15-453

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

RICE'S THEOREM, THE RECURSION THEOREM, AND THE FIXED-POINT THEOREM

THURSDAY FEB 27

 $FIN_{TM} = \{ M \mid M \text{ is a TM and L(M) is finite} \}$

Is **FIN**_{TM} Decidable?

Note Properties of this language:

- FIN_{TM} is a language of Turing Machines
- If $M_1 \equiv M_2$ (ie $L(M_1) = L(M_2)$), then either both M_1 and M_2 are in FIN_{TM} or both are not.
- There are TMs M₁ and M₂, such that M₁ ∈ FIN_{TM} and M₂ ∉ FIN_{TM}

RICE'S THEOREM

Let L be a language over Turing machines.
Assume that L satisfies the following properties:

- 1. For TMs M_1 and M_2 , if $M_1 \equiv M_2$ then $M_1 \in L \Leftrightarrow M_2 \in L$
- 2. There are TMs M_1 and M_2 , such that $M_1 \in L$ and $M_2 \notin L$

Then L is undecidable

EXTREMELY POWERFUL!

RICE'S THEOREM

Let L be a language over Turing machines.
Assume that L satisfies the following properties:

- 1. For TMs M_1 and M_2 , if $M_1 \equiv M_2$ then $M_1 \in L \Leftrightarrow M_2 \in L$
- 2. There are TMs M_1 and M_2 , such that $M_1 \in L$ and $M_2 \notin L$

Then L is undecidable

 $FIN_{TM} = \{ M \mid M \text{ is a TM and L}(M) \text{ is finite} \}$

RICE'S THEOREM

Let L be a language over Turing machines. Assume that L satisfies the following properties:

- 1. For TMs M_1 and M_2 , if $M_1 \equiv M_2$ then $M_1 \in L \Leftrightarrow M_2 \in L$
- 2. There are TMs M_1 and M_2 , such that $M_1 \in L$ and $M_2 \notin L$

Then L is undecidable

 $E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$

 $REG_{TM} = \{ M \mid M \text{ is a TM and L(M) is regular} \}$

RICE'S THEOREM

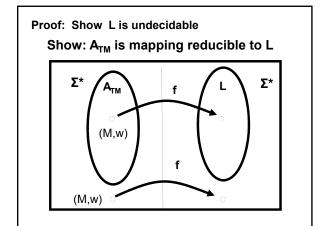
Let L be a language over Turing machines. Assume that L satisfies the following properties:

- 1. For TMs M_1 and M_2 , if $M_1 \equiv M_2$ then $M_1 \in L \Leftrightarrow M_2 \in L$
- 2. There are TMs M_1 and M_2 , such that $M_1 \in L$ and $M_2 \notin L$

Then L is undecidable

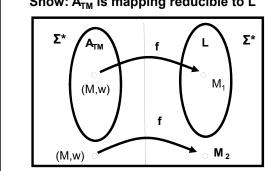
Proof: Will show:

A_{TM} is mapping reducible to L



Proof: Show L is undecidable

Show: A_{TM} is mapping reducible to L



RICE'S THEOREM

Proof:

Define M_{\emptyset} to be a TM that never halts

Assume, WLOG, that $M_{\emptyset} \notin L$ Why?

Let $M_1 \in L$ (such M_1 exists, by

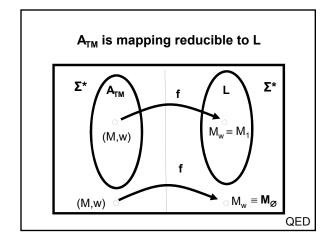
assumption) Show A_{TM} is mapping reducible to L :

Map $(M, w) \rightarrow M_w$ where

 $M_w(s)$ = accepts if both M(w) and $M_1(s)$ accept

loops otherwise

What is the language of M_w ?



Problem

Let S = { M | M is a TM with the property: for all w, M(w) accepts implies M(wR) accepts}.

S is undecidable.

 $A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$

 $|HALT_{TM}| = \{ (M,w) \mid M \text{ is a TM that halts on string } w \}$

 $E_{TM} = \{ M \mid M \text{ is a TM and } L(M) = \emptyset \}$

 $REG_{TM} = \{ M \mid M \text{ is a TM and L(M) is regular} \}$

 $EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\}$

 $ALL_{PDA} = \{ P \mid P \text{ is a PDA and } L(P) = \Sigma^* \}$

ALL UNDECIDABLE

Where is Rice's Theorm Applicable?

Which are SEMI-DECIDABLE?

The rest of the content of today's lecture has been a major source of headaches and misunderstandings

"The recursion theorem is just like tennis. Unless you're exposed to it at age five, you'll never become world class."

-Juris Hartmanis (Turing Award 1993)

(Note: Juris didn't see the recursion theorem until he was in his 20's....)

THE RECURSION THEOREM

Theorem: Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$.

Then there is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every string w,

$$r(w) = t(\langle R \rangle, w)$$

$$a,b) \rightarrow \boxed{T} \rightarrow t(a,b)$$

$$w \rightarrow \boxed{R} \rightarrow t(\langle R \rangle, w)$$

Recursion Theorem says: A Turing machine can obtain its own description, and compute with it

. We can use the operation: "Obtain your own description" in pseudocode!

Given a computable t, we can get a computable r such that r(w) = t(<R>,w) where <R> is a description of r

INSIGHT: T (or t) is really R (or r)

Theorem: A_{TM} is undecidable

Proof (using the Recursion Theorem):

Assume H decides A_{TM}

Construct machine R such that on input w:

- 1. Obtains its own description < R>
- 2. Runs H on (<R>, w) and flips the output

Running R on input w always does the opposite of what H says it should!

Theorem: A_{TM} is undecidable

Proof (using the Recursion Ttheorem):

Assume H decides A_{TM}

Let $T_H(x, w) = \frac{\text{Reject if H } (x, w) \text{ accepts}}{\text{Accept if H } (x, w) \text{ rejects}}$

(Here x is viewed as a code for a TM)

By the Recursion Theorem, there is a TM R such that:

 $R(w) = T_H(\langle R \rangle, w) = Reject if H (\langle R \rangle, w) accepts$ Accept if H ($\langle R \rangle, w$) rejects

Contradiction!

 $MIN_{TM} = \{ <M > | M \text{ is a minimal TM, wrt } | <M > | \}$

Theorem: MIN_{TM} is not RE.

Proof (using the Recursion Theorem):

Assume E enumerates MIN_™

Construct machine R such that on input w:

- 1. Obtains its own description <R>
- 2. Runs E until a machine D appears with a longer description than of R
- 3. Simulate D on w

Contradiction. Why?

 $MIN_{TM} = \{ <M > | M \text{ is a minimal TM, wrt } | <M > | \}$

Theorem: MIN_{TM} is not RE.

Proof (using the Recursion Theorem):

Assume E enumerates MIN_{TM}

Let $T_E(x, w) = D(w)$ where < D > is first in E's enumeration s.t. |< D >| > |x|

By the Recursion Theorem, there is a TM R such that:

 $R(w) = T_E(\langle R \rangle, w) = D(w)$

where $\langle D \rangle$ is first in E's enumeration s.t. $|\langle D \rangle| > |\langle R \rangle|$

Contradiction. Why?

THE FIXED-POINT THEOREM

Theorem: Let $f: \Sigma^* \to \Sigma^*$ be a computrable function. There is a TM R such that f(<R>) describes a TM that is *equivalent* to R.

Proof: Pseudocode for the TM R:

On input w:

- 1. Obtain the description <R>
- 2. Let g = f(<R>) and interpret g as a code for a TM G
- 3. Accept w iff G(w) accepts

THE FIXED-POINT THEOREM

Theorem: Let $f: \Sigma^* \to \Sigma^*$ be a computrable function. There is a TM R such that f(<R>) describes a TM that is equivalent to R.

Proof: Let $T_f(x, w) = G(w)$ where $\langle G \rangle = f(x)$ (Here f(x) is viewed as a code for a TM)

By the Recursion Theorem, there is a TM R such that

 $R(w) = T_f(< R>, w) = G(w) \text{ where } < G> = f(< R>)$

Hence R \equiv G where <G> = f (<R>), ie <R> " \equiv " f (<R>)

So R is a fixed point of f!

THE FIXED-POINT THEOREM

Theorem: Let $f: \Sigma^* \to \Sigma^*$ be a computrable function. There is a TM R such that f(<R>) describes a TM that is *equivalent* to R.

Proof: Let $T_f(x, w) = G(w)$ where $\langle G \rangle = f(x)$ (Here f(x) is viewed as a code for a TM)

By the Recursion Theorem, there is a TM R such that

 $R(w) = T_f(\langle R \rangle, w) = G(w) \text{ where } \langle G \rangle = f(\langle R \rangle)$

Hence $R \equiv G$ where $\langle G \rangle = f(\langle R \rangle)$, ie $\langle R \rangle$ " \equiv " $f(\langle R \rangle)$

So R is a fixed point of f!

THE FIXED-POINT THEOREM

Theorem: Let $f: \Sigma^* \to \Sigma^*$ be a computrable function. There is a TM R such that f(<R>) describes a TM that is *equivalent* to R.

Examples:

- 1. For any 1-1 computable enumeration of Σ^\star (or Gödel numbering of TMs) , there will always be a TM R that is equivalent to its successor in the enumeration
- 2. Let a virus flip the first bit of each word w in Σ^* (or in each TM).

Then there is a TM R that "remains uninfected".

THE RECURSION THEOREM

Theorem: Let T be a Turing machine that computes a function t : $\Sigma^* \times \Sigma^* \to \Sigma^*$.

Then there is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every string w,

$$r(w) = t(\langle R \rangle, w)$$

$$(a,b) \longrightarrow \boxed{T} \longrightarrow t(a,b)$$

$$w \longrightarrow \boxed{R} \longrightarrow t(\langle R \rangle, w)$$

THE RECURSION THEOREM

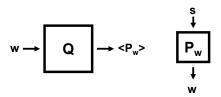
Theorem: Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$.

Then there is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every string w,

$$r(w) = t(, w)$$

To Start: Need to show how to construct a TM that computes its own description.

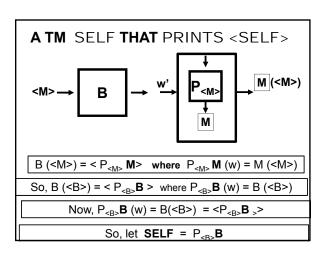
Lemma: There is a computable function $q: \Sigma^* \to \Sigma^*$, where for any string w, q(w) is the *description* of a TM P_w that on any input, prints out w and then accepts

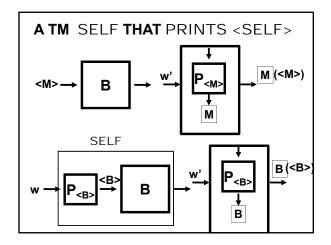


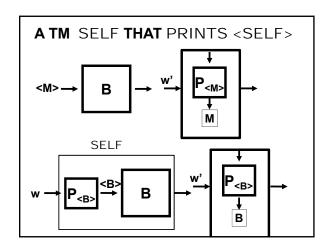
TM Q computes q

TM B, on any input <M>, prints the code for a TM that on any input outputs the result of M with input <M>

What about B on input ?







THE RECURSION THEOREM

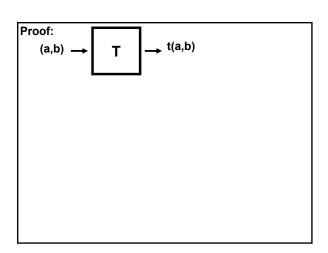
Theorem: Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$. There is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every string w,

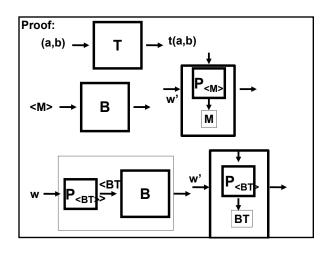
r, where for every string w,

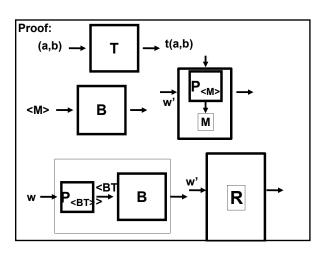
$$r(w) = t(\langle R \rangle, w)$$

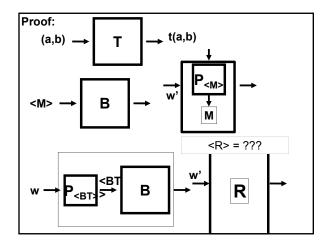
$$a,b) \rightarrow \boxed{T} \rightarrow t(a,b)$$

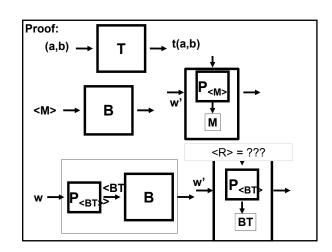
$$w \rightarrow \boxed{R} \rightarrow t(\langle R \rangle, w)$$

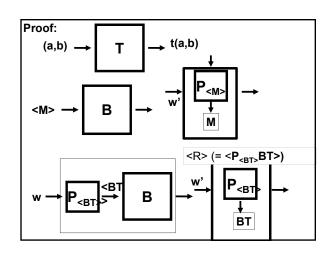


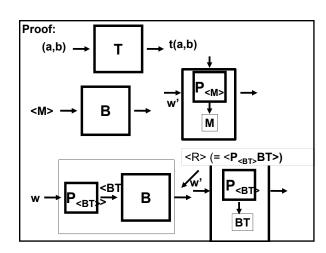


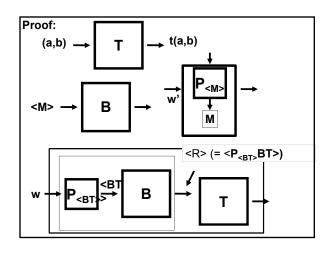


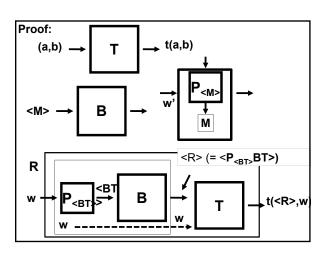












THE RECURSION THEOREM

Theorem: Let T be a Turing machine that computes a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$. There is a Turing machine R that computes a function $r: \Sigma^* \to \Sigma^*$, where for every string w,

$$r(w) = t(, w)$$

$$(a,b) \longrightarrow \boxed{\mathsf{T}} \longrightarrow \mathsf{t}(a,b)$$

$$w \rightarrow R \rightarrow t(,w$$

WWW.FLAC.WS

Read Chapter 6.1 and 6.3 for next time