15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

THE PUMPING LEMMA FOR REGULAR LANGUAGES and REGULAR EXPRESSIONS

TUESDAY Jan 21

WHICH OF THESE ARE REGULAR?

 $B = \{0^n1^n \mid n \ge 0\}$

C = { w | w has equal number of occurrences of 01 and 10 }

D = { w | w has equal number of 1s and 0s}

THE PUMPING LEMMA

Let L be a regular language with $|L| = \infty$

Then there is a positive integer P s.t. if $w \in L$ and $|w| \ge P$

then can write w = xyz, where:

- 1. |y| > 0 (y isn't ϵ)
- 2. |xy| ≤ P
- 3. For every $i \ge 0$, $xy^iz \in L$

Why is it called the pumping lemma? The word w gets PUMPED into something longer...

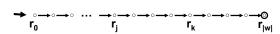
Proof: Let M be a DFA that recognizes L

Let P be the number of states in M

Assume $w \in L$ is such that $|w| \ge P$

We show: w = xyz

- 1. |y| > 0
- 2. |xy| ≤ P
- 3. $xy^iz \in L$ for all $i \ge 0$



There must be j and k such that $j < k \le P$, and $r_i = r_k$ (why?) (Note: k - j > 0)

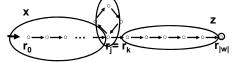
Proof: Let M be a DFA that recognizes L

Let P be the number of states in M

Assume $w \in L$ is such that $|w| \ge P$

We show: w = xyz

- 1. |y| > 0
- 2. |xy| ≤ P
- 3. $xy^iz \in L$ for all $i \ge 0$



There must be j and k such that $j < k \le P$, and $r_j = r_k$

USING THE PUMPING LEMMA

Let's prove that $B = \{0^n1^n \mid n \ge 0\}$ is not regular

Assume B is regular. Let $w = 0^{P1^{P}}$

If B is regular, can write w = xyz, |y| > 0, $|xy| \le P$, and for any $i \ge 0$, xy^iz is also in B

y must be all 0s: Why? |xy| ≤ P xyyz has more 0s than 1s

Contradiction!

USING THE PUMPING LEMMA

D = { w | w has equal number of 1s and 0s} is not regular

Assume D is regular. Let $w = 0^{P1P}$ (w is in D!)

If D is regular, can write w = xyz, |y| > 0, $|xy| \le P$, where for any $i \ge 0$, xy^iz is also in D

y must be all 0s: Why? |xy| ≤ P xyyz has more 0s than 1s

Contradiction!

WHAT DOES C LOOK LIKE?

C = { w | w has equal number of occurrences of 01 and 10}

= { w | w = 1, w = 0, w = ε or w starts with a 0 and ends with a 0 or w starts with a 1 and ends with a 1 }

 $1 \cup 0 \cup \epsilon \cup 0(0 \cup 1)*0 \cup 1(0 \cup 1)*1$

REGULAR EXPRESSIONS

(expressions representing languages)

 σ is a regexp representing $\{\sigma\}$

 ϵ is a regexp representing $\{\epsilon\}$

 \varnothing is a regexp representing \varnothing

If R₁ and R₂ are regular expressions representing L₁ and L₂ then:

 (R_1R_2) represents $L_1 \cdot L_2$ $(R_1 \cup R_2)$ represents $L_1 \cup L_2$

(R₁)* represents L₁*

PRECEDENCE

EXAMPLE

 $R_1*R_2 \cup R_3 = ((R_1*)R_2) \cup R_3$

{ w | w has exactly a single 1 }

What language does \emptyset^* represent?

{ w | w has length ≥ 3 and its 3rd symbol is 0 }

{ w | every odd position of w is a 1 }

EQUIVALENCE

L can be represented by a regexp

⇔ L is regular

- L can be represented by a regexp
 ⇒ L is regular
- 2. L can be represented by a regexp ←L is a regular language

exists NFA N such that R represents L(N)
Induction on the *length* of R:
Base Cases (R has length 1):

1. Given regular expression R, we show there

$$R = \sigma$$
 $\rightarrow \bigcirc \stackrel{\sigma}{\rightarrow} \bigcirc$

$$R = \emptyset$$
 \rightarrow

Inductive Step:

Assume R has length k > 1, and that every regular expression of length < k represents a regular language

Three possibilities for R:

 $R = R_1 \cup R_2$ (Union Theorem!) $R = R_1 R_2$ (Concatenation) $R = (R_1)^*$ (Star)

Therefore: L can be represented by a regexp ⇒ L is regular

Give an NFA that accepts the language represented by $(1(0 \cup 1))^*$

2. L can be represented by a regexp

L is a regular language

Proof idea: Transform an NFA for L into a regular expression by removing states and re-labeling arrows with regular expressions

Add unique and distinct start and accept states While machine has more than 2 states:

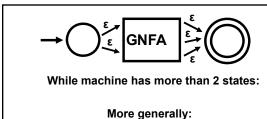
Pick an internal state, rip it out and re-label the arrows with regexps, to account for the missing state

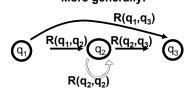
$$O \xrightarrow{\circ} O \xrightarrow{\circ} O$$

Add unique and distinct start and accept states While machine has more than 2 states:

Pick an internal state, rip it out and re-label the arrows with regexps, to account for the missing state

$$O \xrightarrow{01*0} O$$

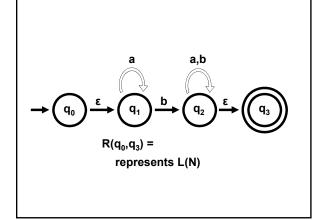




While machine has more than 2 states:

More generally:

$$\underbrace{q_1}^{R(q_1,q_2)R(q_2,q_2)*R(q_2,q_3)}_{\qquad \qquad \cup \ \, R(q_1,q_3)}$$



Formally: Add q_{start} and q_{accept} to create G (GNFA)

Run CONVERT(G): (Outputs a regexp)

If #states = 2

return the expression on the arrow
going from q_{start} to q_{accept}

Formally: Add q_{start} and q_{accept} to create G (GNFA) Run CONVERT(G): (Outputs a regexp)

If #states > 2
select $q_{rip} \in Q$ different from q_{start} and q_{accept} define $Q' = Q - \{q_{rip}\}$ Defines: G' (GNFA) $R'(q_i,q_j) = R(q_i,q_{rip})R(q_{rip},q_{rip})*R(q_{rip},q_j) \cup R(q_i,q_j)$ (R' = the regexps for edges in G')
We note that G and G' are equivalent return CONVERT(G')

Claim: CONVERT(G) is *equivalent* to G
Proof by induction on k (number of states in G)
Base Case:

 \checkmark k = 2

Inductive Step:

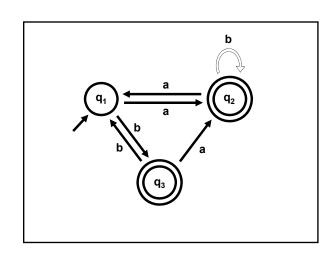
Assume claim is true for k-1 state GNFAs

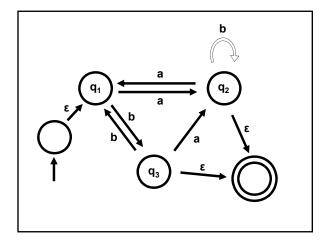
Recall that G and G' are equivalent

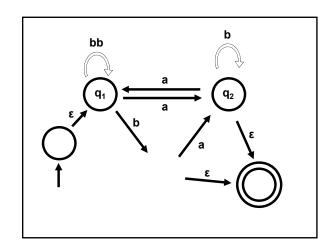
But, by the induction hypothesis, G' is equivalent to CONVERT(G')

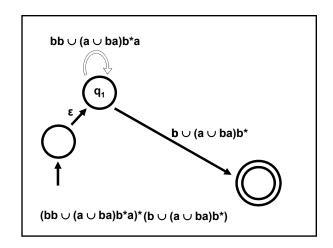
Thus: CONVERT(G') equivalent to CONVERT(G)

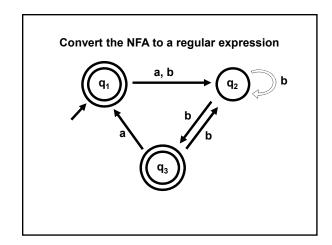
QED

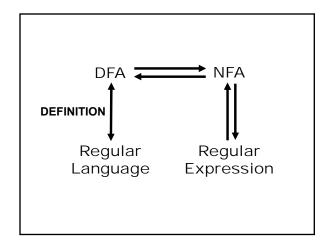












WWW.FLAC.WS
Finish Chapter 1 of the book for next time