15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

REVIEW for MIDTERM 1

THURSDAY Feb 6

Midterm 1 will cover everything we have seen so far

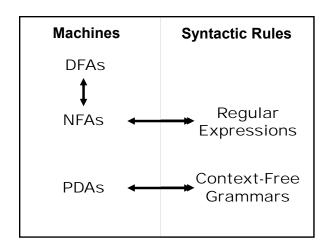
The PROBLEMS will be from Sipser, Chapters 1, 2, 3

It will be Closed-Book, Closed-Everything

- 1. Deterministic Finite Automata and Regular Languages
- · 2. Non-Deterministic Finite Automata
- 3. Pumping Lemma for Regular Languages; Regular Expressions
- 4. Minimizing DFAs
- 5. PDAs, CFGs;

Pumping Lemma for CFLs

- 6. Equivalence of PDAs and CFGs
- 7. Chomsky Normal Form
- 8. Turing Machines



THE REGULAR OPERATIONS

Union: $A \cup B = \{ w \mid w \in A \text{ or } w \in B \}$

Intersection: $A \cap B = \{ w \mid w \in A \text{ and } w \in B \}$

Negation: $\neg A = \{ w \in \Sigma^* \mid w \notin A \}$

Reverse: $A^R = \{ w_1 ... w_k \mid w_k ... w_1 \in A \}$

Concatenation: $A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \}$

Star: $A^* = \{ s_1 \dots s_k \mid k \ge 0 \text{ and each } s_i \in A \}$

REGULAR EXPRESSIONS

σ is a regexp representing {σ}

ε is a regexp representing {ε}

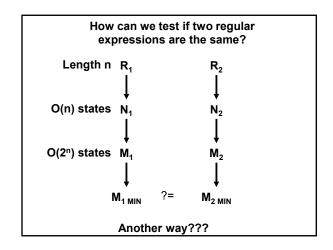
 \varnothing is a regexp representing \varnothing

If R₁ and R₂ are regular expressions representing L₁ and L₂ then:

 (R_1R_2) represents $L_1 \cdot L_2$

 $(R_1 \cup R_2)$ represents $L_1 \cup L_2$

(R₁)* represents L₁*



THEOREMS and CONSTRUCTIONS

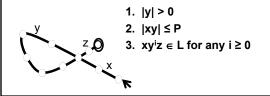
THE PUMPING LEMMA (for Regular Languages)

Let L be a regular language with |L| = ∞

Then there is an integer P such that

if w ∈ L and |w| ≥ P

then can write w = xyz, where:

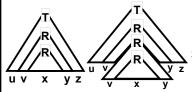


THE PUMPING LEMMA (for Context Free Grammars)

Let L be a context-free language with $|L| = \infty$

Then there is an integer P such that if $w \in L$ and $|w| \ge P$

then can write w = uvxyz, where:



- 1. |vy| > 0
- 2. |vxy| ≤ P
- 3. uvⁱxyⁱz ∈ L, for any i ≥ 0

CONVERTING NFAs TO DFAs

Input: NFA N = (Q, Σ , δ , Q₀, F)

Output: DFA M = $(Q', \Sigma, \delta', q_0', F')$

 $Q' = 2^Q$

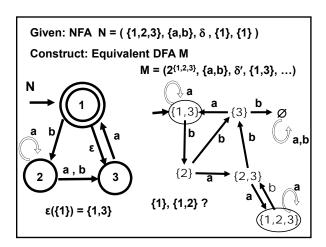
 $\delta': Q' \times \Sigma \to Q'$

 $\delta'(\mathsf{R},\sigma) = \bigcup_{\mathsf{r}\in\mathsf{R}} \varepsilon(\ \delta(\mathsf{r},\sigma)\) \ *$

 $q_0' = \varepsilon(Q_0)$

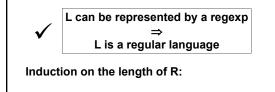
 $F' = \{ R \in Q' \mid f \in R \text{ for some } f \in F \}$

For $R \subseteq Q$, the ϵ -closure of R, $\epsilon(R) = \{q \text{ that can be reached from some } r \in R \text{ by traveling along zero or more } \epsilon \text{ arrows} \}$



EQUIVALENCE

L can be represented by a regexp
⇔
L is a regular language



Base Cases (R has length 1):

$$R = \sigma \qquad \rightarrow \bigcirc \stackrel{\sigma}{\rightarrow} \bigcirc$$

$$R = \varepsilon \qquad \rightarrow \bigcirc$$

$$R = \emptyset \qquad \rightarrow \bigcirc$$

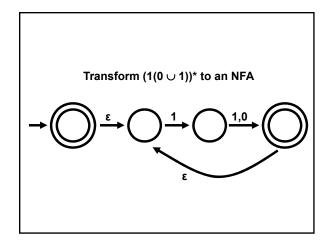
Inductive Step:

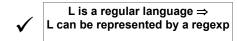
Assume R has length k > 1, and that every regexp of length < k represents a regular language

Three possibilities for what R can be:

 $R = R_1 \cup R_2$ (Closure under Union) $R = R_1 R_2$ (Closure under Concat.) $R = (R_1)^*$ (Closure under Star)

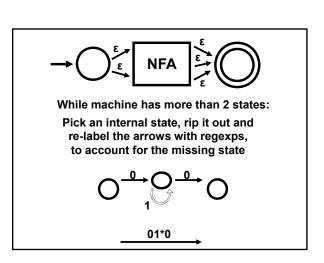
Therefore: L can be represented by a regexp ⇒ L is regular

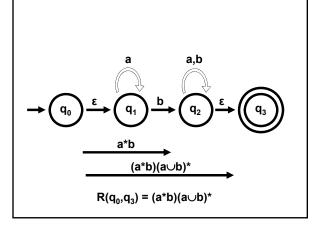




Proof idea: Transform an NFA for L into a regular expression by removing states and relabeling the arrows with regular expressions

Add unique and distinct start and accept states





THEOREM

For every regular language L, there exists a UNIQUE (up to re-labeling of the states) minimal DFA M such that L = L(M)

EXTENDING δ

Given DFA M = (Q, Σ , δ , q_0 , F), extend δ to $\hat{\delta}$: Q × Σ^* \rightarrow Q as follows:

 $\hat{\delta}(q, \epsilon) = q$

 $\hat{\delta}(q, \sigma) = \delta(q, \sigma)$

 $\hat{\delta}(q, w_1 ... w_{k+1}) = \delta(\hat{\delta}(q, w_1 ... w_k), w_{k+1})$

Note: $\delta(q_0, w) \in F \Leftrightarrow M$ accepts w

String $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff exactly ONE of $\hat{\delta}(q_1, w)$, $\hat{\delta}(q_2, w)$ is a final state

Fix M = (Q, Σ , δ , q₀, F) and let p, q, r \in Q Definition:

 $p \sim q$ iff p is indistinguishable from q $p \neq q$ iff p is distinguishable from q

Proposition: ~ is an equivalence relation

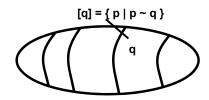
p~p (reflexive)

 $p \sim q \Rightarrow q \sim p$ (symmetric)

 $p \sim q$ and $q \sim r \Rightarrow p \sim r$ (transitive)

Proposition: ~ is an equivalence relation

so ~ partitions the set of states of M into disjoint equivalence classes



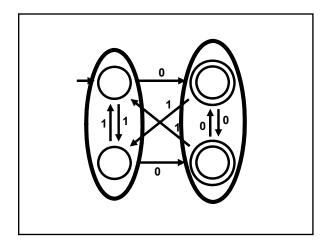


TABLE-FILLING ALGORITHM

Input: DFA M = (Q, Σ , δ , q_0 , F)

Output: (1) $D_M = \{ (p,q) \mid p,q \in Q \text{ and } p \neq q \}$

(2) $E_M = \{ [q] | q \in Q \}$

IDEA:

- We know how to find those pairs of states that ε distinguishes...
- Use this and recursion to find those pairs distinguishable with *longer* strings
- · Pairs left over will be indistinguishable

TABLE-FILLING ALGORITHM Input: DFA M = (Q, Σ , δ , q₀, F) Output: (1) D_M = { (p,q) | p,q ∈ Q and p + q } (2) E_M = { [q] | q ∈ Q } Base Case: p accepts and q rejects \Rightarrow p + q Recursion: if there is $\sigma \in \Sigma$ and states p', q' satisfying $\delta(p, \sigma) = p'$ $+ \Rightarrow p + q$ $\delta(q, \sigma) = q'$

Repeat until no more new D's

Algorithm MINIMIZE

Input: DFA M

Output: DFA M_{MIN}

(1) Remove all inaccessible states from M

(2) Apply Table-Filling algorithm to get $E_M = \{ [q] \mid q \text{ is an accessible state of } M \}$

 $M_{MIN} = (Q_{MIN}, \Sigma, \delta_{MIN}, q_{0 MIN}, F_{MIN})$

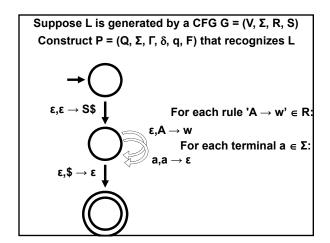
 $Q_{MIN} = E_{M}, q_{0 MIN} = [q_{0}], F_{MIN} = \{ [q] | q \in F \}$

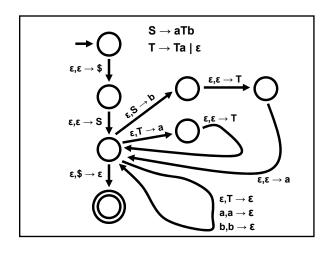
 $\delta_{MIN}([q],\sigma) = [\delta(q,\sigma)]$

Claim: M_{MIN} ≡ M

A Language L is generated by a CFG

⇔
L is recognized by a PDA





A Language L is generated by a CFG

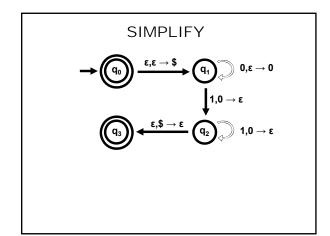
L is recognized by a PDA

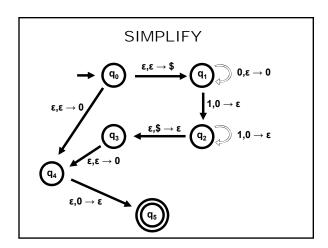
Given PDA P = (Q, Σ , Γ , δ , q, F)

Construct a CFG G = (V, Σ , R, S) such that L(G) = L(P)

First, simplify P to have the following form:

- (1) It has a single accept state, q_{accept}
- (2) It empties the stack before accepting
- (3) Each transition either pushes a symbol or pops a symbol, but not both at the same time





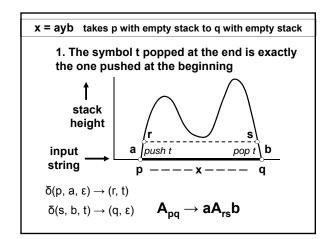
Idea For Our Grammar G: For every pair of states p and q in PDA P,

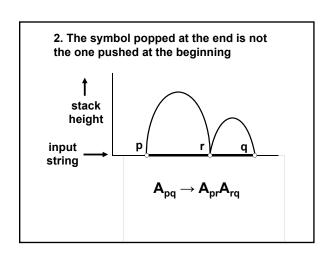
G will have a variable \mathbf{A}_{pq} which generates all strings \mathbf{x} that can take:

P from p with an empty stack to q with an empty stack

$$V = \{A_{pq} \mid p,q \in Q \}$$

$$S = A_{q_0q_{acc}}$$





Formally:

$$V = \{A_{pq} \mid p, q \in Q \}$$
$$S = A_{q_0q_{acc}}$$

For every p, q, r, s \in Q, t \in Γ and a, b \in Σ_{ϵ} If $(r, t) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, t)$ Then add the rule $A_{pq} \rightarrow aA_{rs}b$

For every p, q, r \in Q, add the rule $A_{pq} \rightarrow A_{pr} A_{rq}$

For every $p \in Q,$ add the rule $A_{pp} \to \epsilon$

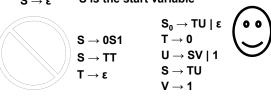
THE CHOMSKY NORMAL FORM

A context-free grammar is in Chomsky normal form if every rule is of the form:

 $A \rightarrow BC$ B, C are variables (not the start var)

 $A \rightarrow a$ a is a terminal

 $S \rightarrow \epsilon$ S is the start variable



Theorem: If G is in CNF, $w \in L(G)$ and |w| > 0, then any derivation of w in G has length 2|w| - 1

Theorem: Any context-free language can be generated by a context-free grammar in Chomsky normal form

"Can transform any CFG into Chomsky normal form"

Theorem: Any CFL can be generated by a CFG in Chomsky normal form

Algorithm:

- 1. Add a new start variable (S₀→S)
- Eliminate all A→ε rules:

For each occurrence of A on the RHS of a rule, add a new rule that removes that occurrence (unless this new rule was previously removed)

3. Eliminate all **A→B** rules:

For each rule with B on LHS of a rule, add a new rule that puts A on the LHS instead (unless this new rule was previously removed)

4. Convert $A \rightarrow u_1 u_2 \dots u_k$ to $A \rightarrow u_1 A_1, A_1 \rightarrow u_2 A_2, \dots$ If u_i is a terminal, replace u_i with U_i and add $U_i \rightarrow u_i$

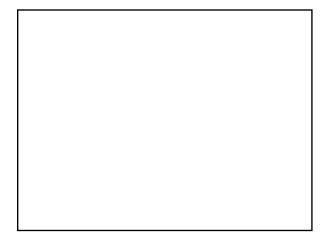
Convert the following into Chomsky normal form:

$$\begin{array}{l} A \rightarrow BAB \mid B \mid \epsilon \\ B \rightarrow 00 \mid \epsilon \end{array}$$

$$\begin{array}{lll} S_0 \to A & S_0 \to A \mid \epsilon \\ A \to BAB \mid B \mid \epsilon & A \to BAB \mid B \mid BB \mid AB \mid BA \\ B \to 00 \mid \epsilon & B \to 00 \end{array}$$

 $S_0 \rightarrow$ BAB | 00 | BB | AB | BA | ϵ A \rightarrow BAB | 00 | BB | AB | BA B \rightarrow 00 $_{\square}$

 $\begin{array}{c} \textbf{S}_0 \rightarrow \textbf{BC} \mid \textbf{DD} \mid \textbf{BB} \mid \textbf{AB} \mid \textbf{BA} \mid \boldsymbol{\epsilon}, \quad \textbf{C} \rightarrow \textbf{AB}, \\ \textbf{A} \rightarrow \textbf{BC} \mid \textbf{DD} \mid \textbf{BB} \mid \textbf{AB} \mid \textbf{BA}, \quad \textbf{B} \rightarrow \textbf{DD}, \quad \textbf{D} \rightarrow \textbf{0} \end{array}$



FORMAL DEFINITIONS

deterministic DFA A finite automaton $^{\circ}$ is a 5-tuple M = (Q, Σ , δ , q₀, F)

Q is the set of states (finite)

Σ is the alphabet (finite)

 $\delta: Q \times \Sigma \to Q \;\; \text{is the transition function}$

 $q_0 \in Q$ is the start state

 $F \subseteq Q$ is the set of accept states

Let $w_1, ..., w_n \in \Sigma$ and $w = w_1 ... w_n \in \Sigma^*$ Then **M** accepts w if there are $r_0, r_1, ..., r_n \in \mathbf{Q}$, s.t.

1. $r_0 = q_0$

2. $\delta(r_i, w_{i+1}) = r_{i+1}$, for i = 0, ..., n-1, and

 $3.\ r_n\in F$

A non-deterministic finite automaton (NFA) is a 5-tuple N = (Q, Σ , δ , Q₀, F)

Q is the set of states

Σ is the alphabet

 $\delta: Q \times \Sigma_\epsilon \to 2^Q \;\; \text{is the transition function}$

 $Q_0 \subseteq Q$ is the set of start states

 $F \subseteq Q$ is the set of accept states

 2^Q is the set of all possible subsets of Q Σ_ϵ = $\Sigma \cup \{\epsilon\}$

Let $w \in \Sigma^*$ and suppose w can be written as $w_1... w_n$ where $w_i \in \Sigma_{\epsilon}$ (ϵ = empty string)

Then N accepts w if there are $r_0, r_1, ..., r_n \in Q$ such that

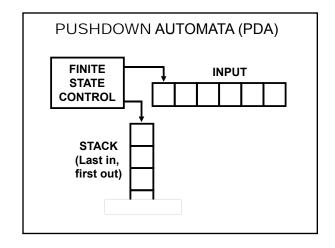
1. $\mathbf{r}_0 \in \mathbf{Q}_0$

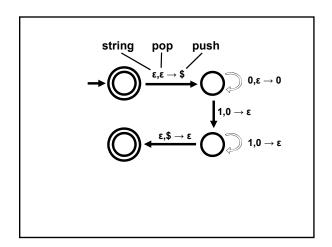
2. $r_{i+1} \in \delta(r_i, w_{i+1})$ for i = 0, ..., n-1, and

3. r_n ∈ F

L(N) = the language recognized by N = set of all strings machine N accepts

A language L is recognized by an NFA N if L = L(N).





Definition: A (non-deterministic) PDA is a tuple $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$, where:

Q is a finite set of states

Σ is the input alphabet

Γ is the stack alphabet

$$\delta: Q \times \Sigma_\epsilon \times \Gamma_\epsilon \! \to 2^{\;Q \times \Gamma_\epsilon}$$

 $q_0 \in Q$ is the start state

F ⊆ Q is the set of accept states

 2^Q is the set of subsets of Q and $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$

Let $w \in \Sigma^*$ and suppose w can be written as $w_1... w_n$ where $w_i \in \Sigma_{\epsilon}$ (recall $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$)

Then P accepts w if there are

$$r_0, r_1, ..., r_n \in Q$$
 and

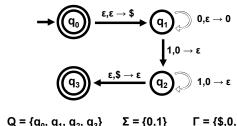
$$s_0, s_1, ..., s_n \in \Gamma^*$$
 (sequence of stacks) such that

1.
$$\mathbf{r}_0 = \mathbf{q}_0$$
 and $\mathbf{s}_0 = \boldsymbol{\varepsilon}$ (P starts in \mathbf{q}_0 with empty stack)

 $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, where $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Gamma_{\epsilon}$ and $t \in \Gamma^*$

(P moves correctly according to state, stack and symbol read)

3. $\mathbf{r}_n \in \mathbf{F}$ (P is in an accept state at the end of its input)



$$Q = \{q_0, q_1, q_2, q_3\} \qquad \Sigma = \{0,1\} \qquad \Gamma = \{\$,0,1\}$$

$$\delta$$
 : Q × Σ_{ϵ} × Γ_{ϵ} \rightarrow 2 $^{Q \, \times \, \Gamma_{\epsilon}}$

$$\delta(q_1,1,0) = \{ (q_2,\epsilon) \}$$
 $\delta(q_2,1,1) = \emptyset$

$$\delta(q_2,\epsilon,\$) = \{ (q_3,\epsilon) \}$$

CONTEXT-FREE GRAMMARS

A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

V is a finite set of variables

 Σ is a finite set of terminals (disjoint from V)

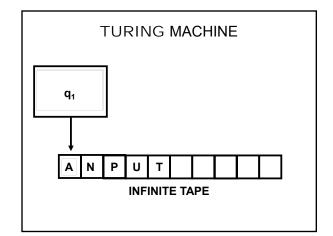
R is set of production rules of the form $A \rightarrow W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$

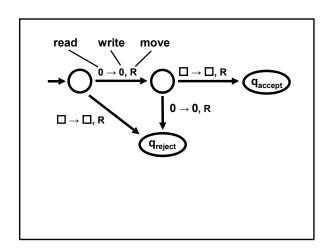
S ∈ V is the start variable

 $L(G) = \{w \in \Sigma^* \mid S \Rightarrow^* w\}$ Strings Generated by G

$$G = \{ \{S\}, \{0,1\}, R, S \}$$
 $R = \{ S \rightarrow 0S1, S \rightarrow \epsilon \}$

 $L(G) = \{ 0^{n}1^{n} \mid n \ge 0 \}$ Strings Generated by G





Definition: A Turing Machine is a 7-tuple T = (Q, Σ , Γ , δ , q_0 , q_{accept} , q_{reject}), where:

Q is a finite set of states

 Σ is the input alphabet, where $\square \notin \Sigma$

 Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$

 $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L,R\}$

 $q_0 \in Q$ is the start state

 $q_{accept} \in Q$ is the accept state

 $q_{reject} \in Q$ is the reject state, and $q_{reject} \neq q_{accept}$

A Turing Machine M accepts input w if there is a sequence of configurations C_1, \ldots, C_k such that

- 1. C_1 is a *start* configuration of M on input w, ie C_1 is q_0 w
- each C_i yields C_{i+1}, ie M can legally go from C_i to C_{i+1} in a single step

A Turing Machine M accepts input w if there is a sequence of configurations $\,C_1,\,\dots,\,C_k\,$ such that

- 1. C_1 is a *start* configuration of M on input w, ie C_1 is q_0 w
- $\label{eq:continuous} 2. \quad \text{each } C_i \text{ yields } C_{i+1}, \text{ ie M can legally go from } C_i \\ \text{to } C_{i+1} \text{ in a single step}$
- C_k is an accepting configuration, ie the state of the configuration is q_{accept}

A language is called Turing-recognizable or recursively enumerable (r.e.) or semidecidable if some TM recognizes it

A language is called decidable or recursive if some TM decides it

r.e. recursive languages

Theorem: If A and ¬A are r.e. then A is recursive

A_{DFA} = { (B, w) | B is a DFA that accepts string w }

Theorem: A_{DFA} is decidable Proof Idea: Simulate B on w

 A_{NFA} = { (B, w) | B is an NFA that accepts string w }

Theorem: A_{NFA} is decidable

 $A_{CFG} = \{ (G, w) \mid G \text{ is a CFG that generates string } w \}$

Theorem: A_{CFG} is decidable

Proof Idea: Transform G into Chomsky Normal Form. Try all derivations of length up to 2|w|-1

WWW.FLAC.WS

Happy studying!