15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

THE ARITHMETIC HIERARCHY

THURSDAY, MAR 6

ORACLE MACHINES

An ORACLE is a set B to which the TM may pose membership questions "Is w in B?" (formally: TM enters state $q_?$) and the TM always receives a correct answer in one step

(formally: if the string on the "oracle tape" is in B, state q_2 is changed to q_{YES} , otherwise q_{NO})

This makes sense even if B is not decidable! (We do not assume that the oracle B is a computable set!) We say A is semi-decidable in B if there is an oracle TM M with oracle B that semi-decides A

We say A is decidable in B if there is an oracle TM M with oracle B that decides A $\,$

THE ARITHMETIC HIERARCHY

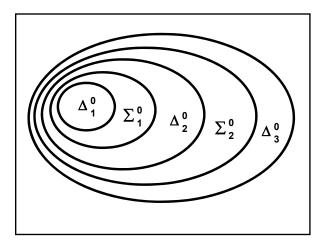
 Δ_{1}^{0} = { decidable sets } (sets = languages)

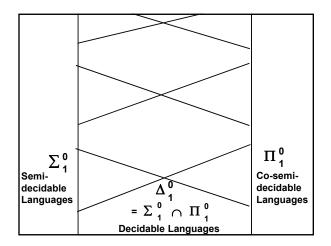
 $\sum_{1}^{0} = \{ \text{ semi-decidable sets } \}$

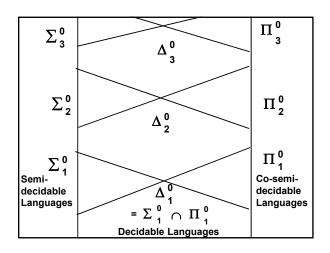
 \sum_{n+1}^{0} = { sets semi-decidable in some B $\in \sum_{n=1}^{0}$ }

 $\Delta_{\,\,n+1}^{\,\,0}\ \ \text{= \{ sets decidable in some B} \in \, \sum_{\,n}^{\,0} \quad \, \, \}$

 $\Pi_n^0 = \{ \text{ complements of sets in } \sum_{n=1}^{\infty} \}$







Definition: A decidable predicate R(x,y) is some proposition about x and y^1 , where there is a TM M such that

for all x, y, R(x,y) is TRUE \Rightarrow M(x,y) accepts R(x,y) is FALSE \Rightarrow M(x,y) rejects

We say M "decides" the predicate R.

EXAMPLES:

 $R(x,y) = "x + y \text{ is less than 100"} \\ R(<N>,y) = "N \text{ halts on } y \text{ in at most 100 steps"} \\ \text{Kleene's T predicate, } T(<M>, x, y): M \text{ accepts } x \text{ in } y \\ \text{steps.}$

1. x, y are positive integers or elements of Σ^*

Definition: A decidable predicate R(x,y) is some proposition about x and y¹, where there is a TM M such that

for all x, y, R(x,y) is TRUE \Rightarrow M(x,y) accepts R(x,y) is FALSE \Rightarrow M(x,y) rejects

We say M "decides" the predicate R.

EXAMPLES:

 $R(x,y) = "x + y \text{ is less than 100"} \\ R(<N>,y) = "N \text{ halts on y in at most 100 steps"} \\ \text{Kleene's T predicate, T(<M>, x, y): M accepts x in y steps.} \\$

1. x, y are positive integers or elements of Σ^*

Definition: A decidable predicate R(x,y) is some proposition about x and y^1 , where there is a TM M such that

for all x, y, R(x,y) is TRUE \Rightarrow M(x,y) accepts R(x,y) is FALSE \Rightarrow M(x,y) rejects

We say M "decides" the predicate R.

EXAMPLES:

R(x,y) = "x + y is less than 100" R(<N>,y) = "N halts on y in at most 100 steps" Kleene's T predicate, T(<M>, x, y): M accepts x in y steps.

Note: A is decidable \Leftrightarrow A = {x | R(x, ϵ)}, for some decidable predicate R. Theorem: A language A is semi-decidable if and only if there is a decidable predicate R(x, y) such that $= \{ x \mid \exists y \ R(x,y) \}$

Proof:

(1) If $A = \{ x \mid \exists y \ R(x,y) \}$ then A is semi-decidable

(2) If A is semi-decidable, then A = $\{x \mid \exists y \ R(x,y)\}$

Theorem: A language A is semi-decidable if and only if there is a decidable predicate R(x, y) such that: $A = \{x \mid \exists y R(x,y)\}$

Proof:

- (1) If $A = \{ x \mid \exists y \ R(x,y) \}$ then A is semi-decidable Because we can enumerate over all y's
- (2) If A is semi-decidable, then $A = \{x \mid \exists y \ R(x,y) \}$

Theorem: A language A is semi-decidable if and only if there is a decidable predicate R(x, y) such that: $A = \{x \mid \exists y \ R(x,y) \}$

Proof:

- (1) If $A = \{ x \mid \exists y \ R(x,y) \}$ then A is semi-decidable Because we can enumerate over all y's
- (2) If A is semi-decidable, then $A = \{ x \mid \exists y \ R(x,y) \}$

Let M semi-decide A

Then, $A = \{x \mid \exists y \ T(\langle M \rangle, x, y)\}$ (Here M is fixed.)

Kleene's T predicate, T(<M>, x, y): M accepts x in y steps.

Theorem

 \sum_{1}^{0} = { semi-decidable sets }

= languages of the form { x | ∃y R(x,y) }

 Π_{1}^{0} = { complements of semi-decidable sets }

= languages of the form $\{x \mid \forall y \ R(x,y)\}$

 $\Delta_4^0 = \{ \text{ decidable sets } \}$

 $= \sum_{1}^{0} \cap \Pi_{1}^{0}$

Where R is a decidable predicate

Theorem

 \sum_{2}^{0} = { sets semi-decidable in some semi-dec. B }

= languages of the form { $x \mid \exists y_1 \forall y_2 \ R(x,y_1,y_2)$ }

 Π_2^0 = { complements of \sum_2^0 sets} = languages of the form { x | $\forall y_1 \exists y_2 R(x,y_1,y_2)$ }

$$\Delta_2^0 = \Sigma_2^0 \cap \Pi_2^0$$

Where R is a decidable predicate

Theorem

$$\sum_{n=0}^{n} = \text{languages } \{ x \mid \exists y_1 \forall y_2 \exists y_3 ... Q y_n R(x, y_1, ..., y_n) \}$$

$$\Pi_{n}^{0}$$
 = languages { x | $\forall y_1 \exists y_2 \forall y_3...Qy_n R(x,y_1,...,y_n)$ }

$$\Delta_n^0 = \Sigma_n^0 \cap \Pi_n^0$$

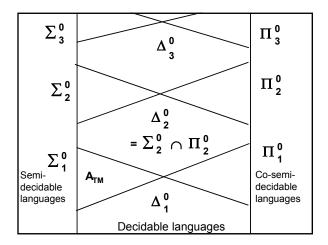
Where R is a decidable predicate

Example

Decidable predicate

$$\sum_{1}^{0}$$
 = languages of the form { x | $\exists y (R(x,y))$ }

We know that A_{TM} is in \sum_{1}^{0} Show it can be described in this form:



 Π_1^0 = languages of the form { x | \forall y R(x,y) } Show that EMPTY (ie, E_{TM}) = { M | L(M) = \varnothing } is in Π_1^0

 $\Pi_1^0 = \text{languages of the form } \{x \mid \forall y \ R(x,y) \}$ Show that EMPTY (ie, E_{TM}) = $\{M \mid L(M) = \varnothing\}$ is in Π_1^0 EMPTY = $\{M \mid \forall w \forall t [\neg T(< M>, w, t)]\}$ two quantifiers?? decidable predicate

THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable function <, >: $\Sigma^* \times \Sigma^* \to \Sigma^*$ and computable functions π_1 and $\pi_2 : \Sigma^* \to \Sigma^*$ such that

$$z = \langle w, t \rangle \Rightarrow \pi_1(z) = w \text{ and } \pi_2(z) = t$$

THE PAIRING FUNCTION

Theorem. There is a 1-1 and onto computable function <, >: $\Sigma^* \times \Sigma^* \to \Sigma^*$ and computable functions π_1 and $\pi_2 : \Sigma^* \to \Sigma^*$ such that

$$z = \langle w, t \rangle \Rightarrow \pi_1(z) = w \text{ and } \pi_2(z) = t$$

EMPTY = $\{ M \mid \forall w \forall t [M \text{ doesn't accept } w \text{ in t steps}] \}$

EMPTY = { M | \forall z[M doesn't accept π_1 (z) in π_2 (z) steps]}

EMPTY = { M | $\forall z[\neg T(<M>, \pi_1(z), \pi_2(z))]$ }

THE PAIRING FUNCTION

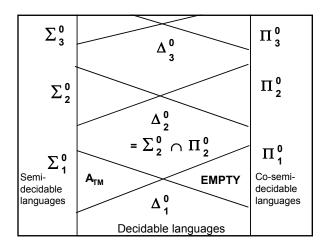
Theorem. There is a 1-1 and onto computable function < , >: $\Sigma^* \times \Sigma^* \to \Sigma^*$ and computable functions π_1 and $\pi_2 : \Sigma^* \to \Sigma^*$ such that

$$z = \langle w, t \rangle \Rightarrow \pi_1(z) = w \text{ and } \pi_2(z) = t$$

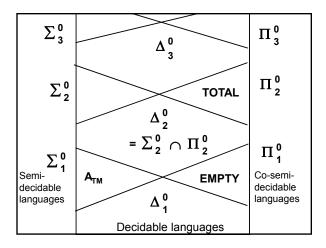
Proof: Let $w = w_1...w_n \in \Sigma^*$, $t \in \Sigma^*$. Let $a, b \in \Sigma$, $a \neq b$.

 $\langle w, t \rangle := a w_1 ... a w_n b t$

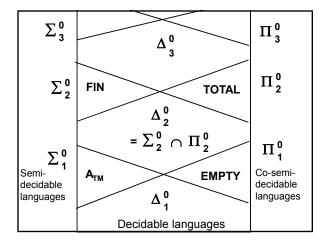
 π_1 (z) := "if z has the form a w_1 ... a w_n b t, then output w_1 ... w_n , else output ϵ " π_2 (z) := "if z has the form a w_1 ... a w_n b t, then output t, else output ϵ "



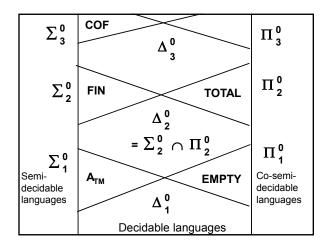
 Π_2^0 = languages of the form { x | $\forall y \exists z \ R(x,y,z)$ } Show that TOTAL = { M | M halts on all inputs } is in Π_2^0

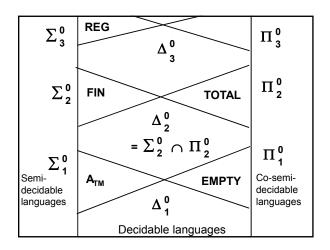


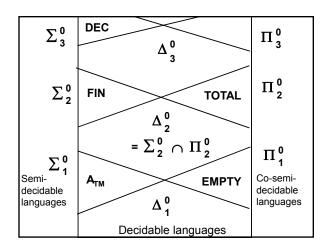
 \sum_{2}^{0} = languages of the form { x | $\exists y \forall z \ R(x,y,z)$ } Show that FIN = { M | L(M) is finite } is in \sum_{2}^{0}

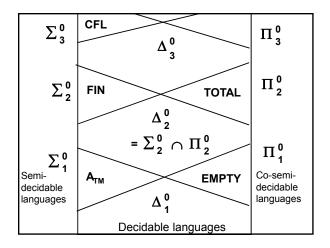


 \sum_3^0 = languages of the form { x | $\exists y \forall z \exists u \ R(x,y,z,u)$ } Show that COF = { M | L(M) is cofinite } is in \sum_2^0









Each is m-complete for its level in hierarchy and cannot go lower (by the SuperHalting Theorem, which shows the hierarchy does not collapse).

L is m-complete for class C if

- i) $L \in C$ and
- ii) L is m-hard for C,

ie, for all $L' \in C$, $L' \leq_m L$

 A_{TM} is m-complete for class $C = \sum_{1}^{0}$

- i) $A_{TM} \in C$
- ii) A_{TM} is m-hard for C,

Suppose $L \in C$. Show: $L \leq_m A_{TM}$

Let M semi-decide L. Then Map

$$\Sigma^* \rightarrow \Sigma^*$$

where $w \rightarrow (M, w)$.

Then, $w \in L \Leftrightarrow (M,w) \in A_{TM}$ QED

FIN is m-complete for class $C = \sum_{2}^{0}$

- i) $FIN \in C$
- ii) FIN is m-hard for C:

Suppose L \in C . Show: L \leq_m FIN

So suppose L= { w | $\exists y \forall z \ R(w,y,z)$ } where R is decided by some TM D

$$\begin{array}{ccc} \text{Map} & \Sigma^{\star} \rightarrow & \Sigma^{\star} \\ \text{where} & \text{w} \rightarrow & \text{N}_{\text{D,w}} \end{array}$$

Supose $L \in \Sigma_2^0$ ie $L = \{ w \mid \exists y \forall z \ R(w,y,z) \}$ where R is decided by some TM D

Show: $L \leq_m FIN$

$$\begin{array}{ccc} \text{Map} & \Sigma^* \to & \Sigma^* \\ \text{where} & \text{w} \to & \text{N}_{\text{D.w}} \end{array}$$

Define N_{D.w} On input s:

- 1. Write down all strings y of length |s|
- 2. For each y, try to find a z such that
- \neg R(w, y, z) and accept if all are successful (here use D and w)

So,
$$w \in L \Leftrightarrow N_{D,w} \in FIN$$

ORACLES not all powerful

The following problem cannot be decided, even by a TM with an oracle for the Halting Problem:

SUPERHALT = { (M,x) | M, with an oracle for the Halting Problem, halts on x}

Can use diagonalization here!

Suppose H decides SUPERHALT (with oracle)
Define **D(X)** = "if **H(X,X)** accepts (with oracle)
then **LOOP**, else **ACCEPT**."

D(D) halts $\Leftrightarrow H(D,D)$ accepts $\Leftrightarrow D(D)$ loops...

ORACLES not all powerful

Theorem: The arithmetic hierarchy is strict.
That is, the nth level contains a language that isn't in any of the levels below n.

Proof IDEA: Same idea as the previous slide.

SUPERHALT⁰ = HALT = $\{ (M,x) \mid M \text{ halts on } x \}$.

SUPERHALT¹ = { (M,x) | M, with an oracle for the Halting Problem, halts on x}

SUPERHALTⁿ = { (M,x) | M, with an oracle for SUPERHALTⁿ⁻¹, halts on x}

WWW.FLAC.WS

Read Chapter 6.4 for next time