Introduction	Computational Framework	Data 00	Experiments	Conclusions

Modeling Vocal Interaction for Text-Independent Classification of Conversation Type

Kornel Laskowski^{1,3}, Mari Ostendorf^{1,2} & Tanja Schultz^{1,3}

¹interACT, Universität Karlsruhe
 ²Dept. Electrical Engineering, University of Washington
 ³interACT, Carnegie Mellon University

September 2, 2007

Introduction ●○○○	Computational Framework	Data oo	Experiments	Conclusions
What Is \	Vocal Interaction?			

- the patterns of vocal activity for all participants to a conversation
 - no words —> a text-independent representation of multi-party conversation
- as used in psycholinguistics (Dabbs & Ruback, 1987)
- in telecommunications: "on-off patterns" (Brady, 1967)
- studied since the 1930s

(人間) (人) (人) (人) (人)

Introduction ●○○○	Computational Framework	Data oo	Experiments	Conclusions
What Is	Vocal Interaction?			

- the patterns of vocal activity for all participants to a conversation
 - no words —> a text-independent representation of multi-party conversation
- as used in psycholinguistics (Dabbs & Ruback, 1987)
- in telecommunications: "on-off patterns" (Brady, 1967)
- studied since the 1930s

<回> < 回> < 回> < 回>

Introduction ●○○○	Computational Framework	Data oo	Experiments	Conclusions
What Is	Vocal Interaction?			

- the patterns of vocal activity for all participants to a conversation
 - no words → a text-independent representation of multi-party conversation
- as used in psycholinguistics (Dabbs & Ruback, 1987)
- in telecommunications: "on-off patterns" (Brady, 1967)
- studied since the 1930s

Introduction	Computational Framework	Data oo	Experiments	Conclusions
What Is	Vocal Interaction?			

- the patterns of vocal activity for all participants to a conversation
 - no words —> a text-independent representation of multi-party conversation
- as used in psycholinguistics (Dabbs & Ruback, 1987)
- in telecommunications: "on-off patterns" (Brady, 1967)
- studied since the 1930s

Introduction	Computational Framework	Data oo	Experiments	Conclusions
What Is	Vocal Interaction?			

- the patterns of vocal activity for all participants to a conversation
 - no words —> a text-independent representation of multi-party conversation
- as used in psycholinguistics (Dabbs & Ruback, 1987)
- in telecommunications: "on-off patterns" (Brady, 1967)
- studied since the 1930s

Introduction	Computational Framework	Data	Experiments	Conclusions
0000				

a basic competence in conversation understanding

- type is most often taken for granted
 - ie. "My project is about cocktail parties. Why would I ever need to know that a cocktail party is not a business meeting?"
- searching & indexing in heterogenous multi-party conversation recordings (or portions)
- text-independence: pre-ASR availability of type hypothesis/prior

伺下 イヨト イヨ

Introduction	Computational Framework	Data	Experiments	Conclusions
0000				

- a basic competence in conversation understanding
- type is most often taken for granted
 - ie. "My project is about cocktail parties. Why would I ever need to know that a cocktail party is not a business meeting?"
- searching & indexing in heterogenous multi-party conversation recordings (or portions)
- text-independence: pre-ASR availability of type hypothesis/prior

伺下 イヨト イヨ

Introduction ○●○○	Computational Framework	Data 00	Experiments	Conclusions

- a basic competence in conversation understanding
- type is most often taken for granted
 - ie. "My project is about cocktail parties. Why would I ever need to know that a cocktail party is not a business meeting?"
- searching & indexing in heterogenous multi-party conversation recordings (or portions)
- text-independence: pre-ASR availability of type hypothesis/prior
 - may contribute to optimal selection of ASR components.
 type classification possible where no ASR or upstream processing possible.

Introduction ○●○○	Computational Framework	Data 00	Experiments	Conclusions

- a basic competence in conversation understanding
- type is most often taken for granted
 - ie. "My project is about cocktail parties. Why would I ever need to know that a cocktail party is not a business meeting?"
- searching & indexing in heterogenous multi-party conversation recordings (or portions)
- **text-independence**: pre-ASR availability of type hypothesis/prior
 - may contribute to optimal selection of ASR components
 type classification possible where no ASR or upstream processing possible

Introduction ○●○○	Computational Framework	Data 00	Experiments	Conclusions

- a basic competence in conversation understanding
- type is most often taken for granted
 - ie. "My project is about cocktail parties. Why would I ever need to know that a cocktail party is not a business meeting?"
- searching & indexing in heterogenous multi-party conversation recordings (or portions)
- text-independence: pre-ASR availability of type hypothesis/prior
 - may contribute to optimal selection of ASR components
 - type classification possible where no ASR or upstream processing possible

A (B) + A (B) + A (B) +

Introduction ○●○○	Computational Framework	Data 00	Experiments	Conclusions

- a basic competence in conversation understanding
- type is most often taken for granted
 - ie. "My project is about cocktail parties. Why would I ever need to know that a cocktail party is not a business meeting?"
- searching & indexing in heterogenous multi-party conversation recordings (or portions)
- text-independence: pre-ASR availability of type hypothesis/prior
 - may contribute to optimal selection of ASR components
 - type classification possible where no ASR or upstream processing possible

A (B) + A (B) + A (B) +

Introduction ○●○○	Computational Framework	Data 00	Experiments	Conclusions

- a basic competence in conversation understanding
- type is most often taken for granted
 - ie. "My project is about cocktail parties. Why would I ever need to know that a cocktail party is not a business meeting?"
- searching & indexing in heterogenous multi-party conversation recordings (or portions)
- text-independence: pre-ASR availability of type hypothesis/prior
 - may contribute to optimal selection of ASR components
 - type classification possible where no ASR or upstream processing possible

Introduction ○○●○	Computational Framework	Data oo	Experiments	Conclusions
Defining (Conversation Type			

• Sacks (1974) viewed conversation as one of several normative **speech-exchange system** types

< ∃⇒

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Defining	Conversation Type			

- Sacks (1974) viewed conversation as one of several normative **speech-exchange system** types
- others include: lectures

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Defining	Conversation Type			

- Sacks (1974) viewed conversation as one of several normative **speech-exchange system** types
- others include: lectures, rituals

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Defining	Conversation Type			

- Sacks (1974) viewed conversation as one of several normative **speech-exchange system** types
- others include: lectures, rituals, debates, etc.

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Defining	Conversation Type			

- Sacks (1974) viewed conversation as one of several normative speech-exchange system types
- others include: lectures, rituals, debates, etc.
- here, type of conversation = subtype of work-related conversation (meeting)
- implicitly assume that specific activities and specific participant groups and/or roles give rise to vocal interactions which are subtype-specific

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Defining	Conversation Type			

- Sacks (1974) viewed conversation as one of several normative speech-exchange system types
- others include: lectures, rituals, debates, etc.
- here, type of conversation = subtype of work-related conversation (meeting)
- implicitly assume that specific activities and specific participant groups and/or roles give rise to vocal interactions which are subtype-specific

Introduction ○○○●	Computational Framework	Data 00	Experiments	Conclusions
Related V	Vork			

• none on conversation type classification

- various, on evolving conversation state
 - (Banerjee & Rudnicky, 2004)
 - (McCowan et al, 2005)
 - (Zancanaro et al, 2006)
- several related text-independent tasks
 - participant dominance detection (Rienks et al, 2005), 4-party
 - interaction group recognition (Brdiczka et al, 2005), 4-party
 - conversational pair detection (Basu, 2002), 2-party
- modeling vocal interaction for vocal activity detection
 - meetings (Laskowski & Schultz, 2006)
 - ambulatory data (Wyatt et al, 2007)

<回> < 回> < 回> < 回>

Introduction ○○○●	Computational Framework	Data oo	Experiments	Conclusions
Related W	/ork			

- none on conversation type classification
- various, on evolving conversation state
 - (Banerjee & Rudnicky, 2004)
 - (McCowan et al, 2005)
 - (Zancanaro et al, 2006)
- several related text-independent tasks
 - participant dominance detection (Rienks et al, 2005), 4-party
 - interaction group recognition (Brdiczka et al, 2005), 4-party
 - conversational pair detection (Basu, 2002), 2-party
- modeling vocal interaction for vocal activity detection
 - meetings (Laskowski & Schultz, 2006)
 - ambulatory data (Wyatt et al, 2007)

Introduction ○○○●	Computational Framework	Data oo	Experiments	Conclusions
Related Wo	ork			

- none on conversation type classification
- various, on evolving conversation state
 - (Banerjee & Rudnicky, 2004)
 - (McCowan et al, 2005)
 - (Zancanaro et al, 2006)
- several related text-independent tasks
 - participant dominance detection (Rienks et al, 2005), 4-party
 - interaction group recognition (Brdiczka et al, 2005), 4-party
 - conversational pair detection (Basu, 2002), 2-party
- modeling vocal interaction for vocal activity detection
 - meetings (Laskowski & Schultz, 2006)
 - ambulatory data (Wyatt et al, 2007)

白 ト イヨ ト イヨト

Introduction ○○○●	Computational Framework	Data 00	Experiments	Conclusions
Related Wo	rk			

- none on conversation type classification
- various, on evolving conversation state
 - (Banerjee & Rudnicky, 2004)
 - (McCowan et al, 2005)
 - (Zancanaro et al, 2006)
- several related text-independent tasks
 - participant dominance detection (Rienks et al, 2005), 4-party
 - interaction group recognition (Brdiczka et al, 2005), 4-party
 - conversational pair detection (Basu, 2002), 2-party
- modeling vocal interaction for vocal activity detection
 - meetings (Laskowski & Schultz, 2006)
 - ambulatory data (Wyatt et al, 2007)

A B K A B K

Introduction	Computational Framework	Data	Experiments	Conclusions
0000	●○○○○○○	oo	000	
Observable	S			

 the vocal interaction record of a conversation C, of type T (of N_T possible conversation types)

- at time t, each of K participants is in one of 2 discrete states, vocalizing (V) or not vocalizing (N)
- therefore, at time *t*, the state **q**_t of *C*, as a whole, has one of 2^{K} discrete values

- 4 回 ト 4 ヨ ト 4 ヨ ト

3

Introduction	Computational Framework	Data	Experiments	Conclusions
0000	●○○○○○○	oo	000	
Observable	S			

 the vocal interaction record of a conversation C, of type T (of N_T possible conversation types)

- at time t, each of K participants is in one of 2 discrete states, vocalizing (V) or not vocalizing (N)
- therefore, at time t, the state qt of C, as a whole, has one of 2^K discrete values

・ 同 ト ・ ヨ ト ・ ヨ ト

-

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Observabl	es			

 the vocal interaction record of a conversation C, of type T (of N_T possible conversation types)

- at time t, each of K participants is in one of 2 discrete states, vocalizing (V) or not vocalizing (N)
- therefore, at time t, the state \mathbf{q}_t of \mathcal{C} , as a whole, has one of 2^K discrete values

向下 イヨト イヨト

3

Introduction	Computational Framework	Data 00	Experiments	Conclusions
Modeling	Groups			

participants are drawn from a known population *P* of size ||*P*||
the number of distinct groups of size ||*G*|| ≤ ||*P*|| is

A (B) + A (B) + A (B) +

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Modeling	Groups			

participants are drawn from a known population *P* of size ||*P*||
the number of distinct groups of size ||*G*|| ≤ ||*P*|| is

A (B) + A (B) + A (B) +

Introduction	Computational Framework	Data	Experiments	Conclusions
0000	○●○○○○○○	oo	000	
Modeling	Groups			

participants are drawn from a known population *P* of size ||*P*||
the number of distinct groups of size ||*G*|| ≤ ||*P*|| is

$$N_{\mathcal{G}} = \frac{\|\mathcal{P}\|!}{(\|\mathcal{P}\| - \|\mathcal{G}\|)!}$$

Introduction	Computational Framework ○●○○○○○○	Data 00	Experiments 000	Conclusions
Modeling	Groups			

- participants are drawn from a known population ${\mathcal P}$ of size $\|{\mathcal P}\|$
- the number of distinct groups of size $\|\mathcal{G}\| \leq \|\mathcal{P}\|$ is

$$N_{\mathcal{G}} = \frac{\|\mathcal{P}\|!}{(\|\mathcal{P}\| - \|\mathcal{G}\|)!}$$

伺下 イヨト イヨト

Introduction	Computational Framework ○●○○○○○○	Data 00	Experiments 000	Conclusions
Modeling	Groups			

- participants are drawn from a known population $\mathcal P$ of size $\|\mathcal P\|$
- \bullet the number of distinct groups of size $\|\mathcal{G}\| \leq \|\mathcal{P}\|$ is

$$N_{\mathcal{G}} = \frac{\|\mathcal{P}\|!}{(\|\mathcal{P}\| - \|\mathcal{G}\|)!}$$

Introduction	Computational Framework	Data 00	Experiments	Conclusions
Conversa	tion Type Classifica	tion		

- \bullet participant identities, and therefore $\mathcal{G},$ are hidden variables
- given a set of features F extracted from C,

$$T^{*} = \arg \max_{T} P(T | \mathbf{F})$$

= $\arg \max_{T} \sum_{\mathcal{G}} P(\mathcal{G}, \mathcal{T}, \mathbf{F})$
= $\arg \max_{T} \sum_{\mathcal{G}} P(\mathcal{T}) \times \underbrace{P(\mathcal{G} | \mathcal{T})}_{Membership} \times \underbrace{P(\mathbf{F} | \mathcal{G}, \mathcal{T})}_{Behavior}$
Model Model

• hypothesis testing: cycle through N_T types and N_G groups

・ロン ・回と ・ヨン ・ヨン

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Conversa	tion Type Classifica	tion		

- \bullet participant identities, and therefore $\mathcal{G},$ are hidden variables
- \bullet given a set of features ${\bm F}$ extracted from ${\cal C},$

$$\begin{aligned} \mathcal{T}^* &= \arg \max_{\mathcal{T}} P(\mathcal{T} | \mathbf{F}) \\ &= \arg \max_{\mathcal{T}} \sum_{\mathcal{G}} P(\mathcal{G}, \mathcal{T}, \mathbf{F}) \\ &= \arg \max_{\mathcal{T}} \sum_{\mathcal{G}} P(\mathcal{T}) \times \underbrace{P(\mathcal{G} | \mathcal{T})}_{\text{Membership}} \times \underbrace{P(\mathbf{F} | \mathcal{G}, \mathcal{T})}_{\text{Behavior}} \\ & \text{Behavior} \\ & \text{Model} \end{aligned}$$

• hypothesis testing: cycle through N_T types and N_G groups

▲ □ → ▲ □ → ▲ □ →

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Conversa	tion Type Classifica	tion		

- \bullet participant identities, and therefore $\mathcal{G},$ are hidden variables
- \bullet given a set of features ${\bm F}$ extracted from ${\cal C},$

$$\begin{aligned} \mathcal{T}^* &= \arg \max_{\mathcal{T}} P(\mathcal{T} | \mathbf{F}) \\ &= \arg \max_{\mathcal{T}} \sum_{\mathcal{G}} P(\mathcal{G}, \mathcal{T}, \mathbf{F}) \\ &= \arg \max_{\mathcal{T}} \sum_{\mathcal{G}} P(\mathcal{T}) \times \underbrace{P(\mathcal{G} | \mathcal{T})}_{\text{Membership}} \times \underbrace{P(\mathbf{F} | \mathcal{G}, \mathcal{T})}_{\text{Behavior}} \\ & \text{Behavior} \end{aligned}$$

 \bullet hypothesis testing: cycle through $N_{\mathcal{T}}$ types and $N_{\mathcal{G}}$ groups

白 と く ヨ と く ヨ と

э

Introduction	Computational Framework	Data 00	Experiments	Conclusions
Features				

 probability, when no-one else is vocalizing, that k initiates vocalization (VI) and that k continues vocalization (VC)

 probability, when j is vocalizing, that k initiates vocalization overlap (OI) and that k continues vocalization overlap (OC)

Introduction	Computational Framework	Data 00	Experiments	Conclusions
Features				

 probability, when no-one else is vocalizing, that k initiates vocalization (VI) and that k continues vocalization (VC)

 probability, when j is vocalizing, that k initiates vocalization overlap (OI) and that k continues vocalization overlap (OC)
Introduction	Computational Framework	Data oo	Experiments	Conclusions
Features				

 probability, when j is vocalizing, that k initiates vocalization overlap (OI) and that k continues vocalization overlap (OC)

(4) (3) (4) (4) (4)

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Features				

$$f_{k}^{VI} = P(\mathbf{q}_{t+1}[k] = \mathcal{V} | \mathbf{q}_{t}[i] = \mathcal{N} \quad \forall i)$$

$$f_{k}^{VC} = P(\mathbf{q}_{t+1}[k] = \mathcal{V} | \mathbf{q}_{t}[k] = \mathcal{V}, \mathbf{q}_{t}[i] = \mathcal{N} \quad \forall i \neq k)$$

 probability, when j is vocalizing, that k initiates vocalization overlap (OI) and that k continues vocalization overlap (OC)

向下 イヨト イヨト

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Features				

$$\begin{aligned} f_k^{VI} &= P\left(\mathbf{q}_{t+1}\left[k\right] = \mathcal{V} \,|\, \mathbf{q}_t\left[i\right] = \mathcal{N} \quad \forall i \right) \\ f_k^{VC} &= P\left(\mathbf{q}_{t+1}\left[k\right] = \mathcal{V} \,|\, \mathbf{q}_t\left[k\right] = \mathcal{V}, \, \mathbf{q}_t\left[i\right] = \mathcal{N} \quad \forall i \neq k \right) \end{aligned}$$

 probability, when j is vocalizing, that k initiates vocalization overlap (OI) and that k continues vocalization overlap (OC)

• E • • E •

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Features				

$$\begin{aligned} f_k^{VI} &= P\left(\mathbf{q}_{t+1}\left[k\right] = \mathcal{V} \mid \mathbf{q}_t\left[i\right] = \mathcal{N} \quad \forall i \right) \\ f_k^{VC} &= P\left(\mathbf{q}_{t+1}\left[k\right] = \mathcal{V} \mid \mathbf{q}_t\left[k\right] = \mathcal{V}, \, \mathbf{q}_t\left[i\right] = \mathcal{N} \quad \forall i \neq k \right) \end{aligned}$$

 probability, when j is vocalizing, that k initiates vocalization overlap (OI) and that k continues vocalization overlap (OC)

OI
$$t + 1$$

 $j \times k$

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Features				

$$\begin{aligned} f_k^{VI} &= P\left(\mathbf{q}_{t+1}\left[k\right] = \mathcal{V} \,|\, \mathbf{q}_t\left[i\right] = \mathcal{N} \quad \forall i \right) \\ f_k^{VC} &= P\left(\mathbf{q}_{t+1}\left[k\right] = \mathcal{V} \,|\, \mathbf{q}_t\left[k\right] = \mathcal{V}, \, \mathbf{q}_t\left[i\right] = \mathcal{N} \quad \forall i \neq k \right) \end{aligned}$$

 probability, when j is vocalizing, that k initiates vocalization overlap (OI) and that k continues vocalization overlap (OC)

A B K A B K

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Features				

$$\begin{aligned} f_k^{VI} &= P\left(\mathbf{q}_{t+1}\left[k\right] = \mathcal{V} \,|\, \mathbf{q}_t\left[i\right] = \mathcal{N} \quad \forall i \right) \\ f_k^{VC} &= P\left(\mathbf{q}_{t+1}\left[k\right] = \mathcal{V} \,|\, \mathbf{q}_t\left[k\right] = \mathcal{V}, \,\mathbf{q}_t\left[i\right] = \mathcal{N} \quad \forall i \neq k \right) \end{aligned}$$

 probability, when j is vocalizing, that k initiates vocalization overlap (OI) and that k continues vocalization overlap (OC)

$$f_{k,j}^{OI} = P(\mathbf{q}_{t+1}[k] = \mathcal{V} | \mathbf{q}_t[j] = \mathcal{V}, \mathbf{q}_t[i] = \mathcal{N} \quad \forall i \neq j)$$

$$f_{k,j}^{OC} = P(\mathbf{q}_{t+1}[k] = \mathcal{V} | \mathbf{q}_t[k] = \mathbf{q}_t[j] = \mathcal{V}, \mathbf{q}_t[i] = \mathcal{N}$$

$$\forall i \neq j, i \neq k)$$

• E • • E •

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Feature E	Estimation			

$$\mathbf{F} = \bigcup_{k=1}^{K} \left\{ f_k^{VI}, f_k^{VC}, \bigcup_{j \neq k}^{K} \left\{ f_{k,j}^{OI}, f_{k,j}^{OC} \right\} \right\}$$

discretize the vocal interaction record using 200 ms frames

estimate features using maximum likelihood (ML)

probabilities with unseen conditioning contexts are set to 0.5

・ロン ・回と ・ヨン ・ヨン

Introduction	Computational Framework	Data 00	Experiments	Conclusions
Feature E	Estimation			

$$\mathbf{F} = \bigcup_{k=1}^{K} \left\{ f_k^{VI}, f_k^{VC}, \bigcup_{j \neq k}^{K} \left\{ f_{k,j}^{OI}, f_{k,j}^{OC} \right\} \right\}$$

• discretize the vocal interaction record using 200 ms frames

• estimate features using maximum likelihood (ML)

• probabilities with unseen conditioning contexts are set to 0.5

(日) (同) (E) (E) (E)

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Feature E	Estimation			

$$\mathbf{F} = \bigcup_{k=1}^{K} \left\{ f_k^{VI}, f_k^{VC}, \bigcup_{j \neq k}^{K} \left\{ f_{k,j}^{OI}, f_{k,j}^{OC} \right\} \right\}$$

• discretize the vocal interaction record using 200 ms frames

$$\mathbf{F} = \bigcup_{k=1}^{K} \left\{ f_k^{VI}, f_k^{VC}, \bigcup_{j \neq k}^{K} \left\{ f_{k,j}^{OI}, f_{k,j}^{OC} \right\} \right\}$$

• discretize the vocal interaction record using 200 ms frames

estimate features using maximum likelihood (ML)
probabilities with unseen conditioning contexts are set to 0.5

Introduction	Computational Framework	Data 00	Experiments	Conclusions
Feature E	Estimation			

$$\mathbf{F} = \bigcup_{k=1}^{K} \left\{ f_k^{VI}, f_k^{VC}, \bigcup_{j \neq k}^{K} \left\{ f_{k,j}^{OI}, f_{k,j}^{OC} \right\} \right\}$$

• discretize the vocal interaction record using 200 ms frames

estimate features using maximum likelihood (ML)

probabilities with unseen conditioning contexts are set to 0.5

イロト イポト イヨト イヨト

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Feature E	Estimation			

$$\mathbf{F} = \bigcup_{k=1}^{K} \left\{ f_k^{VI}, f_k^{VC}, \bigcup_{j \neq k}^{K} \left\{ f_{k,j}^{OI}, f_{k,j}^{OC} \right\} \right\}$$

• discretize the vocal interaction record using 200 ms frames

イロト イポト イヨト イヨト

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Feature E	Estimation			

$$\mathbf{F} = \bigcup_{k=1}^{K} \left\{ f_k^{VI}, f_k^{VC}, \bigcup_{j \neq k}^{K} \left\{ f_{k,j}^{OI}, f_{k,j}^{OC} \right\} \right\}$$

• discretize the vocal interaction record using 200 ms frames

• estimate features using maximum likelihood (ML)

probabilities with unseen conditioning contexts are set to 0.5

イロト イポト イヨト イヨト

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Feature E	Estimation			

$$\mathbf{F} = \bigcup_{k=1}^{K} \left\{ f_k^{VI}, f_k^{VC}, \bigcup_{j \neq k}^{K} \left\{ f_{k,j}^{OI}, f_{k,j}^{OC} \right\} \right\}$$

• discretize the vocal interaction record using 200 ms frames

estimate features using maximum likelihood (ML)

• probabilities with unseen conditioning contexts are set to 0.5

・ 同下 ・ ヨト ・ ヨト

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Feature E	Estimation			

$$\mathbf{F} = \bigcup_{k=1}^{K} \left\{ f_k^{VI}, f_k^{VC}, \bigcup_{j \neq k}^{K} \left\{ f_{k,j}^{OI}, f_{k,j}^{OC} \right\} \right\}$$

• discretize the vocal interaction record using 200 ms frames

• estimate features using maximum likelihood (ML)

• probabilities with unseen conditioning contexts are set to 0.5

向下 イヨト イヨト

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Feature E	Estimation			

$$\mathbf{F} = \bigcup_{k=1}^{K} \left\{ f_k^{VI}, f_k^{VC}, \bigcup_{j \neq k}^{K} \left\{ f_{k,j}^{OI}, f_{k,j}^{OC} \right\} \right\}$$

• discretize the vocal interaction record using 200 ms frames

- estimate features using maximum likelihood (ML)
- probabilities with unseen conditioning contexts are set to 0.5

Introduction	Computational Framework	Data	Experiments	Conclusions
	0000000			

- use a variant of a model from stochastic dynamics, the **Ising model** (Glauber, 1963)
- assume the conditional probability of vocal activity state transition, for each k

$$P(\mathbf{q}_{t+1}[k] = \mathcal{V} | \mathbf{q}_t = \mathbf{S}_i) = y_k(\mathbf{S}_i)$$

where

$$y_k(\mathbf{x}) = \frac{1}{1 + e^{-\beta \left(\sum_{j=1}^K w_{k,j} \times_j + b_k\right)}}$$

- not coincidentally, this is a one-layer neural network
- obviates the need for designing a back-off/smoothing strategy in ML estimation of features

Introduction	Computational Framework	Data	Experiments	Conclusions
	0000000			

- use a variant of a model from stochastic dynamics, the **Ising model** (Glauber, 1963)
- assume the conditional probability of vocal activity state transition, for each k

$$P(\mathbf{q}_{t+1}[k] = \mathcal{V} | \mathbf{q}_t = \mathbf{S}_i) = y_k(\mathbf{S}_i)$$

where

$$y_k(\mathbf{x}) = \frac{1}{1 + e^{-\beta \left(\sum_{j=1}^{K} w_{k,j} x_j + b_k\right)}}$$

- not coincidentally, this is a one-layer neural network
- obviates the need for designing a back-off/smoothing strategy in ML estimation of features

Introduction	Computational Framework	Data	Experiments	Conclusions
	0000000			

- use a variant of a model from stochastic dynamics, the Ising model (Glauber, 1963)
- assume the conditional probability of vocal activity state transition, for each k

$$P(\mathbf{q}_{t+1}[k] = \mathcal{V} | \mathbf{q}_t = \mathbf{S}_i) = y_k(\mathbf{S}_i)$$

where

$$y_k(\mathbf{x}) = \frac{1}{1 + e^{-\beta \left(\sum_{j=1}^{K} w_{k,j} \times_j + b_k\right)}}$$

• not coincidentally, this is a one-layer neural network

• obviates the need for designing a back-off/smoothing strategy in ML estimation of features

Introduction	Computational Framework	Data	Experiments	Conclusions
	0000000			

- use a variant of a model from stochastic dynamics, the Ising model (Glauber, 1963)
- assume the conditional probability of vocal activity state transition, for each k

$$P(\mathbf{q}_{t+1}[k] = \mathcal{V} | \mathbf{q}_t = \mathbf{S}_i) = y_k(\mathbf{S}_i)$$

where

$$y_k(\mathbf{x}) = \frac{1}{1 + e^{-\beta \left(\sum_{j=1}^{\kappa} w_{k,j} \times j + b_k\right)}}$$

- not coincidentally, this is a one-layer neural network
- obviates the need for designing a back-off/smoothing strategy in ML estimation of features

Introduction	Computational Framework	Data	Experiments	Conclusions
	0000000			

- use a variant of a model from stochastic dynamics, the Ising model (Glauber, 1963)
- assume the conditional probability of vocal activity state transition, for each k

$$P(\mathbf{q}_{t+1}[k] = \mathcal{V} | \mathbf{q}_t = \mathbf{S}_i) = y_k(\mathbf{S}_i)$$

where

$$y_k(\mathbf{x}) = \frac{1}{1 + e^{-\beta \left(\sum_{j=1}^{K} w_{k,j} x_j + b_k\right)}}$$

- not coincidentally, this is a one-layer neural network
- obviates the need for designing a back-off/smoothing strategy in ML estimation of features

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Behavior M	lodel			

• for each conversation type \mathcal{T} and each group \mathcal{G} , require the likelihood of **F** (as estimated from the observed vocal interaction record)

$$P(\mathbf{F} | \mathcal{G}, \mathcal{T}) = \prod_{k=1}^{K} P\left(f_{k}^{VI} | \theta_{T,\mathcal{G}[k]}^{VI}\right) P\left(f_{k}^{VC} | \theta_{T,\mathcal{G}[k]}^{VC}\right) \\ \times \prod_{j \neq k}^{K} P\left(f_{k,j}^{OI} | \theta_{T,\mathcal{G}[k],\mathcal{G}[j]}^{OI}\right) P\left(f_{k,j}^{OC} | \theta_{T,\mathcal{G}[k],\mathcal{G}[j]}^{OC}\right)$$

• each θ represents a single one-dimensional Gaussian mean μ and variance Σ pair

コント イヨン イヨン

Introduction	Computational Framework	Data oo	Experiments	Conclusions
Behavior M	lodel			

• for each conversation type \mathcal{T} and each group \mathcal{G} , require the likelihood of **F** (as estimated from the observed vocal interaction record)

$$P(\mathbf{F} | \mathcal{G}, \mathcal{T}) = \prod_{k=1}^{K} P\left(f_{k}^{VI} | \theta_{T,\mathcal{G}[k]}^{VI}\right) P\left(f_{k}^{VC} | \theta_{T,\mathcal{G}[k]}^{VC}\right) \\ \times \prod_{j \neq k}^{K} P\left(f_{k,j}^{OI} | \theta_{T,\mathcal{G}[k],\mathcal{G}[j]}^{OI}\right) P\left(f_{k,j}^{OC} | \theta_{T,\mathcal{G}[k],\mathcal{G}[j]}^{OC}\right)$$

• each θ represents a single one-dimensional Gaussian mean μ and variance Σ pair

4 B K 4 B K

Introduction	Computational Framework	Data 00	Experiments	Conclusions
Members	hip Model			

• for each conversation type ${\cal T},$ require the probability of group ${\cal G}$ (as hypothesized)

$$P(\mathcal{G} \mid \mathcal{T}) = \frac{1}{Z_{\mathcal{G}}} \prod_{k=1}^{K} P(\mathcal{G}[k] \mid \mathcal{T})$$

• $Z_{\mathcal{G}}$ is a normalization constant, $\sum_{N_{\mathcal{G}}} P\left(\mathcal{G} | \mathcal{T}
ight) = 1$

白 と く ヨ と く ヨ と

Introduction	Computational Framework	Data 00	Experiments	Conclusions
Members	hip Model			

for each conversation type *T*, require the probability of group *G* (as hypothesized)

$$P(\mathcal{G} \mid \mathcal{T}) = \frac{1}{Z_{\mathcal{G}}} \prod_{k=1}^{K} P(\mathcal{G}[k] \mid \mathcal{T})$$

• $Z_{\mathcal{G}}$ is a normalization constant, $\sum_{N_{\mathcal{G}}} P\left(\mathcal{G} | \mathcal{T}
ight) = 1$

.

Introduction	Computational Framework	Data ●○	Experiments	Conclusions

The ICSI Meeting Corpus

(Janin et al, 2003), (Shriberg et al, 2004)

- naturally occurring project-oriented conversations
- for our purposes, 4 types of longitudinal collections:

- "other" contains types of which there are ≤3 meetings
- rarely, meetings contain additional, uninstrumented participants (whose contributions we ignore)

- 4 同 5 - 4 日 5 - 4 日

Introduction	Computational Framework	Data ●○	Experiments	Conclusions
The ICSI	Meeting Corpus			

- naturally occurring project-oriented conversations
- for our purposes, 4 types of longitudinal collections:

- "other" contains types of which there are \leq 3 meetings
- rarely, meetings contain additional, uninstrumented participants (whose contributions we ignore)

(4) (3) (4) (4) (4)

Introduction	Computational Framework	Data ●○	Experiments	Conclusions		
The ICSI Meeting Corpus						

- naturally occurring project-oriented conversations
- for our purposes, 4 types of longitudinal collections:

type	# of	# of possible $\#$ of partic		partici	pants
type	meetings	participants	mod	min	max
Bed	15	13	6	4	7
Bmr	29	15	7	3	9
Bro	23	10	6	4	8
other	8	27	6	5	8

● "other" contains types of which there are ≤3 meetings

 rarely, meetings contain additional, uninstrumented participants (whose contributions we ignore)

(3)

Introduction	Computational Framework	Data ●○	Experiments	Conclusions		
The ICSI Meeting Corpus						

- naturally occurring project-oriented conversations
- for our purposes, 4 types of longitudinal collections:

type	# of	# of possible $\#$ of partic		partici	pants
type	meetings	participants	mod	min	max
Bed	15	13	6	4	7
Bmr	29	15	7	3	9
Bro	23	10	6	4	8
other	8	27	6	5	8

- "other" contains types of which there are ≤3 meetings
- rarely, meetings contain additional, uninstrumented participants (whose contributions we ignore)

Introduction	Computational Framework	Data ●○	Experiments	Conclusions	
The ICSI Meeting Corpus					

- naturally occurring project-oriented conversations
- for our purposes, 4 types of longitudinal collections:

type	# of	# of possible $\#$ of partic		partici	pants
type	meetings	participants	mod	min	max
Bed	15	13	6	4	7
Bmr	29	15	7	3	9
Bro	23	10	6	4	8
other	8	27	6	5	8

- "other" contains types of which there are \leq 3 meetings
- rarely, meetings contain additional, uninstrumented participants (whose contributions we ignore)

Introduction	Computational Framework	Data ○●	Experiments	Conclusions
Differences	Between Meeting ⁻	Fypes		

• 36-minute excerpts (from 1000 sec to 2000 sec)

Introduction	Computational Framework	Data oo	Experiments ●○○	Conclusions
Baseline				

- use inclusive-OR of "talk-spurt" (Shriberg et al, 2001) and "laugh-bout" (Laskowski & Burger, 2007) segmentations
- compute a single feature f^I_k: vocalizing time proportion
 employed for assessing speaker diarization performance (Jin et al., 2004). (Mirghafori & Wooters, 2006)
 e continue (Hamed of speaker diarization distribution across speaker)
- leave-one-out classification

- cluster participants for training the behavior model
- accuracy: 65.7% (random guessing: 43%)

() < </p>

Introduction	Computational Framework	Data 00	Experiments ●○○	Conclusions
Baseline				

- use inclusive-OR of "talk-spurt" (Shriberg et al, 2001) and "laugh-bout" (Laskowski & Burger, 2007) segmentations
- compute a single feature f_k^T : vocalizing time proportion
 - employed for assessing speaker diarization performance (Jin et al, 2004), (Mirghafori & Wooters, 2006)
 - captures "flatness" of speaking-time distribution across speakers
- leave-one-out classification

- cluster participants for training the behavior model
- accuracy: 65.7% (random guessing: 43%)

Introduction	Computational Framework	Data 00	Experiments ●○○	Conclusions
Baseline				

- use inclusive-OR of "talk-spurt" (Shriberg et al, 2001) and "laugh-bout" (Laskowski & Burger, 2007) segmentations
- compute a single feature f_k^T : vocalizing time proportion
 - employed for assessing speaker diarization performance (Jin et al, 2004), (Mirghafori & Wooters, 2006)
 - captures "flatness" of speaking-time distribution across speakers
- leave-one-out classification
 - train on 65 meetings, test on 1 meeting, rotate
 - too little data for a true, unseen evaluation set
- cluster participants for training the behavior model
- accuracy: 65.7% (random guessing: 43%)

Introduction	Computational Framework	Data 00	Experiments ●○○	Conclusions
Baseline				

- use inclusive-OR of "talk-spurt" (Shriberg et al, 2001) and "laugh-bout" (Laskowski & Burger, 2007) segmentations
- compute a single feature f_k^T : vocalizing time proportion
 - employed for assessing speaker diarization performance (Jin et al, 2004), (Mirghafori & Wooters, 2006)
 - captures "flatness" of speaking-time distribution across speakers
- leave-one-out classification
 - train on 65 meetings, test on 1 meeting, rotate
 - too little data for a true, unseen evaluation set
- cluster participants for training the behavior model
- accuracy: 65.7% (random guessing: 43%)

() < </p>

Introduction	Computational Framework	Data 00	Experiments ●○○	Conclusions
Baseline				

- use inclusive-OR of "talk-spurt" (Shriberg et al, 2001) and "laugh-bout" (Laskowski & Burger, 2007) segmentations
- compute a single feature f_k^T : vocalizing time proportion
 - employed for assessing speaker diarization performance (Jin et al, 2004), (Mirghafori & Wooters, 2006)
 - captures "flatness" of speaking-time distribution across speakers
- leave-one-out classification
 - train on 65 meetings, test on 1 meeting, rotate
 - too little data for a true, unseen evaluation set
- cluster participants for training the behavior model
 - o side-effect: renders impact of membership model negligible
- accuracy: 65.7% (random guessing: 43%)

向下 イヨト イヨ
Introduction	Computational Framework	Data 00	Experiments ●○○	Conclusions
Baseline				

- use inclusive-OR of "talk-spurt" (Shriberg et al, 2001) and "laugh-bout" (Laskowski & Burger, 2007) segmentations
- compute a single feature f_k^T : vocalizing time proportion
 - employed for assessing speaker diarization performance (Jin et al, 2004), (Mirghafori & Wooters, 2006)
 - captures "flatness" of speaking-time distribution across speakers
- leave-one-out classification
 - train on 65 meetings, test on 1 meeting, rotate
 - too little data for a true, unseen evaluation set
- cluster participants for training the behavior model

side-effect: renders impact of membership model negligible.

accuracy: 65.7% (random guessing: 43%)

Introduction	Computational Framework	Data 00	Experiments ●○○	Conclusions
Baseline				

- use inclusive-OR of "talk-spurt" (Shriberg et al, 2001) and "laugh-bout" (Laskowski & Burger, 2007) segmentations
- compute a single feature f_k^T : vocalizing time proportion
 - employed for assessing speaker diarization performance (Jin et al, 2004), (Mirghafori & Wooters, 2006)
 - captures "flatness" of speaking-time distribution across speakers
- leave-one-out classification
 - train on 65 meetings, test on 1 meeting, rotate
 - too little data for a true, unseen evaluation set
- cluster participants for training the behavior model
 - side-effect: renders impact of membership model negligible
- accuracy: 65.7% (random guessing: 43%)

Introduction	Computational Framework	Data 00	Experiments ●○○	Conclusions
Baseline				

- use inclusive-OR of "talk-spurt" (Shriberg et al, 2001) and "laugh-bout" (Laskowski & Burger, 2007) segmentations
- compute a single feature f_k^T : vocalizing time proportion
 - employed for assessing speaker diarization performance (Jin et al, 2004), (Mirghafori & Wooters, 2006)
 - captures "flatness" of speaking-time distribution across speakers
- leave-one-out classification
 - train on 65 meetings, test on 1 meeting, rotate
 - too little data for a true, unseen evaluation set
- cluster participants for training the behavior model
 - side-effect: renders impact of membership model negligible

accuracy: 65.7% (random guessing: 43%)

(4月) (4日) (4日)

Introduction	Computational Framework	Data 00	Experiments ●○○	Conclusions
Baseline				

- use inclusive-OR of "talk-spurt" (Shriberg et al, 2001) and "laugh-bout" (Laskowski & Burger, 2007) segmentations
- compute a single feature f_k^T : vocalizing time proportion
 - employed for assessing speaker diarization performance (Jin et al, 2004), (Mirghafori & Wooters, 2006)
 - captures "flatness" of speaking-time distribution across speakers
- leave-one-out classification
 - train on 65 meetings, test on 1 meeting, rotate
 - too little data for a true, unseen evaluation set
- cluster participants for training the behavior model
 - side-effect: renders impact of membership model negligible
- accuracy: 65.7% (random guessing: 43%)

向下 イヨト イヨト

Introduction	Computational Framework	Data 00	Experiments	Conclusions

Feature(s)	ML Esti	ML Estimation		NN Estimation	
reactive(3)	w/o $f_k^{\ \prime}$	w/ f_k^I	w/o f_k^{I}	w/ f_k^I	
baseline	—	65.7	—	65.7	
f_k^{VI}	59.7	67.2	56.7	65.7	
f_k^{VC}	62.7	77.6	56.7	71.6	
$\langle f_{k,i}^{OI} \rangle_i$	35.8	52.2	64.2	67.2	
$\langle f_{k,i}^{OC} \rangle_i$	53.7	67.2	64.2	80.6	
$f_{k,i}^{Oi}$	41.8	46.3	67.2	64.2	
$f_{k,j}^{OC}$	61.2	68.7	73.1	79.1	

4

э

< ≣ >

Introduction	Computational Framework	Data 00	Experiments	Conclusions

Feature(s)	ML Estimation		NN Estimation	
r cature(3)	w/o f_k^{I}	w/ f_k^I	w/o f_k^I	w/ f_k^I
baseline	—	65.7		65.7
f_k^{VI}	59.7	67.2	56.7	65.7
f_k^{VC}	62.7	77.6	56.7	71.6
$\langle \hat{f}_{k,i}^{OI} \rangle_{i}$	35.8	52.2	64.2	67.2
$\langle f_{k,i}^{OC} \rangle_i$	53.7	67.2	64.2	80.6
$f_{k,i}^{Oi}$	41.8	46.3	67.2	64.2
$f_{k,j}^{OC}$	61.2	68.7	73.1	79.1

• the baseline feature f_k^T outperforms most other features

Introduction	Computational Framework	Data 00	Experiments	Conclusions

Feature(s)	ML Esti	ML Estimation		NN Estimation	
reactive(3)	w/o $f_k^{\ \prime}$	w/ f_k^I	w/o f_k^{I}	w/ f_k^I	
baseline	—	65.7	—	65.7	
f_k^{VI}	59.7	67.2	56.7	65.7	
f_k^{VC}	62.7	77.6	56.7	71.6	
$\langle f_{k,j}^{OI} \rangle_{j}$	35.8	52.2	64.2	67.2	
$\langle f_{k,i}^{OC} \rangle_i$	53.7	67.2	64.2	80.6	
$f_{k,j}^{OI}$	41.8	46.3	67.2	64.2	
$f_{k,j}^{OC}$	61.2	68.7	73.1	79.1	

• by themselves, specific participant-pair features outperform each participant's average participant-pair features

Introduction	Computational Framework	Data 00	Experiments	Conclusions

Feature(s)	ML Estimation		NN Estimation	
r cature(3)	w/o $f_k^{\ \prime}$	w/ f_k^I	w/o f_k^{I}	w/ f_k^I
baseline	—	65.7	—	65.7
f_k^{VI}	59.7	67.2	56.7	65.7
f_k^{VC}	62.7	77.6	56.7	71.6
$\langle f_{k,j}^{OI} \rangle_{i}$	35.8	52.2	64.2	67.2
$\langle f_{k,i}^{OC} \rangle_i$	53.7	67.2	64.2	80.6
$f_{k,i}^{OI}$	41.8	46.3	67.2	64.2
$f_{k,j}^{OC}$	61.2	68.7	73.1	79.1

• most features, when combined with f_k^T , lead to improved performance

(B) (B)

Introduction	Computational Framework	Data 00	Experiments	Conclusions

Feature(s)	ML Estimation		NN Estimation	
reactive(3)	w/o $f_k^{\ \prime}$	w/ f_k^I	w/o f_k^{I}	w/ f_k^I
baseline	—	65.7	—	65.7
f_k^{VI}	59.7	67.2	56.7	65.7
f_k^{VC}	62.7	77.6	56.7	71.6
$\langle \hat{f}_{k,j}^{OI} \rangle_{j}$	35.8	52.2	64.2	67.2
$\langle f_{k,i}^{OC} \rangle_i$	53.7	67.2	64.2	80.6
$f_{k,i}^{Oi}$	41.8	46.3	67.2	64.2
$f_{k,j}^{OC}$	61.2	68.7	73.1	79.1

- all NN-estimated features together yield 82.1%
- an optimal NN-estimated feature subset (forward selection) yields 83.6%

Introduction	Computational Framework	Data 00	Experiments	Conclusions

Feature(s)	ML Estimation		NN Estimation	
reactive(3)	w/o $f_k^{\ \prime}$	w/ f_k^I	w/o f_k^{I}	w/ f_k^I
baseline	—	65.7	—	65.7
f_k^{VI}	59.7	67.2	56.7	65.7
f_k^{VC}	62.7	77.6	56.7	71.6
$\langle \hat{f}_{k,j}^{OI} \rangle_{j}$	35.8	52.2	64.2	67.2
$\langle f_{k,i}^{OC} \rangle_i$	53.7	67.2	64.2	80.6
$f_{k,i}^{Oi}$	41.8	46.3	67.2	64.2
$f_{k,j}^{OC}$	61.2	68.7	73.1	79.1

- all NN-estimated features together yield 82.1%
- an optimal NN-estimated feature subset (forward selection) yields **83.6%**

Introduction	Computational Framework	Data 00	Experiments ○○●	Conclusions
Discussion				

Estimated	Actual Type			
LStimated	Bed	\mathtt{Bmr}	Bro	
Bed	11	1	3	
Bmr	2	26	1	
Bro	3	1	19	

- Bmr (discussions among peers) is the most distinct type
- Bed and Bro (both more structured meetings) are more similar to each other than to Bmr
- miss-classification pattern reflects intuition

回 と く ヨ と く ヨ と

Introduction	Computational Framework	Data 00	Experiments ○○●	Conclusions
Discussion				

Estimated	Actual Type			
LStimated	Bed	\mathtt{Bmr}	Bro	
Bed	11	1	3	
\mathtt{Bmr}	2	26	1	
Bro	3	1	19	

- Bmr (discussions among peers) is the most distinct type
- Bed and Bro (both more structured meetings) are more similar to each other than to Bmr
- miss-classification pattern reflects intuition

Introduction	Computational Framework	Data 00	Experiments ○○●	Conclusions
Discussion				

Estimated	Actual Type			
LStimated	Bed	\mathtt{Bmr}	Bro	
Bed	11	1	3	
\mathtt{Bmr}	2	26	1	
Bro	3	1	19	

- Bmr (discussions among peers) is the most distinct type
- Bed and Bro (both more structured meetings) are more similar to each other than to Bmr
- miss-classification pattern reflects intuition

Introduction	Computational Framework	Data 00	Experiments ○○●	Conclusions
Discussion				

Estimated	Ac	Actual Type		
LStimated	Bed	\mathtt{Bmr}	Bro	
Bed	11	1	3	
Bmr	2	26	1	
Bro	3	1	19	

- Bmr (discussions among peers) is the most distinct type
- Bed and Bro (both more structured meetings) are more similar to each other than to Bmr
- miss-classification pattern reflects intuition

Introduction	Computational Framework	Data 00	Experiments	Conclusions ●○○
Conclusio	ons			

• classification paradigm with several novel elements:

- exclusively text-independent features, from vocal interaction patterns
- Participant groups, allowing for modeling multi-participant behaviors
- \bigcirc Ising model assumption of C transition probabilities
- meeting sub-type classification accuracy: 83%
- relative error reduction of 52% over the baseline
- (specific) multi-participant interaction features play a large role in this improvement

(4回) (4回) (4回)

Introduction	Computational Framework	Data 00	Experiments	Conclusions ●○○
Conclusio	ons			

- classification paradigm with several novel elements:
 - exclusively text-independent features, from vocal interaction patterns
 - participant groups, allowing for modeling multi-participant behaviors
 - Ising model assumption of C transition probabilities
- meeting sub-type classification accuracy: 83%
- relative error reduction of 52% over the baseline
- (specific) multi-participant interaction features play a large role in this improvement

(不同) とうり くうり

Introduction	Computational Framework	Data 00	Experiments	Conclusions ●○○
Conclusio	ons			

- classification paradigm with several novel elements:
 - exclusively text-independent features, from vocal interaction patterns
 - Participant groups, allowing for modeling multi-participant behaviors
 - \bigcirc Ising model assumption of $\mathcal C$ transition probabilities
- meeting sub-type classification accuracy: 83%
- relative error reduction of 52% over the baseline
- (specific) multi-participant interaction features play a large role in this improvement

- 4 回 2 - 4 三 2 - 4 三 2

Introduction	Computational Framework	Data 00	Experiments	Conclusions ●○○
Conclusio	ons			

- classification paradigm with several novel elements:
 - exclusively text-independent features, from vocal interaction patterns
 - Participant groups, allowing for modeling multi-participant behaviors
 - 3 Ising model assumption of $\mathcal C$ transition probabilities
- meeting sub-type classification accuracy: 83%
- relative error reduction of 52% over the baseline
- (specific) multi-participant interaction features play a large role in this improvement

Introduction	Computational Framework	Data 00	Experiments	Conclusions ●○○
Conclusio	ons			

- classification paradigm with several novel elements:
 - exclusively text-independent features, from vocal interaction patterns
 - Participant groups, allowing for modeling multi-participant behaviors
 - 3 Ising model assumption of $\mathcal C$ transition probabilities
- meeting sub-type classification accuracy: 83%
- relative error reduction of 52% over the baseline
- (specific) multi-participant interaction features play a large role in this improvement

(人間) とうり くうり

Introduction	Computational Framework	Data 00	Experiments	Conclusions ●○○
Conclusio	ons			

- classification paradigm with several novel elements:
 - exclusively text-independent features, from vocal interaction patterns
 - Participant groups, allowing for modeling multi-participant behaviors
 - 3 Ising model assumption of $\mathcal C$ transition probabilities
- meeting sub-type classification accuracy: 83%
- relative error reduction of 52% over the baseline
- (specific) multi-participant interaction features play a large role in this improvement

- 4 回 ト 4 ヨ ト 4 ヨ ト

Introduction	Computational Framework	Data 00	Experiments	Conclusions ●○○
Conclusio	ons			

- classification paradigm with several novel elements:
 - exclusively text-independent features, from vocal interaction patterns
 - Participant groups, allowing for modeling multi-participant behaviors
 - 3 Ising model assumption of $\mathcal C$ transition probabilities
- meeting sub-type classification accuracy: 83%
- relative error reduction of 52% over the baseline
- (specific) multi-participant interaction features play a large role in this improvement

・ 同下 ・ ヨト ・ ヨト

Introduction	Computational Framework	Data oo	Experiments	Conclusions ○●○
Future W	/ork			

• use automatic, rather than manual, segmentation

- include verbal (words, DAs) features
- explore the dual problem of role/participant detection:

$$\begin{aligned} \mathcal{G}^* &= \arg \max_{\mathcal{G}} P(\mathcal{G} | \mathbf{F}) \\ &= \arg \max_{\mathcal{G}} \sum_{\mathcal{T}} P(\mathcal{G}, \mathcal{T}, \mathbf{F}) \\ &= \arg \max_{\mathcal{G}} \sum_{\mathcal{T}} P(\mathcal{T}) \times P(\mathcal{G} | \mathcal{T}) \times P(\mathbf{F} | \mathcal{G}, \mathcal{T}) \end{aligned}$$

回 と く ヨ と く ヨ と

Introduction	Computational Framework	Data 00	Experiments 000	Conclusions ○●○
Future W	ork			

- use automatic, rather than manual, segmentation
- include verbal (words, DAs) features
- explore the dual problem of role/participant detection:

$$\begin{aligned} \mathcal{J}^* &= \arg \max_{\mathcal{G}} P(\mathcal{G} | \mathbf{F}) \\ &= \arg \max_{\mathcal{G}} \sum_{\mathcal{T}} P(\mathcal{G}, \mathcal{T}, \mathbf{F}) \\ &= \arg \max_{\mathcal{G}} \sum_{\mathcal{T}} P(\mathcal{T}) \times P(\mathcal{G} | \mathcal{T}) \times P(\mathbf{F} | \mathcal{G}, \mathcal{T}) \end{aligned}$$

• • = • • = •

Introduction	Computational Framework	Data 00	Experiments	Conclusions ○●○
Future W	/ork			

- use automatic, rather than manual, segmentation
- include verbal (words, DAs) features
- explore the dual problem of role/participant detection:

$$\begin{aligned} \mathcal{G}^* &= \arg \max_{\mathcal{G}} P(\mathcal{G} | \mathbf{F}) \\ &= \arg \max_{\mathcal{G}} \sum_{\mathcal{T}} P(\mathcal{G}, \mathcal{T}, \mathbf{F}) \\ &= \arg \max_{\mathcal{G}} \sum_{\mathcal{T}} P(\mathcal{T}) \times P(\mathcal{G} | \mathcal{T}) \times P(\mathbf{F} | \mathcal{G}, \mathcal{T}) \end{aligned}$$

Introduction	Computational Framework	Data oo	Experiments	Conclusions ○○●
Thanks!				

We'd also like to thank:

- Liz Shriberg
 - lots of helpful discussion
 - access to the ICSI MRDA annotation
- CHIL project for funding

2

- E