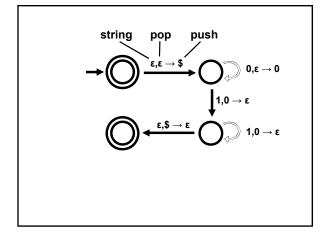
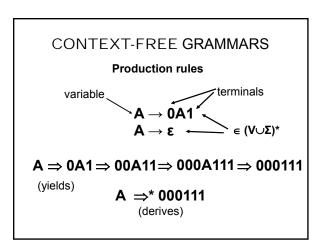
15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY PDAs ARE EQUIVALENT TO CFGs

THURSDAY Jan 30





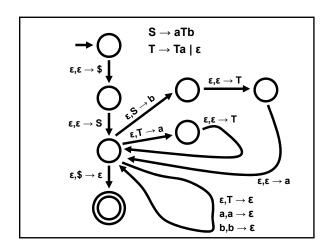
A Language L is generated by a CFG

⇔
L is recognized by a PDA

A Language L is generated by a CFG

⇒
L is recognized by a PDA

Suppose L is generated by a CFG G = (V, Σ , R, S) Construct P = (Q, Σ , Γ , δ , q, F) that recognizes L Suppose L is generated by a CFG G = (V, Σ , R, S) Construct P = (Q, Σ , Γ , δ , q, F) that recognizes L $\epsilon, \epsilon \to S$ For each rule 'A \to w' \in R: $\epsilon, A \to w$ For each terminal $a \in \Sigma$: $a, a \to \epsilon$



Suppose L is generated by a CFG G = (V, Σ , R, S) Describe P = (Q, Σ , Γ , δ , q, F) that recognizes L (via pseudocode):

- (1) Push \$ and then S on the stack
- (2) Repeat the following steps forever:
- (a) Suppose x is now on top of stack
- (b) If x is a variable A, guess a rule for A and push yield into the stack and Go to (a).
- (c) If x is a terminal, read next symbol from input and compare it to x. If they're different, *reject*. If same, pop x and Go to (a).
- (d) If x is \$: then accept iff no more input

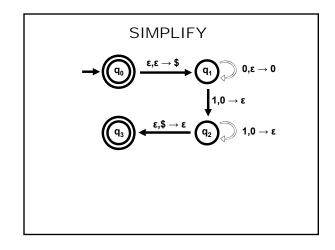
A Language L is generated by a CFG <= L is recognized by a PDA

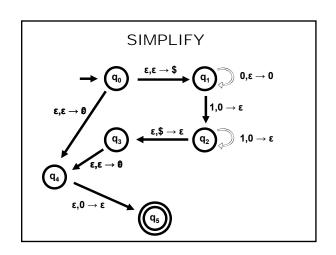
Given PDA P = (Q, Σ , Γ , δ , q, F)

Construct a CFG G = (V, Σ , R, S) such that L(G) = L(P)

First, simplify P to have the following form:

- (1) It has a unique accept state, qacc
- (2) It empties the stack before accepting
- (3) Each transition either pushes a symbol or pops a symbol, but not both at the same time





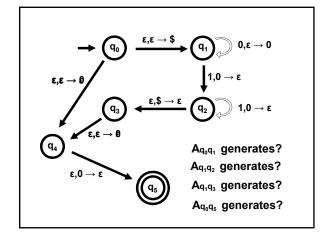
Our task is to construct Grammar G to generate exactly the words that PDA P accepts.

Idea For Our Grammar G: For every pair of states p and q in PDA P,

G will have a variable A_{pq} whose production rules will generate all strings x that can take:

P from p with an empty stack to q with an empty stack

$$V = \{A_{pq} \mid p,q \in Q \}$$
$$S = A_{q_0q_{acc}}$$



WANT: \mathbf{A}_{pq} generates all strings that take p with an empty stack to q with empty stack

Let x be such a string

- P's first move on x must be a push (why?)
- P's last move on x must be a pop

Two possibilities:

- 1. The symbol popped at the end is the same as the one pushed at the beginning
- 2. The symbol popped at the end is not the one pushed at the beginning

Formally:

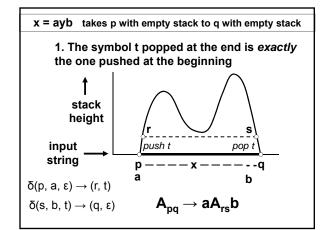
$$V = \{A_{pq} \mid p, q \in Q \}$$

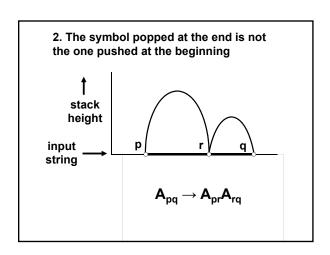
 $S = A_{q_0q_{acc}}$

For every p, q, r, s \in Q, t \in Γ and a, b \in Σ_{ϵ} If $(r, t) \in \delta(p, a, \epsilon)$ and $(q, \epsilon) \in \delta(s, b, t)$ Then add the rule $A_{pq} \rightarrow aA_{rs}b$

For every p, q, r \in Q, add the rule $A_{pq} \rightarrow A_{pr} A_{rq}$

For every $p \in Q,$ add the rule $A_{pp} \to \epsilon$





Show, for all x, \mathbf{A}_{pq} generates \mathbf{x}

x can bring P from p with an empty stack

to q with an empty stack

Show, for all x, A_{pq} generates x

> x can bring P from p with an empty stack to q with an empty stack

Proof (by induction on the number of steps in the derivation of x from A_{pq}):

Base Case: The derivation has 1 step: $A_{nn} \Rightarrow^* \epsilon$

Inductive Step:

Assume true for derivations of length ≤ k and prove true for derivations of length k+1:

A_{pq} ⇒* x in k+1 steps

First step in derivation: $A_{pq} \rightarrow A_{pr}A_{rq}$ or $A_{pq} \rightarrow aA_{rs}b$

Show, for all x, \mathbf{A}_{pq} generates \mathbf{x}

> x can bring P from p with an empty stack to q with an empty stack

Proof (by induction on the number of steps in the derivation of x from A_{pq}):

Inductive Step:

Assume true for derivations of length ≤ k and prove true for derivations of length k+1:

$$A_{pq} \Rightarrow^* x$$
 in k+1 steps

First step in derivation: $\mathbf{A}_{pq} \rightarrow \mathbf{A}_{pr} \mathbf{A}_{rq}$

Then, x = yz with $A_{pr} \Rightarrow^* y$, $A_{rq} \Rightarrow^* z$

By IH, y can take p with empty stack to r with empty stack; similarly for z from r to q. So, ... Show, for all x, \mathbf{A}_{pq} generates \mathbf{x}

> x can bring P from p with an empty stack to q with an empty stack

Proof (by induction on the number of steps in the derivation of x from A_{pq}):

Inductive Step:

Assume true for derivations of length ≤ k and prove true for derivations of length k+1:

$$A_{pq} \Rightarrow^* x$$
 in k+1 steps

First step in derivation:

or $A_{pq} \rightarrow aA_{rs}b$

Then x = ayb with $A_{rs} \Rightarrow^* y$.

By IH, y can take r with empty stack to s with empty stack

Show, for all x, A_{pq} generates x

> x can bring P from p with an empty stack to q with an empty stack

Proof (by induction on the number of steps in the derivation of x from A_{pq}):

Inductive Step:

Assume true for derivations of length ≤ k and prove true for derivations of length k+1:

First step in derivation:

or
$$A_{pq} \rightarrow aA_{rs}b$$

By def of rules of G, $(r,t) \in \delta(p,a,\epsilon)$ and $(q, \epsilon) \in \delta(s,b,t)$

state push state alphabet pop

Show, for all x, \mathbf{A}_{pq} generates \mathbf{x}

> x can bring P from p with an empty stack to q with an empty stack

Proof (by induction on the number of steps in the derivation of x from A_{pq}):

Inductive Step:

Assume true for derivations of length ≤ k and prove true for derivations of length k+1:

$$A_{pq} \Rightarrow^* x$$
 in k+1 steps

First step in derivation:

or
$$A_{pq} \rightarrow aA_{rs}b$$

So if P starts in p then after reading a, it can go to r and push t. By IH, y can bring P from r to s, with t at the top of the stack. Then from s reading b, it can pop t and end in state q.

م Show, for all x,

A_{pq} generates x

(

x can bring P from p with an empty stack to q with an empty stack

Proof (by induction on the number of steps in the computation of P from p to q with empty stacks on input x):

Base Case: The computation has 0 steps

So it starts and ends in the same state. The only string that can do that in 0 steps is ϵ .

Since $A_{pp} \to \epsilon \;\; \text{is a rule of G, } A_{pp} \Rightarrow^* \epsilon$

Inductive Step:

Assume true for computations of length \leq k, we'll prove true for computations of length k+1

Suppose that P has a computation where x brings p to q with empty stacks in k+1 steps

Two cases: (idea!)

1. The stack is empty only at the beginning and the end of this computation

To Show: Can write x as ayb where $A_{rs} \Rightarrow^* y$ and $A_{pq} \rightarrow aA_{rs}b$ is a rule in G. So $A_{pq} \Rightarrow^* x$

2. The stack is empty somewhere in the middle of the computation

To Show: Can write x as yz where $A_{pr} \Rightarrow^* y$, $A_{rq} \Rightarrow^* z$ and $A_{pq} \to A_{pr}A_{rq}$ is a rule in G. So $A_{pq} \Rightarrow^* x$

Inductive Step:

1. The stack is empty *only* at the beginning and the end of this computation

To Show: Can write x as ayb where $A_{rs} \Rightarrow^* y$ and $A_{pq} \rightarrow aA_{rs}b$ is a rule in G. So $A_{pq} \Rightarrow^* x$

The symbol t pushed at the beginning must be the same symbol popped at the end. why?)

Let a be input symbol read at beginning, b read at end.

• So x = ayb, for some y.

Let r be the state after the first step, let s be the state before the last step.

- y can bring P from r with an empty stack to s with an empty stack. (why?) So by IH, A_{rs} ⇒* y.
- Also, $A_{pq} \rightarrow aA_{rs}b$ must be a rule in G. (why?)

Inductive Step:

2. The stack is empty somewhere in the middle of the computation

To Show: Can write x as yz where $A_{pr} \Rightarrow^* y$, $A_{rq} \Rightarrow^* z$ and $A_{pq} \rightarrow A_{pr}A_{rq}$ is a rule in G. So $A_{pq} \Rightarrow^* x$

Let r be a state in which the stack becomes empty in the middle.

Let y be the input read to that point, z be input read after. So, x = yz where |y|, |z| > 0.

By IH, both $A_{pr} \Rightarrow^* y$, $A_{rq} \Rightarrow^* z$

By construction of G, $A_{pq} \rightarrow A_{pr}A_{rq}$ is a rule in G

A Language L is generated by a CFG

⇔
L is recognized by a PDA

Corollary: Every regular language is context-free

WWW.FLAC.WS

Read Chapters 2 and 3 of the book for next time