15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY How can we prove that two DFAs are equivalent?

One way: Minimize

Another way: Let C = $(\neg A \cap B) \cup (A \cap \neg B)$ Then, A = B \Leftrightarrow C = \emptyset

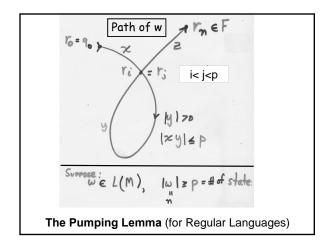
CONTEXT-FREE GRAMMARS AND PUSH-DOWN AUTOMATA TUESDAY Jan 28 NONE OF THESE ARE REGULAR

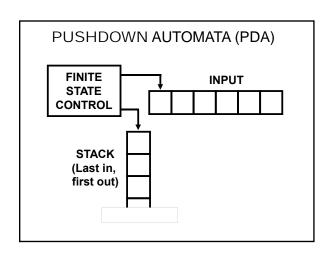
$$\Sigma = \{0,\,1\},\,L = \{\,0^n1^n \mid n \geq 0\,\}$$

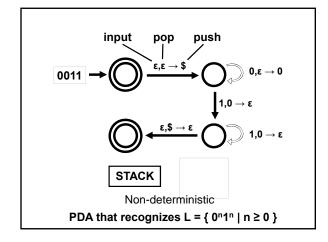
$$\Sigma = \{a, b, c, ..., z\}, L = \{w \mid w = w^R\}$$

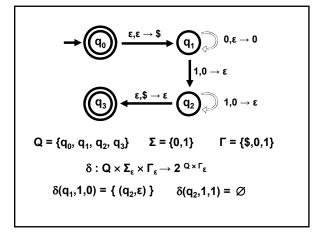
 $\Sigma = \{ (,) \}, L = \{ balanced strings of parens \}$

(), ()(), (()()) are in L, (, ()), ())(() are not in L









Definition: A (non-deterministic) PDA is a 6-tuple $P = (Q, \Sigma, \Gamma, \delta, q_0, F), \text{ where:}$ Q is a finite set of states $\Sigma \text{ is the input alphabet} \qquad pop$ $\Gamma \text{ is the stack alphabet} \qquad push$ $\delta: Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon} \to 2^{Q \times \Gamma_{\epsilon}}$ $q_0 \in Q \text{ is the start state}$ $F \subseteq Q \text{ is the set of accept states}$ $2^{Q \times \Gamma_{\epsilon}} \text{ is the set of subsets of } Q \times \Gamma_{\epsilon}$ $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}, \Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$

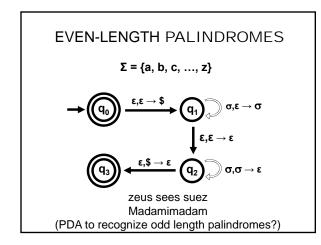
Let $w \in \Sigma^*$ and suppose w can be written as $w_1...w_n$ where $w_i \in \Sigma_\epsilon$ (recall $\Sigma_\epsilon = \Sigma \cup \{\epsilon\}$)

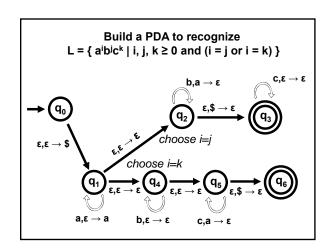
Then P accepts w if there are $r_0, r_1, ..., r_n \in Q$ and $s_0, s_1, ..., s_n \in \Gamma^*$ (sequence of stacks) such that

1. $r_0 = q_0$ and $s_0 = \epsilon$ (P starts in q_0 with empty stack)

2. For i = 0, ..., n-1: $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, where $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Gamma_\epsilon$ and $t \in \Gamma^*$ (P moves correctly according to state, stack and symbol read)

3. $r_n \in F$ (P is in an accept state at the end of its input)





CONTEXT-FREE GRAMMARS

"Colorless green ideas sleep furiously."

CONTEXT-FREE GRAMMARS

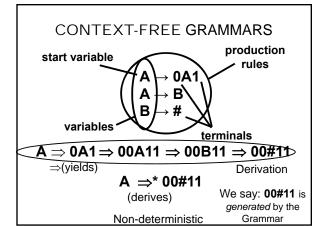
 $A \rightarrow 0A1$

 $\boldsymbol{A} \to \boldsymbol{B}$

 $B \rightarrow \#$

 $A \rightarrow 0A1 \mid B$

 $B \rightarrow \#$



SNOOP'S GRAMMAR

(courtesy of Luis von Ahn)

<PHRASE> → <FILLER><PHRASE>

<PHRASE> → <START WORD><END WORD>DUDE

<FILLER> → LIKE

 $\langle FILLER \rangle \rightarrow UMM$

<START WORD> → FO

<START WORD> → FA

<END WORD> → SHO

<END WORD> → **SHAZZY**

<END WORD> → SHEEZY

 $\langle END \ WORD \rangle \rightarrow SHIZZLE$

CONTEXT-FREE GRAMMARS

A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

V is a finite set of variables

Σ is a finite set of terminals (disjoint from V)

R is set of production rules of the form $A \to W,$ where $A \in V$ and $W \in (V \cup \Sigma)^*$

S ∈ V is the start variable

CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

V is a finite set of variables

Σ is a finite set of terminals (disjoint from V)

R is set of production rules of the form A \rightarrow W, where A \in V and W \in (V \cup \Sigma)*

S ∈ V is the start variable

 $L(G) = \{w \in \Sigma^* \mid S \Rightarrow^* w\}$ Strings Generated by G

A Language L is context-free if there is a CFG that generates precisely the string in L

CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

V is a finite set of variables

Σ is a finite set of terminals (disjoint from V)

R is set of production rules of the form $A \to W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$

S ∈ V is the start variable

$$G = \{ \, \{S\}, \, \{0,1\}, \, R, \, S \, \} \qquad R = \{ \, S \rightarrow 0S1, \, S \rightarrow \epsilon \, \}$$

$$L(G) =$$

CONTEXT-FREE LANGUAGES

A context-free grammar (CFG) is a tuple $G = (V, \Sigma, R, S)$, where:

V is a finite set of variables

 Σ is a finite set of terminals (disjoint from V)

R is set of production rules of the form $A \to W$, where $A \in V$ and $W \in (V \cup \Sigma)^*$

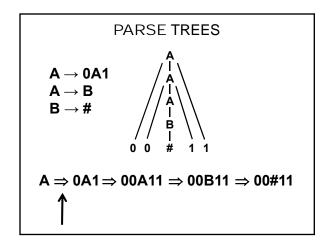
S ∈ V is the start variable

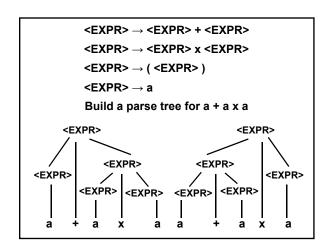
$$G = \{ \, \{S\}, \, \{0,1\}, \, R, \, S \, \} \qquad R = \{ \, S \rightarrow 0S1, \, S \rightarrow \epsilon \, \}$$

$$L(G) = \{ \, 0^n 1^n \mid n \geq 0 \, \} \ \, \text{Strings Generated by G}$$

WRITE A CFG FOR EVEN-LENGTH PALINDROMES

WRITE A CFG FOR THE EMPTY SET





Definition: a string is derived ambiguously in a context-free grammar if it has more than one parse tree

Definition: a grammar is ambiguous if it generates some string ambiguously

See G₄ for unambiguous standard arithmetic precedence

NOT REGULAR

 $\Sigma = \{0, 1\}, L = \{0^n1^n \mid n \ge 0\}$

But L is CONTEXT FREE

 $A \rightarrow 0A1$ $A \rightarrow \epsilon$

WHAT ABOUT?

 $\Sigma = \{0, 1\}, L_1 = \{0^n1^n 0^m | m, n \ge 0\}$

 $\Sigma = \{0, 1\}, L_2 = \{0^n1^m 0^n | m, n \ge 0\}$

 $\Sigma = \{0, 1\}, L_3 = \{0^m1^n 0^n | m=n \ge 0\}$

WHAT ABOUT?

 $\Sigma = \{0, 1\}, L_1 = \{0^n1^n0^m | m, n \ge 0\}$

 $\Sigma = \{0, 1\}, L_2 = \{0^n1^m 0^n | m, n \ge 0\}$

 $\Sigma = \{0, 1\}, L_3 = \{0^m1^n 0^n | m=n \ge 0\}$

THE PUMPING LEMMA FOR CFGs

Let L be a context-free language

Then there is a P such that if $w \in L$ and $|w| \ge P$

then can write w = uvxyz, where:

1. |vy| > 0

2. |vxy| ≤ P

3. For every i ≥ 0, uvixyiz ∈ L

WHAT ABOUT?

 $\Sigma = \{0, 1\}, L_3 = \{0^m1^n 0^n | m=n \ge 0\}$

Choose $w = 0^P 1^P 0^P$.

By the Pumping Lemma, we can write w = uvxyz with |vy| > 0, $|vxy| \le P$ such that pumping v together with y will produce another word in L_3 Since $|vxy| \le P$, $vxy = 0^a 1^b$, or $vxy = 1^a 0^b$.

WHAT ABOUT?

 $\Sigma = \{0, 1\}, L_3 = \{0^m1^n 0^n | m=n \ge 0\}$

Choose $w = 0^P 1^P 0^P$.

By the Pumping Lemma, we can write w = uvxyz with |vy| > 0, $|vxy| \le P$ such that pumping v together with y will produce another word in L_3 Since $|vxy| \le P$, $vxy = 0^a1^b$, or $vxy = 1^a0^b$.

Pumping in the first case will unbalance with the 0's at the end; in the second case, will unbalance with the 0's at the beginning. Contradiction.

THE PUMPING LEMMA FOR CFGs

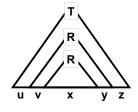
Let L be a context-free language

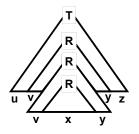
Then there is a P such that if $w \in L$ and $|w| \ge P$

then can write w = uvxyz, where:

- 1. |vy| > 0
- 2. |vxy| ≤ P
- 3. For every i ≥ 0, uvixyiz ∈ L

Idea of Proof: If w is long enough, then any parse tree for w must have a path that contains a variable more than once





Formal Proof:

Let b be the maximum number of symbols (length) on the right-hand side of any rule If the height of a parse tree is h, the length of the string generated by that tree is at most: bh

Let | V | be the number of variables in G Define $P = b^{|V|+1}$

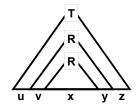
Let w be a string of length at least P

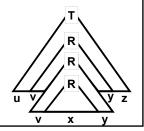
Let T be a parse tree for w with a minimum number of nodes.

 $b^{|V|+1} = P \le |w| \le b^h$ T must have height h at least |V|+1 The longest path in T must have ≥ |V|+1 variable

Select R to be a variable in T that repeats, among the lowest |V|+1 variables in the tree

- 1. |vy| > 0 since T has minimun # nodes
- 2. $|vxy| \le P$ since $|vxy| \le b^{|V|+1} = P$





EQUIVALENCE OF CFGs and PDAs

A Language L is generated by a CFG L is recognized by a PDA

WWW.FLAC.WS

Read the rest of Chapter 2 for next time