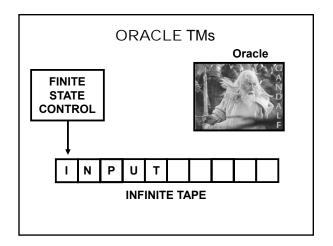
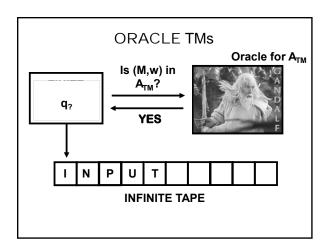
15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY ORACLE TURING MACHINES
AND
TURING REDUCIBILITY

TUESDAY, MAR 4





ORACLE MACHINES

An **ORACLE** is a set B to which the TM may pose membership questions "Is w in B?"

(formally: TM enters state q₂)

and the TM always receives a correct answer in one

step

(formally: if the string on the tape is in B, state $q_{?}$ is changed to $q_{YES},$ otherwise $q_{NO})$

This makes sense even if B is not decidable!
(We do not assume that the oracle B is a computable set!)

We say A is semi-decidable in B if there is an oracle TM M with oracle B that semi-decides A

We say A is decidable in B if there is an oracle TM M with oracle B that decides A

HALT_{TM} is DECIDABLE in A_{TM}

On input (M,w), decide if M halts on w as follows:

- 1. Ask the oracle for \mathbf{A}_{TM} whether M accepts w. If yes, then ACCEPT
- 2. Switch the accept and reject states of M to get M'. Ask the oracle for A_{TM} whether M' accepts w. If yes, then ACCEPT
 - 3. REJECT

A_{TM} is DECIDABLE in HALT_{TM}

On input (M,w), decide if M accepts w as follows:

Ask the oracle for ${\sf HALT_{TM}}$ whether M halts on w. If yes, then run M(w) and output its answer. If no, then REJECT.

Language A "Turing Reduces" to Language B

if A is decidable in B, ie if there is an oracle TM M with oracle B that decides A

$A \leq_T B$

≤_T VERSUS ≤_m

Theorem: If $A \leq_m B$ then $A \leq_T B$

Proof:

If $A \leq_m B$ then there is a computable function $f: \Sigma^* \to \Sigma^*$, where for every w,

 $w \in A \Leftrightarrow f(w) \in B$

We can thus use an oracle for B to decide A

Theorem: $\neg HALT_{TM} \leq_T HALT_{TM}$ Theorem: $\neg HALT_{TM} \nleq_m HALT_{TM}$

THE ARITHMETIC HIERARCHY

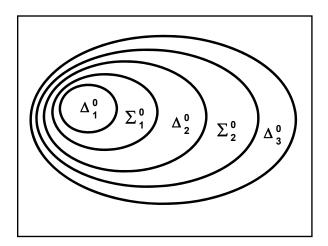
$$\Delta_1^0$$
 = { decidable sets } (sets = languages)

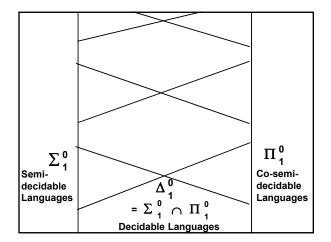
 \sum_{1}^{0} = { semi-decidable sets }

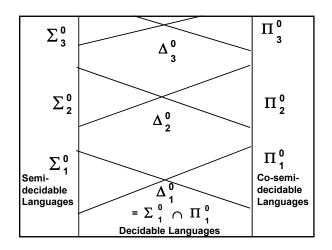
$$\sum_{n+1}^{0} = \{ \text{ sets semi-decidable in some B } \in \sum_{n=1}^{0} \}$$

$$\Delta_{n+1}^0 = \{ \text{ sets decidable in some B } \in \sum_{n=1}^{\infty} \}$$

$$\Pi_n^0 = \{ \text{ complements of sets in } \sum_{n=1}^{\infty} \}$$







WWW.FLAC.WS

Read Chapter 6.4 for next time