject accept reject reject



Theorem: A_{TM} is r.e. but NOT decidable

Theorem: $\neg A_{TM}$ is not even r.e.!

 A_{TM} = { (M,w) | M is a TM that accepts string w } A_{TM} is undecidable: A constructive proof: Let machine H semi-decides A_{TM} (Such \exists , why?)

$$H(\ (M,w)\)=\left\{ \begin{aligned} &\text{Accept} & \text{if M accepts w} \\ &\text{Reject or} \\ &\text{No output if M does not accept w} \end{aligned} \right.$$

Construct a new TM D as follows: on input M, run H on (M,M) and output

 $\begin{aligned} &A_{TM} = \{ \ (M,w) \mid M \ \text{is a TM that accepts string } w \ \} \\ &A_{TM} \ \text{is undecidable:} \qquad A \ \text{constructive proof:} \\ &\text{Let machine H semi-decides} \ A_{TM} \ \ (Such \ \exists \ , why?) \end{aligned}$

$$H(\ (M,w)\) = \begin{cases} Accept & \text{if M accepts w} \\ Reject \ or \\ No \ output \ \text{if M does not accept w} \end{cases}$$

Construct a new TM D as follows: on input M, run H on (M,M) and output

$$D(D) = \begin{cases} \text{Reject} & \text{if H } (D, D) \text{ Accepts} \\ \text{Accept} & \text{if H } (D, D) \text{ Rejects} \\ \text{No output if H } (D, D) \text{ has No output} \\ \text{H(} (D,D) \text{) = } & \text{No output} & \text{No Contradictions !} \end{cases}$$

We have shown:

Given any machine H for semi-deciding A_{TM} , we can *effectively construct* a TM D such that $(D,D) \not\in A_{TM}$ but H fails to tell us that.

That is, H fails to be a decider on instance (D,D).

In other words,

Given any "good" candidate for deciding the *Acceptance Problem*, we can effectively construct an instance where the candidate fails.

THE classical HALTING PROBLEM

 $HALT_{TM} = \{ (M,w) \mid M \text{ is a TM that halts on string } w \}$

Theorem: $HALT_{TM}$ is undecidable

Proof: Assume, for a contradiction, that TM H decides ${\sf HALT}_{\sf TM}$

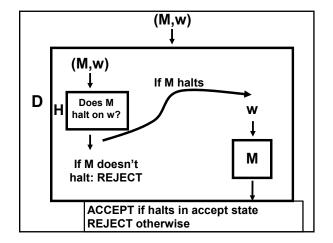
We use H to construct a TM D that decides A_{TM}

On input (M,w), D runs H on (M,w):

If H rejects then reject

If H accepts, run M on w until it halts:

Accept if M accepts ie halts in an accept state Otherwise reject



In many cases, one can show that a language L is undecidable by showing that if it is decidable, then so is A_{TM}

We reduce deciding A_{TM} to deciding the language in question

 $A_{TM} \leq L$

We just showed: $A_{TM} \leq Halt_{TM}$ Is $Halt_{TM} \leq A_{TM}$? WWW.FLAC.WS

Read chapter 4 of the book for next time