Introduction	FFV Representation	Applicability	Experiments	Conclusion

A General-Purpose 32 ms Prosodic Vector for Hidden Markov Modeling

Kornel Laskowski^{1,2}, Mattias Heldner³ & Jens Edlund³

¹Carnegie Mellon University, Pittsburgh PA, USA
 ²Universität Karlsruhe, Karlsruhe, Germany
 ³KTH — Royal Institute of Technology, Stockholm, Sweden

8 September, 2008

Introduction ●○○○	FFV Representation	Applicability 0000	Experiments 00000	Conclusion
Imagine y	ou had			

- a local representation of tone
 - estimated from a single ASR-size analysis frame
- which would not require:
 - prior determination of voicing
 - speaker normalization
- with separable codeword clusters for
 - absence of voicing
 - presence of voicing, constant F_0
 - presence of voicing, falling F_0 , with rate of change
 - presence of voicing, rising F_0 , with rate of change

Introduction ○●○○	FFV Representation	Applicability	Experiments 00000	Conclusion

Then you could do lots of things cheaply ...

Examples include:

- online prosodic modeling
- improved ASR for tonal languages
- enriched ASR for other languages
 - contrastive phone models
 - variously accented same-word lexicon entries
 - (word-conditioned) prosodic phrasing for free

Introduction ○○●○	FFV Representation	Applicability 0000	Experiments 00000	Conclusion
Instead, o	currently you nee	ed to		

1 run a pitch tracker, which

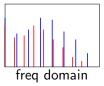
- computes a local estimate of voicing and of pitch
- applies dynamic programming over a long observation time

heuristically correct its output, by

- pruning outliers, based on long-observation-time trends, and/or
- 2 applying a piecewise linear approximation
- **o normalize for the speaker**, by
 - O determining a long-observation-time speaker norm
 - ② applying the normalization to each frame
- treat unvoiced regions by
 - interpolating inside them, or
 - posting exceptions in downstream modeling/handling
- Sompute a first-order log-difference

Introduction ○○○●	FFV Representation	Applicability	Experiments	Conclusion
What we w	ill present			

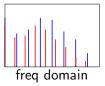
- Fundamental Frequency Variation (FFV)
- Applicability of the FFV Representation
 - speaker change prediction
 - speaker classification
 - dialog act classification
- Several Basic Questions
 - feature transformation
 - feature regularization
 - concatenation with other features
 - runtime improvements
 - acoustic model complexity


Summary

Introduction	FFV Representation	Applicability	Experiments	Conclusion
	0000			

- estimate the FFV spectrum $\mathbf{g}\left[
 ho
 ight]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values

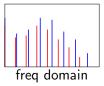
time domain


- pass $\mathbf{g}\left(
 ho
 ight)$ through a filterbank to yield $\mathbf{G}\in\mathbb{R}^7$
- decorrelate G

Introduction	FFV Representation	Applicability	Experiments	Conclusion
	0000			

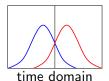
- estimate the FFV spectrum $\mathbf{g}\left[
 ho
 ight]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values

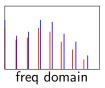
time domain


- pass $\mathbf{g}\left(
 ho
 ight)$ through a filterbank to yield $\mathbf{G}\in\mathbb{R}^{7}$
- decorrelate G

Introduction	FFV Representation	Applicability	Experiments	Conclusion
	0000			

- estimate the FFV spectrum $\mathbf{g}\left[
 ho
 ight]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values

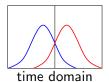

time domain

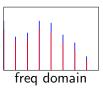


- pass $\mathbf{g}(
 ho)$ through a filterbank to yield $\mathbf{G} \in \mathbb{R}^7$
- decorrelate G

Introduction	FFV Representation	Applicability	Experiments	Conclusion
	0000			

- estimate the FFV spectrum $\mathbf{g}\left[
 ho
 ight]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values





- pass ${f g}\left(
 ho
 ight)$ through a filterbank to yield ${f G}\in {\Bbb R}^7$
- decorrelate G

Introduction	FFV Representation ●○○○	Applicability	Experiments	Conclusion

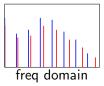
- estimate the FFV spectrum $\mathbf{g}\left[
 ho
 ight]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values


- pass ${f g}\left(
 ho
 ight)$ through a filterbank to yield ${f G}\in {\Bbb R}^7$
- decorrelate G

Introduction	FFV Representation	Applicability	Experiments	Conclusion
	0000			

- estimate the FFV spectrum $\mathbf{g}\left[
 ho
 ight]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values

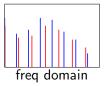
time domain


- pass $\mathbf{g}\left(
 ho
 ight)$ through a filterbank to yield $\mathbf{G}\in\mathbb{R}^7$
- decorrelate G

Introduction	FFV Representation	Applicability	Experiments	Conclusion
	0000			

- estimate the FFV spectrum $\mathbf{g}\left[
 ho
 ight]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values

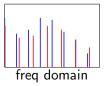
time domain


- pass $\mathbf{g}\left(
 ho
 ight)$ through a filterbank to yield $\mathbf{G}\in\mathbb{R}^7$
- decorrelate G

Introduction	FFV Representation	Applicability	Experiments	Conclusion
	0000			

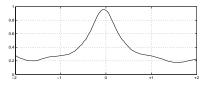
- estimate the FFV spectrum $\mathbf{g}[\rho]$
 - estimate the power spectra \mathbf{F}_{L} and \mathbf{F}_{R}
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_{L}
 - repeat for a continuum of ρ values

time domain



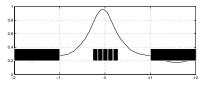
Introduction	FFV Representation	Applicability	Experiments	Conclusion
	0000			

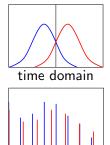
- estimate the FFV spectrum $\mathbf{g}\left[
 ho
 ight]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values


time domain

- pass $\mathbf{g}(\rho)$ through a filterbank to yield $\mathbf{G} \in \mathbb{R}^7$
- decorrelate G

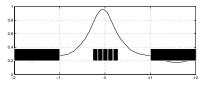
- estimate the FFV spectrum $\mathbf{g}[\rho]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_R by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values

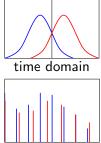




- pass $\mathbf{g}\left(
 ho
 ight)$ through a filterbank to yield $\mathbf{G}\in\mathbb{R}^7$
- decorrelate G

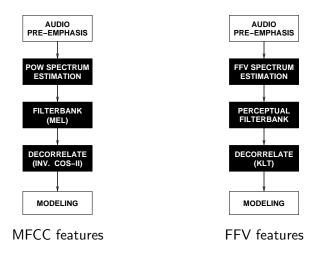
- estimate the FFV spectrum $\mathbf{g}[\rho]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_{R} by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values

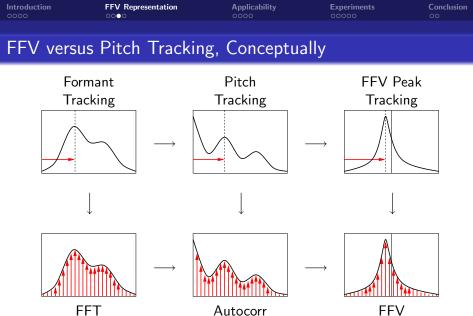




pass g (ρ) through a filterbank to yield G ∈ ℝ⁷
 decorrelate G

- estimate the FFV spectrum $\mathbf{g}[\rho]$
 - estimate the power spectra F_L and F_R
 - dilate \mathbf{F}_{R} by a factor 2^{ρ} , $\rho > 0$
 - dot product with undilated F_L
 - $\bullet\,$ repeat for a continuum of $\rho\,$ values




freq domain

- pass $\mathbf{g}(
 ho)$ through a filterbank to yield $\mathbf{G} \in \mathbb{R}^7$
- decorrelate **G**

Introduction	FFV Representation	Applicability	Experiments	Conclusion
	0000			

Comparison with MFCC Computation

Spectrum

Autocorr

Spectrum

Introduction	FFV Representation	Applicability	Experiments	Conclusion
0000	○○○●	0000	00000	00
Related V	Vork			

- well-established pitch processing & modeling techniques
 - e.g., Shriberg & Stolcke, "Direct modeling of prosody: An overview of applications in automatic speech processing", *Speech Prosody 2004*.
- similar in purpose to $\Delta \log F_0$ from cepstra
 - K. Iwano et al, "Noise robust speech recognition using F₀ contour extracted by Hough transform", *ICSLP 2002*.
- algorithmically similar, for different task
 - P. Martin, "A fundamental frequency estimator by crosscorrelation of adjacent spectra", *Speech Prosody 2008*.

Introduction	FFV Representation	Applicability ●○○○	Experiments	Conclusion

FFV for Speaker Change Prediction (ICASSP 2008)

- CONTEXT: Swedish Map Task (GIVER and FOLLOWER)
- AUDIO: 16kHz, close-talk, anechoic-chamber
- GIVEN: 500ms of speech at end-of-talkspurt, by GIVER
- TASK: predict whether GIVER will be next to speak

• FINDINGS:

- **Q** expected: GIVER appears to employ flat pitch to hold floor
- Isignificantly outperm state-of-the-art pause-only system
- ML classifier outperforms a manually constructed state-of-the-art decision tree, which additionally uses pitch range information

Introduction	FFV Representation	Applicability ○●○○	Experiments	Conclusion
FFV for S	Speaker Classific	ation (ICASSP	2009)	

- **CONTEXT:** read WSJ + some spontaneous utterances
- AUDIO: 16kHz, close-talk
- GIVEN: 1 minute interval of speech
- TASK: classify which of 100 people is the speaker

• FINDINGS:

- modeling speaker-dependent "intonation contour bias"
- or model-space combination with MFCC features reduces error rates by > 40%rel

Introduction	FFV Representation	Applicability	Experiments	Conclusion
		0000		

FFV for Floor Mechanism Classification (EUSIPCO 2009)

- CONTEXT: naturally occurring meetings, American English
- AUDIO: 16kHz, close-talk, lots of crosstalk
- GIVEN: manually determined 500ms at beg-/end-of-talkspurt
- TASK: classify whether a floor mechanism or other DA type

FINDINGS:

- Ifat pitch at the beginning of floor mechanism talk
- Islower speech at the end of floor mechanism talk

Introduction	FFV Representation	Applicability ○○○●	Experiments	Conclusion
Basic but R	elevant Question	าร		

- What are the effects of feature transformation?
- What are the effects of feature regularization?
- What are the effects of feature combination?
- On we reduce the computation time?
- What are the effects of higher model complexity?

Will try to answer using classification accuracy and ROC area

- HMM log-likelihood-ratio classifier, 4 states, 1 Gaussian each
- task: floor DA type versus other DA type, balanced
- averaged over 4 individual context subtasks

Introduction	FFV Representation	Applicability	Experiments ●○○○○	Conclusion
Feature 7	Fransformation			

• compare raw features with

- global-Z-transformed features
- global-PCA-rotated features

System		Acc	ROC
1	Baseline	64.8	71.5
2a	Z-Transform	65.7	73.8
2b	PCA Rotation	67.8	74.8

- feature transformation can be beneficial
- an optimal transform may be task- and audio- dependent

Introduction	FFV Representation	Applicability	Experiments •••••	Conclusion
Feature R	egularization			

• replace response of 5 center filters with best parabolic fit

System		Acc	ROC
2b	New Baseline	67.8	74.8
3	Quadratic Fit	68.9	76.7

- the parabolic projection and application of the filterbank are linear operations
- tantamount to applying a modified filterbank
- an optimal filterbank may be task- and audio- dependent

Introduction	FFV Representation	Applicability	Experiments ○○●○○	Conclusion
Feature (Combination			

• concatenate with 5 "auxiliary" correlates of prosodic features:

- log energy (loudness)
- delta log energy (change in loudness)
- normalized autocorrelation maximum (probability of voicing)
- Mel-spectral flux (speaking rate)
- log-Mel-spectral flux (speaking rate)

System		Acc	ROC
3	New Baseline	68.9	76.7
4a	Auxiliary Features	64.8	71.3
4b	Combination	69.6	77.6

• FFV features are complimentary to non-pitch prosodic features

Introduction	FFV Representation	Applicability	Experiments ○○○●○	Conclusion
Runtime	Improvements			

- most costly: extremity filter computation
- reduce support of extremity filters by a factor of >5

System		Acc	ROC
	New Baseline	69.6	77.6
5a	Exclusion of Extremity Filters	69.1	77.0
5b	Improvement of Extremity Filters	70.5	78.9

- \bullet runtime decreased by a factor of $\approx\!\!5,$ to $0.27\times$ at 2.5GHz
- unexpectedly: accuracy improvement also

Introduction	FFV Representation	Applicability	Experiments ○○○○●	Conclusion
GMM Mod	el Complexity			

- increase number of HMM states from 4
- \bullet increase number of Gaussians per HMM state from 1

System		Acc	ROC
5b New Baseline		70.5	78.9
6	4 states, 2 Gaussians	71.7	80.3
7a	8 states, 1 Gaussian	71.3	79.4
7b	8 states, 2 Gaussians	73.0	81.5
7c	8 states, 3 Gaussians	73.3	82.4

- increasing model complexity helps
- appears to be a function of amount of data

Introduction	FFV Representation	Applicability	Experiments	Conclusion
				0

Overview of Numerical Results

Syst	tem	Acc	ROC
1	Baseline	64.8	71.5
2a	Z-Transform	65.7	73.8
2b	PCA Rotation	67.8	74.8
3	Quadratic Fit	68.9	76.7
4b	Combination with Auxiliary Features	69.6	77.6
5b	Improvement of Extremity Filters	70.5	78.9
6	4 states, 2 Gaussians	71.7	80.3
7b	8 states, 2 Gaussians	73.0	81.5
7c	8 states, 3 Gaussians	73.3	82.4
Relative reduction of error, %			38.3

Introduction	FFV Representation	Applicability	Experiments	Conclusion
				00

A General-Purpose 32 ms Prosodic Vector for Hidden Markov Modeling

• "32 ms Prosodic Vector"

- a short-time continuous representation of variation in F_0
- can be combined with standard short-time features

General-Purpose"

• applicability across multiple tasks

• "for Hidden Markov Modeling"

- feature transformation and regularization are helpful
- performance improves as model complexity increases
- real-time factor is 0.27

normative implementation

• www.cs.cmu.edu/~kornel/software.html