15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY KOLMOGOROV-CHAITIN (descriptive) COMPLEXITY

TUESDAY, MAR 18

CAN WE QUANTIFY HOW MUCH INFORMATION IS IN A STRING?

A = 010101010101010101010101010101

B = 110010011101110101101001011001011

Idea: The more we can "compress" a string, the less "information" it contains....

INFORMATION AS DESCRIPTION

INFORMATION IN A STRING:

SHORTEST DESCRIPTION OF THE STRING

How can we "describe" strings?

Turing machines with inputs!

KOLMOGOROV COMPLEXITY

Definition: Let x in $\{0,1\}^*$. The shortest description of x, denoted as d(x), is the lexicographically shortest string $\{M, w\}$ s.t. M(w) halts with x on tape.

Definition: The Kolmogorov complexity of x, denoted as K(x), is |d(x)|.

How to code <M,w>?

Assume w in $\{0,1\}^*$ and we have a binary encoding of M

THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable function <,>: $\Sigma^* \times \Sigma^* \to \Sigma^*$ and computable functions π_1 and $\pi_2 : \Sigma^* \to \Sigma^*$ such that:

 $z = \langle M, w \rangle \Rightarrow \pi_1(z) = M \text{ and } \pi_2(z) = w$

Let $Z(x_1 x_2 ... x_k) = 0 x_1 0 x_2 ... 0 x_k 1$

Then:

< M, w > := Z(M) w

(Example: <10110,101> = 01000101001101)

Note that |<M,w>| = 2|M| + |w| + 1

A BETTER PAIRING FUNCTION

Let b(n) be the binary encoding of n Again let $Z(x_1 x_2 ... x_k) = 0 x_1 0 x_2 ... 0 x_k 1$

<M,w> := Z(b(|M|)) M w

Example: Let <M,w> = <10110,101>

So, b(|10110|) = 101

So, <10110,101> = 010001110110101

We can still decode 10110 and 101 from this! Now, $|<M,w>| = 2 \log(|M|) + |M| + |w| + 1$

KOLMOGOROV COMPLEXITY

Definition: Let x in $\{0,1\}^*$. The shortest description of x, denoted as d(x), is the lexicographically shortest string $\{M, w\}$ s.t. M(w) halts with x on tape.

Definition: The Kolmogorov complexity of x, denoted as K(x), is |d(x)|.

EXAMPLES??

Let's start by figuring out some properties of **K**. Examples will fall out of this.

KOLMOGOROV COMPLEXITY

Theorem: There is a fixed c so that for all x in $\{0,1\}^*$, $K(x) \le |x| + c$

"The amount of information in x isn't much more than |x|"

Proof: Define M = "On input w, halt."

On any string x, M(x) halts with x on its tape!

This implies

 $K(x) \le |\langle M, x \rangle| \le 2|M| + |x| + 1 \le |x| + c$ (Note: M is fixed for all x. So |M| is constant)

REPETITIVE STRINGS

Theorem: There is a fixed c so that for all x in $\{0,1\}^*$, $K(xx) \le K(x) + c$

"The information in xx isn't much more than that in x"

Proof: Let N = "On <M,w>, let M(w) = s. Print ss." Let <M,w'> be the shortest description of x. Then <N,<M,w'>> is a description of xxTherefore

 $K(xx) \le |\langle N, \langle M, w' \rangle \rangle| \le 2|N| + K(x) + 1 \le K(x) + c$

REPETITIVE STRINGS

Corollary: There is a fixed c so that for all n, and all $x \in \{0,1\}^*$,

 $K(x^n) \leq K(x) + c \log_2 n$

"The information in $\mathbf{x}^{\mathbf{n}}$ isn't much more than that in \mathbf{x} "

Proof:

An intuitive way to see this:

Define M: "On <x, n>, print x for n times".

Now take <M,<x,n>> as a description of x^n .

In binary, n takes $O(\log n)$ bits to write down, so we have $K(x) + O(\log n)$ as an upper bound on $K(x^n)$.

REPETITIVE STRINGS

Corollary: There is a fixed c so that for all n, and all $x \in \{0,1\}^*$,

 $K(x^n) \leq K(x) + c \log_2 n$

"The information in $\mathbf{x}^{\mathbf{n}}$ isn't much more than that in \mathbf{x} "

REPETITIVE STRINGS

Corollary: There is a fixed c so that for all n, and all $x \in \{0,1\}^*$,

 $K(x^n) \leq K(x) + c \log_2 n$

"The information in xn isn't much more than that in x"

A = 010101010101010101010101010101

For $w = (01)^n$, $K(w) \le K(01) + c \log_2 n$

CONCATENATION of STRINGS

Theorem: There is a fixed c so that for all x, y in {0,1}*,

 $K(xy) \le 2K(x) + K(y) + c$

Better: $K(xy) \le 2 \log K(x) + K(x) + K(y) + c$

DOES THE LANGUAGE MATTER?

Turing machines are one programming language. If we use other programming languages, can we get shorter descriptions?

An interpreter is a (partial) computable function $p: \Sigma^* \to \Sigma^*$

Takes programs as input, and prints their outputs

Definition: Let $x \in \{0,1\}^*$. The shortest description of x under p, $(d_p(x))$, is the lexicographically shortest string for which $p(d_n(x)) = x$.

Definition: $K_p(x) = |d_p(x)|$.

DOES THE LANGUAGE MATTER?

Theorem: For every interpreter **p**, there is a fixed **c** so that for all $x \in \{0,1\}^*$,

 $K(x) \le K_p(x) + c$

Using any other programming language would only change K(x) by some constant

Proof: Define M_p = "On input w, output p(w)"

Then $\langle M_p, d_p(x) \rangle$ is a description of x, and

 $K(x) \leq |\langle M_n, d_n(x) \rangle|$

 $\leq 2|M_p| + K_p(x) + 1 \leq K_p(x) + c$

INCOMPRESSIBLE STRINGS

Theorem: For all n, there is an $x \in \{0,1\}^n$ such that $K(x) \ge n$

"There are incompressible strings of every length"

Proof: (Number of binary strings of length n) = 2^n

(Number of descriptions of length < n)

≤ (Number of binary strings of length < n)</p>

 $= 2^{n} - 1.$

Therefore: there's at least one n-bit string that doesn't have a description of length < n

INCOMPRESSIBLE STRINGS

Theorem: For all n and c,

 $\text{Pr}_{x \;\in\; \{0,1\}^{A}n}[\; K(x) \geq n\text{-c }] \geq 1 - 1/2^{c}$

"Most strings are fairly incompressible"

Proof: (Number of binary strings of length n) = 2^n

(Number of descriptions of length < n-c)

≤ (Number of binary strings of length < n-c)</p>

 $= 2^{n-c} - 1.$

So the probability that a random x has K(x) < n-cis at most $(2^{n-c} - 1)/2^n < 1/2^c$.

A QUIZ (NOT REALLY)

Give short algorithms for generating:

- 1. 01000110110000010100111001011101110000
- 2. 123581321345589144233377610
- 3. 12624120720504040320362880

This seems hard in general. Why? We'll give a formal answer in just one moment...

DETERMINING COMPRESSIBILITY

Can an algorithm help us compress strings?
Can an algorithm tell us when a string is compressible?

COMPRESS = $\{(x,c) \mid K(x) \le c\}$

Theorem: COMPRESS is undecidable!

Intuition: If decidable, we can design an algorithm that prints the "first incompressible string of length **n**" But such a string could be described succinctly, by giving the algorithm, and **n** in binary!

"The first string whose shortest description cannot be written in less than fifteen words."

DETERMINING COMPRESSIBILITY

COMPRESS = $\{(x,n) \mid K(x) \le n\}$

Theorem: COMPRESS is undecidable!

Proof:

M = "On input $x \in \{0,1\}^*$, Interpret x as integer n. ($|x| \le \log n$) Find first $y \in \{0,1\}^*$ in lexicographical order, s.t. $(y,n) \notin COMPRESS$, then print y and halt."

M(x) prints the first string y* with K(y*) > n. Thus <M,x> describes y*, and $|<M,x>| \le c + \log n$ So n < K(y*) $\le c + \log n$. CONTRADICTION!

DETERMINING COMPRESSIBILITY

Theorem: K is not computable

Proof:

M = "On input $x \in \{0,1\}^*$, Interpret x as integer n. ($|x| \le log n$) Find first $y \in \{0,1\}^*$ in lexicographical order, s. t. (K(y) > n, then print y and halt."

M(x) prints the first string y* with K(y*) > n. Thus <M,x> describes y*, and |<M,x> $| \le c + log n$ So n < K(y*) $\le c + log n$. CONTRADICTION!

SO WHAT CAN YOU DO WITH THIS?

Many results in mathematics can be proved very simply using incompressibility.

Theorem: There are infinitely many primes.

IDEA: Finitely many primes ⇒ can compress everything!

Proof: Suppose not. Let p_1, \ldots, p_k be the primes. Let x be incompressible. Think of n=x as integer. Then there are e_i s.t.

 $\begin{array}{c} n={p_1}^{e1}\ldots\,{p_k}^{ek}\\ \text{For all i, } e_i\leq \log n,\, \text{so }|e_i|\leq \log \log n\\ \text{Can describe } n\ (\text{and }x)\ \text{with }k\log\log n+c\ \text{bits!}\\ \text{But }x\ \text{was incompressible...}\ CONTRADICTION! \end{array}$

WWW.FLAC.WS

Read Chapter 7.1 for next time