Introduction	Inferring Time's Arrow	Analysis	Conclusions
	On the Dynamics in Multi-Party Co	•	

Kornel Laskowski, Mattias Heldner & Jens Edlund

Carnegie Mellon University, Pittsburgh PA, USA Voci Technologies, Inc., Pittsburgh PA, USA Dept. of Linguistics, Stockholm University, Stockholm, Sweden KTH Speech Music & Hearing, Stockholm, Sweden

11 September, 2012

Introduction ●○○○○	Inferring Time's Arrow	Analysis 0000	Conclusions
What Is Overlag	o?		

The occurrence of

more than one person speaking simultaneously.

Introduction	Inferring Time's Arrow	Analysis	Conclusions
00000			
What Is Ov	erlap?		

The occurrence of

more than one person speaking simultaneously.

An example ...

```
me003: Okay, so then I'll go back and look at the ones
       [on the l]ist [that - ]
me010: [Okay. ] [And you can] ASK Kevin.
me012:
               Y[eah.
                               ]
mn015:
                  [But -
                                ٦
      (0.3)
me012: Yeah, the [one that] uh people seem to use =
me003:
                [M[mm. ]
                  [But - ]
mn015:
me012: = is uh Hugin or whatever? [How exp-
                                                        1 =
me010:
                                 Hugin, [yeah that's free.]
me012: = I don't think it's - Is it free? Because I've seen it
      ADVERTISED in places so I - it [seems] [to - ]
                                   U[h it ] [may be] free to
me010:
      academics. Like I - [I don't know.]
fe004 ·
                          [((sniff)) ]
```

Introduction ●००००	Inferring Time's Arrow	Analysis 0000	Conclusions
What Is Overlag	o?		

The occurrence of

more than one person speaking simultaneously.

An example ...

a binary-valued speech/non-speech chronogram

Introduction ○●○○○	Inferring Time's Arrow	Analysis 0000	Conclusions
The Occurrence	of Overlap Confo	ounds Systems	

Introduction ○●○○○	Inferring Time's Arrow	Analysis 0000	Conclusions
The Occurrence	of Overlap	Confounds Systems	

• The occurrence of overlap is acoustically difficult to detect.

Introduction ○●○○○	Inferring Time's Arrow	Analysis 0000	Conclusions
The Occurrence	of Overlap Confou	nds Systems	

- The occurrence of overlap is acoustically difficult to detect.
- Simultaneous streams of speech are acoustically difficult to separate.

Introduction	Inferring Time's Arrow	Analysis	Conclusions
0000			
The Occurrence	of Overlap Confounds	Systems	

- The occurrence of overlap is acoustically difficult to detect.
- Simultaneous streams of speech are acoustically difficult to separate.
- Speech corrupted by other simultaneous speech is difficult to acoustically recognize.

Introduction	Inferring Time's Arrow	Analysis	Conclusions
0000			
The Occurrence	of Overlap Confound	ds Systems	

- The occurrence of overlap is acoustically difficult to detect.
- Simultaneous streams of speech are acoustically difficult to separate.
- Speech corrupted by other simultaneous speech is difficult to acoustically recognize.
- Speech deployed in overlap is grammatically distinct.

Introduction	Inferring Time's Arrow	Analysis	Conclusions
0000			
The Occurrence	of Overlap Confound	ds Systems	

- The occurrence of overlap is acoustically difficult to detect.
- Simultaneous streams of speech are acoustically difficult to separate.
- Speech corrupted by other simultaneous speech is difficult to acoustically recognize.
- Speech deployed in overlap is grammatically distinct.

It behooves us ...

- to seek to understand **when** it occurs
- to design methodologies for identifying it ...

Introduction	Inferring Time's Arrow	Analysis	Conclusions
0000			
The Occurrence	of Overlap Confound	ds Systems	

- The occurrence of overlap is acoustically difficult to detect.
- Simultaneous streams of speech are acoustically difficult to separate.
- Speech corrupted by other simultaneous speech is difficult to acoustically recognize.
- Speech deployed in overlap is grammatically distinct.

It behooves us ...

- to seek to understand **when** it occurs
- to design methodologies for identifying it ...
- ... at the earliest, lowest-level stage of processing

Introduction ○○●○○	Inferring Time's Arrow	Analysis 0000	Conclusions
We Know That	It Occurs		

... and even **how frequently** various degree of overlap occur (Baron et al, 2001; Çetin et al, 2006)

Introduction ○○●○○	Inferring Time's Arrow	Analysis	Conclusions
We Know That	It Occurs		

... and even **how frequently** various degree of overlap occur (Baron et al, 2001; Çetin et al, 2006)

e.g. the negative log-probability of occurrence as a function of **degree-of-overlap** (Laskowski et al, 2010):

"degree-of-overlap" \equiv number of simultaneously speaking participants

Introduction ○○○●○	Inferring Time's Arrow	Analysis 0000	Conclusions
But Not W	hen It Occurs		

If we were to take a chronogram and shuffle its time slices ...

Introduction ○○○●○	Inferring Time's Arrow	Analysis 0000	Conclusions
But Not W	hen It Occurs		

If we were to take a chronogram and shuffle its time slices ...

... we would get **the same prior probabilities** of occurrence. Systems are currently at the mercy of these priors alone.

Introduction ○○○○●	Inferring Time's Arrow	Analysis 0000	Conclusions
Plan for the Ne	xt 15 Minutes		

FOCUS: the **sequence** of degree-of-overlap.

Introduction ○○○○●	Inferring Time's Arrow	Analysis 0000	Conclusions
Plan for the Ne	ext 15 Minutes		

FOCUS: the **sequence** of degree-of-overlap.

Ask a specific question about speech chronograms:

"Do they look the same right-to-left as left-to-right?"

- Hypothesize that "H₁: They look different."
- **2** Develop a stochastic modeling framework.
- \bigcirc Confidently reject H_0 .

Introduction ○○○○●	Inferring Time's Arrow	Analysis 0000	Conclusions
Plan for the N	lext 15 Minutes		

FOCUS: the **sequence** of degree-of-overlap.

• Ask a specific question about speech chronograms:

"Do they look the same right-to-left as left-to-right?"

- Hypothesize that "H1: They look different."
- O Develop a stochastic modeling framework.
- Confidently reject H₀.
- What causes this asymmetry?
 - Investigate what model learns.
 - Investigate the effect of individual dialog act (DA) types ...
 - ... by **ignoring** their contribution to overlap.
 - Find that **only a handful** of DA types is responsible.

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling	Degree-of-Overlap as a	Stochastic Proce	ess

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling	Degree-of-Overlap as a	Stochastic Proce	ess

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling	Degree-of-Overlap as a	Stochastic Proce	ess

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling	Degree-of-Overlap as a	Stochastic Proce	ess

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling	Degree-of-Overlap as a	Stochastic Proce	ess

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling	Degree-of-Overlap as a	Stochastic Proce	ess

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling	Degree-of-Overlap as a	Stochastic Proce	ess

Introduction	Inferring Time's Arrow	Analysis	Conclusions
00000	00000000	0000	000
Modeling [Degree-of-Overlap as a	Stochastic Pro	CASS
mouening L	Jegree-or-Overlap as a		CESS

• analysis must be invariant under participant-index rotation

Introduction	Inferring Time's Arrow ●○○○○○○○	Analysis 0000	Conclusions
Modeling Deg	gree-of-Overlap as a	Stochastic Proc	cess

- analysis must be invariant under participant-index rotation
- discretize in time using non-overlapping 100-ms frames

Introduction	Inferring Time's Arrow ●○○○○○○○	Analysis 0000	Conclusions
Modeling Deg	gree-of-Overlap as a	Stochastic Proc	cess

- analysis must be invariant under participant-index rotation
- discretize in time using non-overlapping 100-ms frames

Introduction	Inferring Time's Arrow ●○○○○○○○	Analysis 0000	Conclusions
Modeling Deg	gree-of-Overlap as a	Stochastic Proc	cess

- analysis must be invariant under participant-index rotation
- discretize in time using non-overlapping 100-ms frames

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling Degre	ee-of-Overlap as a	Stochastic Pro	cess

- analysis must be invariant under participant-index rotation
- discretize in time using non-overlapping 100-ms frames
- compute the number of speaking participants in each frame

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling Degre	ee-of-Overlap as a	Stochastic Pro	cess

- analysis must be invariant under participant-index rotation
- discretize in time using non-overlapping 100-ms frames
- compute the number of speaking participants in each frame

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling Degre	ee-of-Overlap as a	Stochastic Pro	cess

- analysis must be invariant under participant-index rotation
- discretize in time using non-overlapping 100-ms frames
- compute the number of speaking participants in each frame

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling Degre	ee-of-Overlap as a	Stochastic Pro	cess

- analysis must be invariant under participant-index rotation
- discretize in time using non-overlapping 100-ms frames
- compute the number of speaking participants in each frame

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling Degre	ee-of-Overlap as a	Stochastic Pro	cess

- analysis must be invariant under participant-index rotation
- discretize in time using non-overlapping 100-ms frames
- compute the number of speaking participants in each frame

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling Degre	ee-of-Overlap as a	Stochastic Pro	cess

- analysis must be invariant under participant-index rotation
- discretize in time using non-overlapping 100-ms frames
- compute the number of speaking participants in each frame

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling Degre	ee-of-Overlap as a	Stochastic Pro	cess

- analysis must be invariant under participant-index rotation
- discretize in time using non-overlapping 100-ms frames
- compute the number of speaking participants in each frame
| Introduction | Inferring Time's Arrow | Analysis
0000 | Conclusions |
|----------------|------------------------|------------------|-------------|
| Modeling Degre | ee-of-Overlap as a | Stochastic Pro | cess |

- analysis must be invariant under participant-index rotation
- discretize in time using non-overlapping 100-ms frames
- compute the number of speaking participants in each frame

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling Degre	ee-of-Overlap as a	Stochastic Pro	cess

- analysis must be invariant under participant-index rotation
- discretize in time using non-overlapping 100-ms frames
- compute the number of speaking participants in each frame

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling Degre	ee-of-Overlap as a	Stochastic Pro	cess

- analysis must be invariant under participant-index rotation
- discretize in time using non-overlapping 100-ms frames
- compute the number of speaking participants in each frame

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling Degre	ee-of-Overlap as a	Stochastic Pro	cess

- analysis must be invariant under participant-index rotation
- discretize in time using non-overlapping 100-ms frames
- compute the number of speaking participants in each frame

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Modeling Deg	ree-of-Overlap as a	Stochastic Pro	cess

- analysis must be invariant under participant-index rotation
- discretize in time using non-overlapping 100-ms frames
- compute the number of speaking participants in each frame
- model integer sequence using a 1st-order N-gram

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Conversation	al Corpus		

Experiments use the ICSI Meeting Corpus (Janin et al, 2003):

- ICSI meetings are conversations, as per (Sacks et al, 1974)
- natural: would have occurred even if were not recorded
- 75 conversations
- each approximately 60 minutes in duration
- each with fixed number of participants, between 3 and 9
- manually transcribed and automatically forced-aligned
- manually segmented into dialog acts and labeled with type (Shriberg et al, 2004)

• Note that **the number of participants is different** for different ICSI meetings.

Introduction 00000	Inferring Time's Arrow	Analysis 0000	Conclusions
Number of Spea	kers versus Number o	f Particinants	

- Note that **the number of participants is different** for different ICSI meetings.
- But proposing to model degree-of-overlap **unconditioned** on the number of participants, across meetings.
- Is this valid?

Introduction	Inferring Time's Arrow	Analysis	Conclusions
	0000000		
Number of Spea	kers versus Number of	² Participants	

- Note that **the number of participants is different** for different ICSI meetings.
- But proposing to model degree-of-overlap **unconditioned** on the number of participants, across meetings.
- Is this valid?

 correlation between number of meeting attendees and proportion of meeting time during which two attendees speak simultaneously is weak

Introduction	Inferring Time's Arrow	Analysis	Conclusions
	0000000		
Number of Spea	kers versus Number of	Participants	

- Note that **the number of participants is different** for different ICSI meetings.
- But proposing to model degree-of-overlap **unconditioned** on the number of participants, across meetings.
- Is this valid?

- correlation between number of meeting attendees and proportion of meeting time during which two attendees speak simultaneously is weak
- Pearson's correlation coefficient: 0.411

Introduction	Inferring Time's Arrow ○○●●○○○○○	Analysis	Conclusions
Is N-Gram Mod	eling Appropriate?		

• The durations of contiguous intervals of same-degree overlap have an exponential distribution.

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Is N-Gram Mod	eling Appropriate?		

- The durations of contiguous intervals of same-degree overlap have an exponential distribution.
- Approximately: log-normal; at least unimodal.

Introduction	Inferring Time's Arrow ○○○●○○○○○	Analysis 0000	Conclusions
Is N-Gram Mod	leling Appropriate?		

- The durations of contiguous intervals of same-degree overlap have an exponential distribution.
- Approximately: log-normal; at least unimodal.

Introduction	Inferring Time's Arrow ○○○●○○○○○	Analysis 0000	Conclusions
Is N-Gram Moc	leling Appropriate?		

- The durations of contiguous intervals of same-degree overlap have an exponential distribution.
- Approximately: log-normal; at least unimodal.

 approximately log-normal as required

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Is <i>N</i> -Gram Mo	deling Appropriate?	?	

- The durations of contiguous intervals of same-degree overlap have an exponential distribution.
- Approximately: log-normal; at least unimodal.

- approximately log-normal as required
- also: the lower the degree-of-overlap, the longer the interval

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Require T w	o Models		

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Require T w	o Models		

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Require T w	o Models		

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Require T w	o Models		

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Require T w	o Models		

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Require T w	o Models		

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Require T w	o Models		

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Require T w	o Models		

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Require T w	o Models		

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Require T w	o Models		

Introduction 00000	Inferring Time's Arrow ○○○○●○○○○	Analysis	Conclusions
Require Tw	o Models		

Introduction 00000	Inferring Time's Arrow ○○○○●○○○○	Analysis	Conclusions
Require Tw	o Models		

Introduction 00000	Inferring Time's Arrow ○○○○●○○○○	Analysis	Conclusions
Require Tw	o Models		

Introduction 00000	Inferring Time's Arrow ○○○○●○○○○	Analysis	Conclusions
Require Tw	o Models		

Introduction 00000	Inferring Time's Arrow ○○○○●○○○○	Analysis	Conclusions
Require Tw	o Models		

Introduction	Inferring Time's Arrow ○○○○●○○○	Analysis 0000	Conclusions
Detecting	Time's Arrow in an Uns	seen Test Chro	onogram

Introduction	Inferring Time's Arrow ○○○○●○○○	Analysis 0000	Conclusions
Detecting	Time's Arrow in an Uns	seen Test Chro	onogram

Introduction	Inferring Time's Arrow ○○○○●○○○	Analysis 0000	Conclusions
Detecting	Time's Arrow in an Uns	seen Test Chro	onogram

Introduction	Inferring Time's Arrow ○○○○●○○○	Analysis 0000	Conclusions
Detecting	Time's Arrow in an Uns	seen Test Chro	onogram

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Detecting	Time's Arrow in an	Unseen Test Chrono	ogram

- Take test chronogram Q.
- Pick random direction $d \in \{F, B\}$: $\mathbf{Q} \mapsto \mathbf{Q}'$.
IntroductionInferring Time's ArrowAnalysisConclusionsOccordOccordOccordOccordOccordDetecting Time's Arrow in an Unseen Test Chronogram

- Take test chronogram Q.
- Pick random direction $d \in \{F, B\}$: $\mathbf{Q} \mapsto \mathbf{Q}'$.

Compute $P(\mathbf{Q}'|\mathbf{\Theta}_F)$ and $P(\mathbf{Q}'|\mathbf{\Theta}_B)$. IntroductionInferring Time's ArrowAnalysisConclusionsOccordOccordOccordOccordOccordDetecting Time's Arrow in an Unseen Test Chronogram

- Take test chronogram Q.
- Pick random direction $d \in \{F, B\}$: $\mathbf{Q} \mapsto \mathbf{Q}'$.

- Compute $P(\mathbf{Q}'|\mathbf{\Theta}_F)$ and $P(\mathbf{Q}'|\mathbf{\Theta}_B)$.
- Guess d̂ yielding higher likelihood.

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions
Classification in	a Round Robin Evalu	ation	

• Propose to **not** assess statistical significance.

Introduction	Inferring Time's Arrow	Analysis	Conclusions
	000000000		
Classification in	a Round Robin	Evaluation	

- Propose to **not** assess statistical significance.
- Instead, assess how well can **classify** the direction d ...
 - ... in conversations unseen during training
 - a more stringent requirement for discarding null hypothesis

Introduction	Inferring Time's Arrow	Analysis	Conclusions
	000000000		
Classification in	a Round Robin	Evaluation	

- Propose to **not** assess statistical significance.
- Instead, assess how well can **classify** the direction d ...
 - ... in conversations unseen during training
 - a more stringent requirement for discarding null hypothesis
- ICSI Corpus contains 75 conversations:

Introduction 00000	Inferring Time's Arrow	Analysis 0000	Conclusions
Classification in	a Round Robin Eval	uation	

- Propose to **not** assess statistical significance.
- Instead, assess how well can **classify** the direction d ...
 - ... in conversations unseen during training
 - a more stringent requirement for discarding null hypothesis
- ICSI Corpus contains 75 conversations:
 - Pick each conversation as the test conversation Q.
 - 2 Train Θ_F and Θ_B on remaining 74 conversations.
 - Solution d (50%/50%), form $d : \mathbf{Q} \mapsto \mathbf{Q}'$.
 - Infer direction $\hat{d} \doteq \arg \max_d P(\mathbf{Q}' | \mathbf{\Theta}_d)$.

Introduction 00000	Inferring Time's Arrow	Analysis 0000	Conclusions
Classification in	a Round Robin Eval	uation	

- Propose to **not** assess statistical significance.
- Instead, assess how well can **classify** the direction d ...
 - ... in conversations unseen during training
 - a more stringent requirement for discarding null hypothesis
- ICSI Corpus contains 75 conversations:
 - Pick each conversation as the test conversation Q.
 - 2 Train Θ_F and Θ_B on remaining 74 conversations.
 - Solution d (50%/50%), form $d : \mathbf{Q} \mapsto \mathbf{Q}'$.
 - Infer direction $\hat{d} \doteq \arg \max_d P(\mathbf{Q}' | \mathbf{\Theta}_d)$.
- Accuracy (A): count how often $\hat{d} = d$, divide by 75.

Introduction 00000	Inferring Time's Arrow	Analysis 0000	Conclusions
Classification in	a Round Robin Eval	uation	

- Propose to **not** assess statistical significance.
- Instead, assess how well can **classify** the direction d ...
 - ... in conversations unseen during training
 - a more stringent requirement for discarding null hypothesis
- ICSI Corpus contains 75 conversations:
 - Pick each conversation as the test conversation Q.
 - 2 Train Θ_F and Θ_B on remaining 74 conversations.
 - Solution d (50%/50%), form $d : \mathbf{Q} \mapsto \mathbf{Q}'$.
 - Infer direction $\hat{d} \doteq \arg \max_d P(\mathbf{Q}' | \mathbf{\Theta}_d)$.
- Accuracy (A): count how often $\hat{d} = d$, divide by 75.
 - If chronograms are symmetric in time, expect [A] = 50%.

Introduction 00000	Inferring Time's Arrow	Analysis 0000	Conclusions
Classification in	a Round Robin Evalu	ation	

- Propose to **not** assess statistical significance.
- Instead, assess how well can **classify** the direction d ...
 - ... in conversations unseen during training
 - a more stringent requirement for discarding null hypothesis
- ICSI Corpus contains 75 conversations:
 - Pick each conversation as the test conversation Q.
 - 2 Train Θ_F and Θ_B on remaining 74 conversations.
 - Solution d (50%/50%), form $d : \mathbf{Q} \mapsto \mathbf{Q}'$.
 - Infer direction $\hat{d} \doteq \arg \max_d P(\mathbf{Q}' | \mathbf{\Theta}_d)$.
- Accuracy (A): count how often $\hat{d} = d$, divide by 75.
 - If chronograms are symmetric in time, expect [A] = 50%.
- Chance-corrected accuracy,

$$ccA \doteq \frac{A-[A]}{1-[A]}$$

Introduction	Inferring Time's Arrow ○○○○○○●○	Analysis 0000	Conclusions
Numerical Resu	ults		

- Over all 75 conversations, A = 99% and ccA = 97%
- Can comfortably discard the null hypothesis *H*₀, that chronograms are left-right symmetric.

Introduction	Inferring Time's Arrow ○○○○○○●○	Analysis 0000	Conclusions
Numerical Res	ults		

- Over all 75 conversations, A = 99% and ccA = 97%
- Can comfortably discard the null hypothesis *H*₀, that chronograms are left-right symmetric.
- Note that temporal asymmetry **must** be due to overlap.


```
e.g., \ldots 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, \ldots
```

① The number of $\{0 \rightarrow 1\}$ and $\{1 \rightarrow 0\}$ transitions is equal.

- () The number of $\{0 \rightarrow 1\}$ and $\{1 \rightarrow 0\}$ transitions is equal.
- **2** The models Θ_F and Θ_B are equal.

- **①** The number of $\{0 \rightarrow 1\}$ and $\{1 \rightarrow 0\}$ transitions is equal.
- 2 The models Θ_F and Θ_B are equal.
- Solution: 3 Section 3 Sect

- **①** The number of $\{0 \rightarrow 1\}$ and $\{1 \rightarrow 0\}$ transitions is equal.
- 2 The models Θ_F and Θ_B are equal.
- Scannot discriminate between F and B directions.
- Asymmetry in a chronogram is:
 - 1) impossible if, $\forall t$, the degree-of-overlap is ≤ 1 ;

- **1** The number of $\{0 \rightarrow 1\}$ and $\{1 \rightarrow 0\}$ transitions is equal.
- 2 The models Θ_F and Θ_B are equal.
- Scannot discriminate between F and B directions.
- Asymmetry in a chronogram is:
 - (1) impossible if, $\forall t$, the degree-of-overlap is ≤ 1 ;
 - 2 impossible if, $\forall t$, the degree-of-overlap changes by ≤ 1 ;

e.g., $\ldots 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, \ldots$

- **①** The number of $\{0 \rightarrow 1\}$ and $\{1 \rightarrow 0\}$ transitions is equal.
- **2** The models Θ_F and Θ_B are equal.
- Scannot discriminate between F and B directions.
- Asymmetry in a chronogram is:
 - 1) impossible if, $\forall t$, the degree-of-overlap is ≤ 1 ;
 - 2 impossible if, $\forall t$, the degree-of-overlap changes by ≤ 1 ;
 - **(3)** possible (but not guaranteed) if $\exists t$ at which

the degree-of-overlap changes by ≥ 2 .

• Models Θ_F and Θ_B can be inspected directly.

- Models Θ_F and Θ_B can be inspected directly.
- In a zero-bounded sequence, a degree-of-overlap of 2 occurs:
 - most often: (0...0)(1...1)(2...2)(1...1)(0...0)

- Models Θ_F and Θ_B can be inspected directly.
- In a zero-bounded sequence, a degree-of-overlap of 2 occurs:
 - most often: (0...0)(1...1)(2...2)(1...1)(0...0)
 - less often: (0...0)(2...2)(1...1)(0...0)

- Models Θ_F and Θ_B can be inspected directly.
- In a zero-bounded sequence, a degree-of-overlap of 2 occurs:
 - **1** most often: (0...0)(1...1)(2...2)(1...1)(0...0)
 - Iess often: (0...0)(2...2)(1...1)(0...0)
 - least often: (0...0)(1...1)(2...2)(0...0)

- Models Θ_F and Θ_B can be inspected directly.
- In a zero-bounded sequence, a degree-of-overlap of 2 occurs:
 - most often: (0...0)(1...1)(2...2)(1...1)(0...0)
 - less often: (0...0)(2...2)(1...1)(0...0)
 - Ieast often: (0...0)(1...1)(2...2)(0...0)
- Case 1 is 1st-order-Markov-symmetric.
 - Cannot account for the left-to-right asymmetry in chronograms.

- Models Θ_F and Θ_B can be inspected directly.
- In a zero-bounded sequence, a degree-of-overlap of 2 occurs:
 - **1** most often: (0...0)(1...1)(2...2)(1...1)(0...0)
 - less often: (0...0)(2...2)(1...1)(0...0)
 - least often: (0...0)(1...1)(2...2)(0...0)
- Case 1 is 1st-order-Markov-symmetric.
 - Cannot account for the left-to-right asymmetry in chronograms.
- Time's arrow is discernable in chronograms largely because case 2 and case 3 occur with **unequal** frequency.

Introduction	Inferring Time's Arrow	Analysis ○●○○	Conclusions
Finding the (Culprits		

• Would like to know what kinds of speech phenomena lead to more $\{0 \rightarrow 2\}$ transitions than to $\{2 \rightarrow 0\}$ transitions.

Introduction	Inferring Time's Arrow	Analysis ○●○○	Conclusions
Finding the	Culprits		

- Would like to know what kinds of speech phenomena lead to more $\{0 \rightarrow 2\}$ transitions than to $\{2 \rightarrow 0\}$ transitions.
- Propose to investigate (content-neutral) dialog act (DA) types as a subclassification of all speech.

Introduction	Inferring Time's Arrow	Analysis ○●○○	Conclusions
Finding the C	ulprits		

- Would like to know what kinds of speech phenomena lead to more $\{0 \rightarrow 2\}$ transitions than to $\{2 \rightarrow 0\}$ transitions.
- Propose to investigate (content-neutral) **dialog act (DA)** types as a subclassification of all speech.
- The ICSI Corpus is annotated with a rich tagset, including:
 - unlabeled \mathcal{X} : not speech, undecipherable, undecidable
 - \bullet disrupted $\mathcal{D}:$ abandoned, interrupted
 - $\bullet\,$ backchannels $\mathcal{B}:\,$ backchannels, assessments, acknowledgments
 - floor mechanisms \mathcal{F} : floor grabbers, floor holders, holds
 - propositional: statements, questions

Introduction	Inferring Time's Arrow	Analysis ○○●○	Conclusions
Ablation of	Specific-DA Deploym	ent	

Introduction	Inferring Time's Arrow	Analysis ○○●○	Conclusions
Ablation of Sp	ecific-DA Deployn	nent	

• Re-use the experimental methodology of Part I.

Introduction	Inferring Time's Arrow	Analysis ○○●○	Conclusions
Ablation of Spe	cific-DA Deploymen	t	

- Re-use the experimental methodology of Part I.
- $\bullet\,$ To test the impact of DA type ${\cal T}$ on asymmetry:
 - Ocompute *ccA* using round robin paradigm, as in Part I.

Introduction	Inferring Time's Arrow	Analysis ○○●○	Conclusions
Ablation of Spe	cific-DA Deployment		

- Re-use the experimental methodology of Part I.
- $\bullet\,$ To test the impact of DA type ${\cal T}$ on asymmetry:
 - Ocompute *ccA* using round robin paradigm, as in Part I.
 - 2 Remove all speech of type \mathcal{T} from the training material.

Introduction	Inferring Time's Arrow	Analysis ○○●○	Conclusions
Ablation of Spe	cific-DA Deployment		

- Re-use the experimental methodology of Part I.
- \bullet To test the impact of DA type ${\mathcal T}$ on asymmetry:
 - Ocompute *ccA* using round robin paradigm, as in Part I.
 - 2 Remove all speech of type \mathcal{T} from the training material.

Introduction	Inferring Time's Arrow	Analysis ○○●○	Conclusions
Ablation of Spe	cific-DA Deployment		

- Re-use the experimental methodology of Part I.
- $\bullet\,$ To test the impact of DA type ${\cal T}$ on asymmetry:
 - Ocompute *ccA* using round robin paradigm, as in Part I.
 - 2 Remove all speech of type \mathcal{T} from the training material.

Introduction	Inferring Time's Arrow	Analysis ○○●○	Conclusions
Ablation of Spe	cific-DA Deployment		

- Re-use the experimental methodology of Part I.
- \bullet To test the impact of DA type ${\mathcal T}$ on asymmetry:
 - Ocompute *ccA* using round robin paradigm, as in Part I.
 - 2 Remove all speech of type \mathcal{T} from the training material.

Introduction	Inferring Time's Arrow	Analysis ○○●○	Conclusions
Ablation of Sp	ecific-DA Deploym	nent	

- Re-use the experimental methodology of Part I.
- $\bullet\,$ To test the impact of DA type ${\cal T}$ on asymmetry:
 - Ocompute *ccA* using round robin paradigm, as in Part I.
 - 2 Remove all speech of type \mathcal{T} from the training material.

③ Remove all speech of type \mathcal{T} from the test chronogram.

Introduction	Inferring Time's Arrow	Analysis ○○●○	Conclusions
Ablation of Sp	ecific-DA Deploym	nent	

- Re-use the experimental methodology of Part I.
- $\bullet\,$ To test the impact of DA type ${\cal T}$ on asymmetry:
 - Ocompute *ccA* using round robin paradigm, as in Part I.
 - 2 Remove all speech of type \mathcal{T} from the training material.

- ${f 0}$ Remove all speech of type ${\cal T}$ from the test chronogram.
- Sompute ccA_T using round robin paradigm.
| Introduction | Inferring Time's Arrow | Analysis
○○●○ | Conclusions |
|----------------|------------------------|------------------|-------------|
| Ablation of Sp | ecific-DA Deploym | nent | |

- Re-use the experimental methodology of Part I.
- $\bullet\,$ To test the impact of DA type ${\cal T}$ on asymmetry:
 - Ocompute *ccA* using round robin paradigm, as in Part I.
 - 2 Remove all speech of type \mathcal{T} from the training material.

- **③** Remove all speech of type \mathcal{T} from the test chronogram.
- **Outpute** ccA_T using round robin paradigm.
- **5** Compare ccA and ccA_T .

Introduction	Inferring Time's Arrow	Analysis ○○○●		Conclusions
Results				
	DA Types	Duration of Speech	ссА	
	Removed	Remaining (hh:mm)	(%)	
	none	66:34	97	
	unlabeled ${\mathcal X}$	63:37 (95.6%)	97	
	$\mathcal{X} \cup disrupted \ \mathcal{D}$	56:44 (85.2%)	89	
	$\mathcal{X} \cup backchannels \ \mathcal{B}$	59:08 (88.8%)	79	
	$\mathcal{X} \cup \mathcal{D} \cup \mathcal{B}$	52:22 (78.7%)	65	
	$\mathcal{X} \cup$ floor mechanisms \mathcal{F}	57:03 (85.7%)	89	
	$\mathcal{X} \cup \mathcal{D} \cup \mathcal{F}$	50:48 (76.3%)	76	
	$\mathcal{X} \cup \mathcal{D} \cup \mathcal{B} \cup \mathcal{F}$	46:31 (69.9%)	30	

Time's arrow can be inferred from chronograms primarily due to:

- disrupted (abandoned or interrupted) DAs, and
- DAs not implementing propositional content.

Introduction	Inferring Time's Arrow	Analysis	Conclusions ●○○
Conclusions			

Speech/non-speech chronograms are asymmetric in time.

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions ●○○
Conclusions			

- Speech/non-speech chronograms are asymmetric in time.
- 2 The asymmetry is due to entry into and egress from overlap.

Introduction	Inferring Time's Arrow	Analysis	Conclusions
00000		0000	●○○
Conclusions			

- Speech/non-speech chronograms are asymmetric in time.
- 2 The asymmetry is due to entry into and egress from overlap.

most common (undiscriminative)

Introduction	Inferring Time's Arrow	Analysis	Conclusions
00000		0000	●○○
Conclusions			

- Speech/non-speech chronograms are **asymmetric in time**.
- 2 The asymmetry is due to entry into and egress from overlap.

less common

most common (undiscriminative)

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions ●○○
Conclusions			

- Speech/non-speech chronograms are asymmetric in time.
- ② The asymmetry is due to entry into and egress from overlap.

most common (undiscriminative)

least common (discriminative)

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions ●○○
Conclusions			

- Speech/non-speech chronograms are asymmetric in time.
- ② The asymmetry is due to entry into and egress from overlap.

People are more likely to simultaneously start simultaneous speech than to simultaneously stop simultaneous speech.

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions ●○○
Conclusions			

- Speech/non-speech chronograms are asymmetric in time.
- ② The asymmetry is due to entry into and egress from overlap.

- People are more likely to simultaneously start simultaneous speech than to simultaneously stop simultaneous speech.
- Speech to which this pertains is found in dialog acts:
 - which are not successfully brought to completion, or
 - whose pragmatic function is **not** information exchange.

Introduction	Inferring Time's Arrow	Analysis	Conclusions ○●○
Potential Impac	t.		

• Theoretical:

Introduction	Inferring Time's Arrow	Analysis	Conclusions ○●○
Potential Impac	t		

- Theoretical:
 - Can empirically validate on large data the claims of conversation analysis.
 - E.g., "Talk by MORE than two at a time seems to be reduced to two (or to one) even more effectively than talk by two is reduced to one" (Schegloff, 2000).

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions ○●○
Potential Impac	t		

- Theoretical:
 - Can empirically validate on large data the claims of conversation analysis.
 - E.g., "Talk by MORE than two at a time seems to be reduced to two (or to one) even more effectively than talk by two is reduced to one" (Schegloff, 2000).
 - See paper for many examples.

Introduction	Inferring Time's Arrow	Analysis	Conclusions ○●○
Potential Impac	t		

- Theoretical:
 - Can empirically validate on large data the claims of conversation analysis.
 - E.g., "Talk by MORE than two at a time seems to be reduced to two (or to one) even more effectively than talk by two is reduced to one" (Schegloff, 2000).
 - See paper for many examples.
 - One step along the way to proposing an ecological theory of pragmatic (non-propositional-content) function in multi-party conversation, and its relationship to cognitive load.

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions ○●○
Potential Impac	t		

- Theoretical:
 - Can empirically validate on large data the claims of conversation analysis.
 - E.g., "Talk by MORE than two at a time seems to be reduced to two (or to one) even more effectively than talk by two is reduced to one" (Schegloff, 2000).
 - See paper for many examples.
 - One step along the way to proposing an ecological theory of pragmatic (non-propositional-content) function in multi-party conversation, and its relationship to cognitive load.
- Technological:

Introduction	Inferring Time's Arrow	Analysis	Conclusions ○●○
Potential Impac	t		

- Theoretical:
 - Can empirically validate on large data the claims of conversation analysis.
 - E.g., "Talk by MORE than two at a time seems to be reduced to two (or to one) even more effectively than talk by two is reduced to one" (Schegloff, 2000).
 - See paper for many examples.
 - One step along the way to proposing an ecological theory of pragmatic (non-propositional-content) function in multi-party conversation, and its relationship to cognitive load.
- Technological:
 - Construction of prior probability models for speech activity detection in multi-party conversations.
 - E.g., constrain hypothesized transitions into and out of overlap intervals.

Introduction	Inferring Time's Arrow	Analysis 0000	Conclusions ○○●

THANK YOU

The work was supported in part by the Riksbankens Jubileumsfond (RJ) project Samtalets Prosodi.