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What Is Vocal Interaction?

the patterns of vocal activity for all participants to a
conversation

no words −→ a text-independent representation of
multi-party conversation

as used in psycholinguistics (Dabbs & Ruback, 1987)

in telecommunications: “on-off patterns” (Brady, 1967)

studied since the 1930s
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Why Do Classification of Conversation Type?

a basic competence in conversation understanding

type is most often taken for granted

ie. “My project is about cocktail parties. Why would I ever

need to know that a cocktail party is not a business meeting?”

searching & indexing in heterogenous multi-party conversation
recordings (or portions)

text-independence: pre-ASR availability of type
hypothesis/prior

may contribute to optimal selection of ASR components
type classification possible where no ASR or upstream
processing possible
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Defining Conversation Type

Sacks (1974) viewed conversation as one of several
normative speech-exchange system types

others include: lectures, rituals, debates, etc.

here, type of conversation ≡ subtype of work-related

conversation (meeting)

implicitly assume that specific activities and specific
participant groups and/or roles give rise to vocal
interactions which are subtype-specific
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Related Work

none on conversation type classification

various, on evolving conversation state

(Banerjee & Rudnicky, 2004)
(McCowan et al, 2005)
(Zancanaro et al, 2006)

several related text-independent tasks

participant dominance detection (Rienks et al, 2005), 4-party
interaction group recognition (Brdiczka et al, 2005), 4-party
conversational pair detection (Basu, 2002), 2-party

modeling vocal interaction for vocal activity detection

meetings (Laskowski & Schultz, 2006)
ambulatory data (Wyatt et al, 2007)
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Observables

the vocal interaction record of a conversation C, of type T
(of NT possible conversation types)

nancy

joe

fred

anne

at time t, each of K participants is in one of 2 discrete states,
vocalizing (V) or not vocalizing (N )

therefore, at time t, the state qt of C, as a whole, has one of
2K discrete values
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Modeling Groups

assume that C is a 1st order Markov process, produced by the
ordered group G of ‖G‖ ≡ K specific participants

Nancy Joe Joe

Fred Anne Fred Anne

NancyJoe

Fred Anne

Mary

G G′′G′

participants are drawn from a known population P of size ‖P‖

the number of distinct groups of size ‖G‖ ≤ ‖P‖ is

NG =
‖P‖!

(‖P‖ − ‖G‖)!
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Conversation Type Classification

participant identities, and therefore G, are hidden variables

given a set of features F extracted from C,

T ∗ = arg max
T

P ( T |F )

= arg max
T

∑

G

P (G, T , F )

= arg max
T

∑

G

P (T ) × P (G | T )
︸ ︷︷ ︸

Membership
Model

× P (F | G, T )
︸ ︷︷ ︸

Behavior
Model

hypothesis testing: cycle through NT types and NG groups
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Features

probability, when no-one else is vocalizing, that k initiates
vocalization (VI) and that k continues vocalization (VC)

probability, when j is vocalizing, that k initiates vocalization
overlap (OI) and that k continues vocalization overlap (OC)
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Feature Estimation

need to estimate all probabilities in feature vector F:

F =

K⋃

k=1






f VI
k , f VC

k ,

K⋃

j 6=k

{

f OI
k,j , f OC

k,j

}







discretize the vocal interaction record using 200 ms frames

estimate features using maximum likelihood (ML)

probabilities with unseen conditioning contexts are set to 0.5
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Alternate Feature Estimation Method

use a variant of a model from stochastic dynamics, the Ising

model (Glauber, 1963)

assume the conditional probability of vocal activity state
transition, for each k

P ( qt+1 [k] = V |qt = Si ) = yk (Si )

where

yk (x) =
1

1 + e−β(
PK

j=1 wk,jxj+bk)

not coincidentally, this is a one-layer neural network

obviates the need for designing a back-off/smoothing strategy
in ML estimation of features
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Behavior Model

for each conversation type T and each group G, require the
likelihood of F (as estimated from the observed vocal
interaction record)

P (F | G , T ) =
K∏

k=1

P
(

f VI
k | θVI

T ,G[k]

)

P
(

f VC
k | θVC

T ,G[k]

)

×
K∏

j 6=k

P
(

f OI
k,j | θ

OI
T ,G[k],G[j ]

)

P
(

f OC
k,j | θOC

T ,G[k],G[j ]

)

each θ represents a single one-dimensional Gaussian mean µ

and variance Σ pair
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Membership Model

for each conversation type T , require the probability of group
G (as hypothesized)

P (G | T ) =
1

ZG

K∏

k=1

P (G [k] | T )

ZG is a normalization constant,
∑

NG
P (G|T ) = 1
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The ICSI Meeting Corpus

(Janin et al, 2003), (Shriberg et al, 2004)

naturally occurring project-oriented conversations

for our purposes, 4 types of longitudinal collections:

# of # of possible # of participants
type

meetings participants mod min max

Bed 15 13 6 4 7
Bmr 29 15 7 3 9
Bro 23 10 6 4 8
other 8 27 6 5 8

“other” contains types of which there are ≤3 meetings

rarely, meetings contain additional, uninstrumented
participants (whose contributions we ignore)
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Differences Between Meeting Types

36-minute excerpts (from 1000 sec to 2000 sec)

B
e
d
0
1
0

B
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r
0
1
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B
r
o
0
1
0
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Baseline

use inclusive-OR of “talk-spurt” (Shriberg et al, 2001) and
“laugh-bout” (Laskowski & Burger, 2007) segmentations

compute a single feature f T
k : vocalizing time proportion

employed for assessing speaker diarization performance (Jin et
al, 2004), (Mirghafori & Wooters, 2006)
captures “flatness” of speaking-time distribution across
speakers

leave-one-out classification

train on 65 meetings, test on 1 meeting, rotate
too little data for a true, unseen evaluation set

cluster participants for training the behavior model

side-effect: renders impact of membership model negligible

accuracy: 65.7% (random guessing: 43%)
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Feature Comparison

ML Estimation NN Estimation
Feature(s)

w/o f T
k w/ f T

k w/o f T
k w/ f T

k

baseline — 65.7 — 65.7

f VI
k 59.7 67.2 56.7 65.7
f VC
k 62.7 77.6 56.7 71.6
〈f OI

k,j 〉j 35.8 52.2 64.2 67.2

〈f OC
k,j 〉j 53.7 67.2 64.2 80.6

f OI
k,j 41.8 46.3 67.2 64.2

f OC
k,j 61.2 68.7 73.1 79.1
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the baseline feature f T
k outperforms most other features
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ML Estimation NN Estimation
Feature(s)
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f OC
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by themselves, specific participant-pair features outperform
each participant’s average participant-pair features
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most features, when combined with f T
k , lead to improved

performance
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Discussion

3-way confusion matrix, optimal NN-estimated feature subset

Actual Type
Estimated

Bed Bmr Bro

Bed 11 1 3
Bmr 2 26 1
Bro 3 1 19

Bmr (discussions among peers) is the most distinct type
Bed and Bro (both more structured meetings) are more similar
to each other than to Bmr

miss-classification pattern reflects intuition
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Conclusions

classification paradigm with several novel elements:
1 exclusively text-independent features, from vocal interaction

patterns
2 participant groups, allowing for modeling multi-participant

behaviors
3 Ising model assumption of C transition probabilities

meeting sub-type classification accuracy: 83%

relative error reduction of 52% over the baseline

(specific) multi-participant interaction features play a large
role in this improvement
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Future Work

use automatic, rather than manual, segmentation

include verbal (words, DAs) features

explore the dual problem of role/participant detection:

G∗ = arg max
G

P (G |F )

= arg max
G

∑

T

P (G , T , F )

= arg max
G

∑

T

P (T ) × P (G | T ) × P (F | G, T )
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Thanks!

We’d also like to thank:

Liz Shriberg

lots of helpful discussion
access to the ICSI MRDA annotation

CHIL project for funding
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