Introduction	Data	Analysis	Conclusions

Analysis of the Occurrence of Laughter in Meetings

Kornel Laskowski^{1,2} & Susanne Burger²

¹interACT, Universität Karlsruhe ²interACT, Carnegie Mellon University

August 29, 2007

Introduction ●○○○	Data 0000	Analysis 000000	Conclusions
Introduction			

ㅋㅋ ㅋ

Introduction ●○○○	Data 0000	Analysis 000000	Conclusions
Introduction			

verbal vocalization

Introduction ●○○○	Data 0000	Analysis 000000	Conclusions
Introduction			

Э.

< E.

Introduction ●○○○	Data 0000	Analysis 000000	Conclusions
Introduction			

2

Introduction ●○○○	Data 0000	Analysis 000000	Conclusions
Introduction			

Introduction ●○○○	Data 0000	Analysis 000000	Conclusions
Introduction			

글 🕨 🖂 🖻

Introduction ●○○○	Data 0000	Analysis 000000	Conclusions
Introduction			

< ∃⇒

___>

Introduction ●○○○	Data 0000	Analysis 000000	Conclusions
Introduction			

< ∃⇒

< 🗇 🕨

→ Ξ →

Introduction ●○○○	Data 0000	Analysis 000000	Conclusions

• primary motivation: meeting understanding

A 3 b

< 🗇 > < 🗆 >

Introduction	Data	Analysis	Conclusions
●○○○	0000	000000	

• primary motivation: meeting understanding

4 E b

-

< 🗇 🕨

Introduction Dat	a Analysis	Conclusions
000 000		

• primary motivation: meeting understanding

___>

-

Introduction	Data	Analysis	Conclusions
●○○○	0000	000000	

• primary motivation: meeting understanding

___>

3

Introduction	Data	Analysis	Conclusions
0000			

• primary motivation: meeting understanding

3

Introduction	Data	Analysis	Conclusions
●○○○	0000	000000	

• primary motivation: meeting understanding

 laughter detection is particularly important for understanding both interaction and emotion if laughter occurs frequently

Introduction	Data	Analysis	Conclusions
0000	0000	000000	00

• primary motivation: meeting understanding

- laughter detection is particularly important for understanding both interaction and emotion if laughter occurs frequently
- to date, for meetings, it is not known
 - how much laughter there actually is
 - 2 when it tends to occur

Introduction	Data	Analysis	Conclusions
0000			

To find interaction, model participants jointly.

Introduction	Data	Analysis	Conclusions
0000			

To find interaction, model participants jointly.

essentially monologue

Introduction	Data	Analysis	Conclusions
0000			

To find interaction, model participants jointly.

• "multi-logue"

Introduction	Data	Analysis	Conclusions
0000			

To find interaction, model participants jointly.

• "multi-logue" with more participant involvement

Introduction	Data	Analysis	Conclusions
0000			

To find interaction, model participants jointly.

• a mathematical artifact (the Haar wavelet basis)

Introduction	Data	Analysis	Conclusions
0000			

To find interaction, model participants jointly.

• "multi-logue"

Introduction	Data	Analysis	Conclusions
0000			

To find interaction, model participants jointly.

- "multi-logue" with laughter
 - participants tend to wait to speak
 - participants do not wait to laugh

Introduction ○○●○	Data 0000	Analysis 000000	Conclusions
Three Questions o	f Interest		

What is the quantity of laughter, relative to the quantity of speech?

Introduction	Data 0000	Analysis 000000	Conclusions
Three Questic	ons of Interest		

- What is the quantity of laughter, relative to the quantity of speech?
- Observe the durational distribution of episodes of laughter differ from that of episodes of speech?

Introduction ○○●○	Data 0000	Analysis 000000	Conclusions
Three Questions	s of Interest		

- What is the quantity of laughter, relative to the quantity of speech?
- Observe the durational distribution of episodes of laughter differ from that of episodes of speech?
- How do meeting participants appear to affect each other in their use of laughter, relative to their use of speech?

Introduction ○○○●	Data 0000	Analysis 000000	Conclusions
Laugh Bouts vs T	alk Spurts		

• we will contrast the occurrence of laughter ${\cal L}$ with that of speech ${\cal S}$

프 🖌 🛪 프 🕨

Introduction	Data 0000	Analysis 000000	Conclusions
Laugh Bouts	vs Talk Spurts		

• we will contrast the occurrence of laughter ${\cal L}$ with that of speech ${\cal S}$

talk spurts contiguous per-participant intervals of speech (Shriberg et al, 2001), containing pauses no longer than 300 ms (as in NIST RT-06s SAD)

Introduction	Data 0000	Analysis 000000	Conclusions
Laugh Bouts	vs Talk Spurts		

 we will contrast the occurrence of laughter *L* with that of speech *S*

talk spurts contiguous per-participant intervals of speech (Shriberg et al, 2001), containing pauses no longer than 300 ms (as in NIST RT-06s SAD)

laugh bouts contiguous per-participant intervals of laughter (Bachorowski et al, 2001), including recovery inhalation

Introduction ○○○●	Data 0000	Analysis 000000	Conclusions
Laugh Bouts	/s Talk Spurts		

 we will contrast the occurrence of laughter *L* with that of speech *S*

talk spurts contiguous per-participant intervals of speech (Shriberg et al, 2001), containing pauses no longer than 300 ms (as in NIST RT-06s SAD)

- laugh bouts contiguous per-participant intervals of laughter (Bachorowski et al, 2001), including recovery inhalation
- \mathcal{S}/\mathcal{L} islands contiguous per-group intervals in which at least one participant talks/laughs

Introduction ○○○●	Data 0000	Analysis 000000	Conclusions
Laugh Bouts	vs Talk Spurts		

• we will contrast the occurrence of laughter ${\cal L}$ with that of speech ${\cal S}$

・ 回 ト ・ ヨ ト ・ ヨ ト …

Introduction	Data ●○○○	Analysis 000000	Conclusions
The ICSI Meeting	Corpus		

 naturally occurring project-oriented conversations with varying number of participants

Introduction	Data ●○○○	Analysis 000000	Conclusions
The ICSI Meeting	Corpus		

- naturally occurring project-oriented conversations with varying number of participants
- the largest such corpus available

type # of		type # of # of particip		pants
type	meetings	mod	min	max
Bed	15	6	4	7
Bmr	29	7	3	9
Bro	23	6	4	8
other	8	6	5	8

Introduction	Data ●୦୦୦	Analysis 000000	Conclusions
The ICSI Meeting	Corpus		

- naturally occurring project-oriented conversations with varying number of participants
- the largest such corpus available

type	# of	# of	partici	pants
type	meetings	mod	min	max
Bed	15	6	4	7
Bmr	29	7	3	9
Bro	23	6	4	8
other	8	6	5	8

• rarely, meetings contain additional, uninstrumented participants (we ignore them)

Introduction	Data ●○○○	Analysis 000000	Conclusions		
The ICSI Meeting Corpus					

- naturally occurring project-oriented conversations with varying number of participants
- the largest such corpus available

type	# of	# of participants		
type	meetings	mod	min	max
Bed	15	6	4	7
Bmr	29	7	3	9
Bro	23	6	4	8
other	8	6	5	8

- rarely, meetings contain additional, uninstrumented participants (we ignore them)
- we use all 75 meetings: 66.3 hours of conversation

Introduction	Data ○●○○	Analysis 000000	Conclusions

Identifying Laughter in the ICSI Corpus

• laughter is already annotated with rich XML-style mark-up
Introduction	Data ○●○○	Analysis 000000	Conclusions

- laughter is already annotated with rich XML-style mark-up
- therefore, for our purposes, data preprocessing consists of:

Introduction	Data ○●○○	Analysis 000000	Conclusions

- laughter is already annotated with rich XML-style mark-up
- therefore, for our purposes, data preprocessing consists of:
 - identifying laughter in the orthographic transcription

Introduction	Data	Analysis	Conclusions
	0000		

- laughter is already annotated with rich XML-style mark-up
- therefore, for our purposes, data preprocessing consists of:
 - identifying laughter in the orthographic transcription
 - specifying endpoints for identified laughter

Introduction	Data	Analysis	Conclusions
	0000		

- laughter is already annotated with rich XML-style mark-up
- therefore, for our purposes, data preprocessing consists of:
 - identifying laughter in the orthographic transcription
 - specifying endpoints for identified laughter
- orthographic, time-segmented transcription of speaker contributions (.stm)

```
Bmr011 me013 chan1 3029.466 3029.911 Yeah.

Bmr011 me013 chan3 3030.230 3031.140 Film-maker.

Bmr011 fe016 chan0 3030.783 3032.125 <Emphasis> colorful. </Emphasis...

Bmr011 me011 chanB 3035.301 3036.964 Of beeps, yeah.

Bmr011 me013 chan8 3035.714 3037.314 <Pause/> of m- one hour of - <...

Bmr011 me013 chan1 3036.280 3037.600 <VocalSound Description="laugh"/>

Bmr011 me014 chan2 3036.640 3037.15 Yeah.

Bmr011 me015 chan3 3036.940 3037.335 Is -

Bmr011 me011 chanB 3036.964 3038.573 <VocalSound Description="laugh"/>
```

Introduction	Data	Analysis	Conclusions
	0000		

- laughter is already annotated with rich XML-style mark-up
- therefore, for our purposes, data preprocessing consists of:
 - identifying laughter in the orthographic transcription
 - specifying endpoints for identified laughter
- orthographic, time-segmented transcription of speaker contributions (.stm)

```
...9.911 Yeah.
...1140 Film-maker.
...2.125 <Emphasis> colorful. </Emphasis> <Comment Description="while laughing"/>
...6.6964 Of beeps, yeah.
...7.314 <Pause/> of m- one hour of - <Comment Description="while laughing"/>
...6.640 Yeah.
...7.600 <VocalSound Description="laugh"/>
...7.115 Yeah.
...7.335 Is -
...8.573 <VocalSound Description="laugh"/>
```

Introduction	Data	Analysis	Conclusions
	0000		

- laughter is already annotated with rich XML-style mark-up
- therefore, for our purposes, data preprocessing consists of:
 - identifying laughter in the orthographic transcription
 - specifying endpoints for identified laughter
- orthographic, time-segmented transcription of speaker contributions (.stm)

```
...9.911 Yeah.
...1.140 Film-maker.
...2.125 <Emphasis> colorful. </Emphasis> <Comment Description="while laughing"/>
...6.964 Of beeps, yeah.
...7.314 <Pause/> of m- one hour of - <Comment Description="while laughing"/>
...6.640 Yeah.
...7.600 <VocalSound Description="laugh"/>
...7.115 Yeah.
...7.335 Is -
...8.573 <VocalSound Description="laugh"/>
```

Introduction	Data	Analysis	Conclusions
	0000		

- laughter is already annotated with rich XML-style mark-up
- therefore, for our purposes, data preprocessing consists of:
 - identifying laughter in the orthographic transcription
 - specifying endpoints for identified laughter
- orthographic, time-segmented transcription of speaker contributions (.stm)

```
...9.911 Yeah.
...1140 Film-maker.
...2.125 <Emphasis> colorful. </Emphasis> <Comment Description="while laughing"/>
...6.964 Of beeps, yeah.
...7.314 <Pause/> of m- one hour of - <Comment Description="while laughing"/>
...6.640 Yeah.
...7.600 <VocalSound Description="laugh"/>
...7.115 Yeah.
...7.335 Is -
...8.573 <VocalSound Description="laugh"/>
```

Introduction	Data	Analysis	Conclusions
	0000		

Sample VocalSound Instances

Freq	Token	Vocal Sound Description	lleed
Rank	Count	Vocarbound Description	Oseu
1	11515	laugh	
2	7091	breath	
3	4589	inbreath	
4	2223	mouth	
5	970	breath-laugh	\checkmark
11	97	laugh-breath	\checkmark
46	6	cough-laugh	\checkmark
63	3	laugh, "hmmph"	\checkmark
69	3	breath while smiling	
75	2	very long laugh	\checkmark

- < ≣ →

2

< ≣ ▶

Introduction	Data	Analysis	Conclusions
	0000		

Sample VocalSound Instances

Freq	Token	Vocal Sound Description	lleed
Rank	Count	Vocarbound Description	Useu
1	11515	laugh	
2	7091	breath	
3	4589	inbreath	
4	2223	mouth	
5	970	breath-laugh	\checkmark
11	97	laugh-breath	
46	6	cough-laugh	\checkmark
63	3	laugh, "hmmph"	\checkmark
69	3	breath while smiling	
75	2	very long laugh	\checkmark

- laughter is by far the most common non-verbal VocalSound
- idem for Comment instances

回 と く ヨ と く ヨ と

Introduction	Data ○○○●	Analysis 000000	Conclusions
Segmenting Identif	ied Laughter Ins	tances	

• found 12570 non-farfield VocalSound laughs

→ 프 → → 프 →

Introduction	Data ○○○●	Analysis 000000	Conclusions

- found 12570 non-farfield VocalSound laughs
 - 11845 were adjacent to a time-stamped utterance boundary or lexical item: endpoints were derived automatically
 - 725 needed to be segmented manually

Introduction	Data	Analysis	Conclusions
	0000		

found 12570 non-farfield VocalSound laughs

- 11845 were adjacent to a time-stamped utterance boundary or lexical item: endpoints were derived automatically
- 725 needed to be segmented manually
- found 1108 non-farfield Comment laughs
 - all needed to be segmented manually

Introduction	Data	Analysis	Conclusions
	0000		

- found 12570 non-farfield VocalSound laughs
 - 11845 were adjacent to a time-stamped utterance boundary or lexical item: endpoints were derived automatically
 - 725 needed to be segmented manually
- found 1108 non-farfield Comment laughs
 - all needed to be segmented manually
- manual segmententation performed by one annotator, checked by at least one other annotator

Introduction	Data	Analysis	Conclusions
	0000		

- found 12570 non-farfield VocalSound laughs
 - 11845 were adjacent to a time-stamped utterance boundary or lexical item: endpoints were derived automatically
 - 725 needed to be segmented manually
- found 1108 non-farfield Comment laughs
 - all needed to be segmented manually
- manual segmententation performed by one annotator, checked by at least one other annotator
- merging immediately adjacent VocalSound and Comment instances, and removing transcribed instances for which we found counterevidence, resulted in **13259 bouts**

向下 イヨト イヨト

Introduction	Data	Analysis	Conclusions
0000	0000	●○○○○○	
Speech vs Laughte	r by Time		

• 13259 laugh bouts

∂ ►

< 문 → < 문 →

æ

Introduction	Data 0000	Analysis ●○○○○○	Conclusions
Speech vs Laughte	r by Time		

- 13259 laugh bouts
- 110790 talk spurts

< ≣⇒

< ∃⇒

Introduction	Data 0000	Analysis ●○○○○○	Conclusions
Speech vs Laughte	r by Time		

- 13259 laugh bouts
- 110790 talk spurts
- by personal time:

.≣...>

∢ 臣

Introduction	Data	Analysis	Conclusions
0000	0000	●○○○○○	00
Speech vs Laughte	r by Time		

- 13259 laugh bouts
- 110790 talk spurts
- by personal time:
 - 442.6 hours total recorded audio

Introduction	Data 0000	Analysis ●○○○○○	Conclusions
Speech vs Laughter	· by Time		

- 13259 laugh bouts
- 110790 talk spurts
- by personal time:
 - 442.6 hours total recorded audio
 - 55.2 hours spent in talk spurts (S), $\equiv 12.47\%$

Introduction	Data 0000	Analysis ●○○○○○	Conclusions
Speech vs Laughter	r by Time		

- 13259 laugh bouts
- 110790 talk spurts
- by personal time:
 - 442.6 hours total recorded audio
 - 55.2 hours spent in talk spurts (S), $\equiv 12.47\%$
 - 5.6 hours spent in laugh bouts (L), $\equiv 1.27\%$

Introduction	Data	Analysis	Conclusions
		00000	

Speech vs Laughter by Time, by Participant

■ _ _ の <

< ≣ →

3

Talk Spurt Duration vs Laugh Bout Duration

Kornel Laskowski & Susanne Burger INTERSPEECH 2007, Antwerpen, Belgium

Introduction	Data 0000	Analysis ○○○●○○	Conclusions

	Vocalizing Time, hrs					
Vocal Activity	per per		numb voca	er of alizing	simulta ; partici	neously ipants
	part		1	2	3	\geq 4
S	55.2	50.8	46.7	3.8	0.27	0.02
\mathcal{L}	5.6	3.3	2.0	0.7	0.31	0.27
$\mathcal{S}\cap\mathcal{L}$	0.2	0.2	0.2	0.0	0.0	0
$\mathcal{S} \cup \mathcal{L}$	60.3	52.0	45.7	4.8	0.88	0.49

ъ

Introduction	Data 0000	Analysis ○○●○○	Conclusions

	Vocalizing Time, hrs					
Vocal Activity	per per	numb voca	er of alizing	simulta [,] partici	neously pants	
Activity	part	part meet	1	2	3	≥4
S	55.2	50.8	46.7	3.8	0.27	0.02
\mathcal{L}	5.6	3.3	2.0	0.7	0.31	0.27
$\mathcal{S}\cap\mathcal{L}$	0.2	0.2	0.2	0.0	0.0	0
$S \cup L$	60.3	52.0	45.7	4.8	0.88	0.49

 \bullet in ${\cal S}$ only, 84.6% of vocalization is not overlapped

2

.

Introduction	Data 0000	Analysis ○○○●○○	Conclusions

	Vocalizing Time, hrs					
Vocal Activity	per per	number of simultaneously vocalizing participants			neously pants	
	part	meet	1	2	3	≥4
S	55.2	50.8	46.7	3.8	0.27	0.02
\mathcal{L}	5.6	3.3	2.0	0.7	0.31	0.27
$\mathcal{S}\cap\mathcal{L}$	0.2	0.2	0.2	0.0	0.0	0
$\mathcal{S} \cup \mathcal{L}$	60.3	52.0	45.7	4.8	0.88	0.49

 \bullet in ${\cal L}$ only, 35.7% of vocalization is not overlapped

2

.

Introduction	Data 0000	Analysis ○○○●○○	Conclusions

	Vocalizing Time, hrs					
Vocal	per	per	numb	er of	simulta	neously
Activity	nort	moot	VOC	alizing	g partic	ipants
	part	meet	1	2	3	\geq 4
S	55.2	50.8	46.7	3.8	0.27	0.02
\mathcal{L}	5.6	3.3	2.0	0.7	0.31	0.27
$\mathcal{S}\cap\mathcal{L}$	0.2	0.2	0.2	0.0	0.0	0
$\mathcal{S} \cup \mathcal{L}$	60.3	52.0	45.7	4.8	0.88	0.49

• the proportion of "laughed speech" is negligible

Introduction	Data 0000	Analysis ○○○●○○	Conclusions

	Vocalizing Time, hrs					
Vocal	ner	ner	numb	er of	simulta	neously
Activity	port	moot	voca	alizing	; partici	pants
	part	meet	1	2	3	\geq 4
0						
8	55.2	50.8	46.7	3.8	0.27	0.02
S L	55.2 5.6	50.8 3.3	46.7 2.0	3.8 0.7	0.27 0.31	0.02 0.27
\mathcal{S} \mathcal{L} $\mathcal{S} \cap \mathcal{L}$	55.2 5.6 0.2	50.8 3.3 0.2	46.7 2.0 0.2	3.8 0.7 0.0	0.27 0.31 0.0	0.02 0.27 0

 there is ≥3 times as much 3-participant overlap when considering S ∪ L as opposed to S only

3 ×

Introduction	Data 0000	Analysis ○○○●○○	Conclusions

	Vocalizing Time, hrs					
Vocal	ner	ner	numb	er of	simulta	neously
Activity	port	moot	voca	alizing	; partici	pants
	part	meet	1	2	3	\geq 4
S	55.2	50.8	46.7	3.8	0.27	0.02
\mathcal{L}	5.6	3.3	2.0	0.7	0.31	0.27
0 - 0						-
$\mathcal{S}\cap\mathcal{L}$	0.2	0.2	0.2	0.0	0.0	0

• there is ≈ 25 times as much 4-participant overlap when considering $S \cup L$ as opposed to S only

.≣ .⊳

Introduction	Data 0000	Analysis ○○○○●○	Conclusions
Overlap Dynamics			

• does laughter differ from speech in the way in which overlap arises and is resolved?

回 と く ヨ と く ヨ と

Introduction	Data 0000	Analysis	Conclusions
Overlap Dynamics			

- does laughter differ from speech in the way in which overlap arises and is resolved?
- look at transition probabilities under a first-order Markov assumption

A B K A B K

Introduction	Data 0000	Analysis ○○○○●○	Conclusions
Overlap Dynamics			

- does laughter differ from speech in the way in which overlap arises and is resolved?
- look at transition probabilities under a first-order Markov assumption
 - discretize *L* and *S* segmentations using non-overlapping analysis frames

Introduction	Data 0000	Analysis ○○○○●○	Conclusions
Overlap Dynamics			

- does laughter differ from speech in the way in which overlap arises and is resolved?
- look at transition probabilities under a first-order Markov assumption
 - discretize *L* and *S* segmentations using non-overlapping analysis frames
 - Itrain an Extended Degree-of-Overlap (EDO) model on the discretized *L* and *S* segmentations
 - $P({A} \rightarrow {A, B})$
 - $P(\{A,B\} \rightarrow \{A\})$
 - $P({A} \rightarrow {B})$
 - etc.

Introduction	Data 0000	Analysis ○○○○●○	Conclusions
Overlap Dynamics			

- does laughter differ from speech in the way in which overlap arises and is resolved?
- look at transition probabilities under a first-order Markov assumption
 - **1** discretize \mathcal{L} and \mathcal{S} segmentations using non-overlapping analysis frames
 - train an Extended Degree-of-Overlap (EDO) model on the discretized \mathcal{L} and \mathcal{S} segmentations
 - $P(\{A\} \rightarrow \{A, B\})$
 - $P(\{A, B\} \rightarrow \{A\})$
 - $P(\{A\} \rightarrow \{B\})$
 - etc.

 \bigcirc compare inferred probabilities for \mathcal{L} and \mathcal{S}

伺下 くヨト くヨト

Introduction	Data	Analysis	Conclusions
0000	0000	00000	00

Overlap Dynamics: Results

Select EDO Transitions		500ms frames		
from (at t)		to (at $t+1$)	${\mathcal S}$	\mathcal{L}
{ <i>A</i> }	\rightarrow	{ <i>A</i> }	82.94	57.96
{ <i>A</i> }	\rightarrow	$\{A, B\}$	6.21	8.43
{ <i>A</i> }	\rightarrow	$\{A, B, C, \cdots\}$	0.39	2.39
$\{A, B\}$	\rightarrow	{ <i>A</i> }	45.49	26.37
$\{A, B\}$	\rightarrow	$\{A, B\}$	40.88	46.93
$\{A, B\}$	\rightarrow	$\{A, B, C, \cdots\}$	4.46	13.65
$\{A, B, C, \cdots\}$	\rightarrow	{ <i>A</i> }	19.24	6.69
$\{A, B, C, \cdots\}$	\rightarrow	$\{A, B\}$	40.94	17.45
$\{A, B, C, \cdots\}$	\rightarrow	$\{A, B, C, \cdots\}$	29.44	71.04

< ∃⇒

< ≣ >

Introduction	Data	Analysis	Conclusions
0000	0000	00000	00

Overlap Dynamics: Results

Select EDO Transitions		500ms frames		
from (at <i>t</i>)		to (at $t+1$)	${\mathcal S}$	\mathcal{L}
{ <i>A</i> }	\rightarrow	{ <i>A</i> }	82.94	57.96
{ <i>A</i> }	\rightarrow	$\{A, B\}$	6.21	8.43
{ <i>A</i> }	\rightarrow	$\{A, B, C, \cdots\}$	0.39	2.39
$\{A, B\}$	\rightarrow	{ <i>A</i> }	45.49	26.37
$\{A, B\}$	\rightarrow	$\{A, B\}$	40.88	46.93
$\{A, B\}$	\rightarrow	$\{A, B, C, \cdots\}$	4.46	13.65
$\{A, B, C, \cdots\}$	\rightarrow	{ <i>A</i> }	19.24	6.69
$\{A, B, C, \cdots\}$	\rightarrow	$\{A, B\}$	40.94	17.45
$\{A, B, C, \cdots\}$	\rightarrow	$\{A, B, C, \cdots\}$	29.44	71.04

< ∃⇒

< ≣ >

Introduction	Data 0000	Analysis 000000	Conclusions ●○
Conclusions			

Based on the ICSI meetings,

approximately 9% of vocalizing time is spent on laughter
Introduction	Data 0000	Analysis 000000	Conclusions ●○
Conclusions			

- approximately 9% of vocalizing time is spent on laughter
 - but participants vary widely (0% 30%)

Introduction	Data 0000	Analysis 000000	Conclusions ●○
Conclusions			

- approximately 9% of vocalizing time is spent on laughter
 - but participants vary widely (0% 30%)
- on average, laughter occurs once a minute

Introduction	Data 0000	Analysis 000000	Conclusions ●○
Conclusions			

- approximately 9% of vocalizing time is spent on laughter
 - but participants vary widely (0% 30%)
- on average, laughter occurs once a minute
- Solution is a set of the large majority of ≥3 participant overlap

Introduction	Data 0000	Analysis 000000	Conclusions ●○
Conclusions			

- approximately 9% of vocalizing time is spent on laughter
 - but participants vary widely (0% 30%)
- In average, laughter occurs once a minute
- laughter accounts for the large majority of ≥3 participant overlap
- in contrast to speech, once laughter overlap is incurred, it is most likely to persist

Introduction	Data 0000	Analysis 000000	Conclusions ●○
Conclusions			

- **1** approximately 9% of vocalizing time is spent on laughter
 - but participants vary widely (0% 30%)
- on average, laughter occurs once a minute
- Iaughter accounts for the large majority of ≥3 participant overlap
- in contrast to speech, once laughter overlap is incurred, it is most likely to persist
 - ie. 3-participant speech overlap is 2.5 times more likely than laughter to be resolved within 500 ms

向下 イヨト イヨト

Introduction	Data 0000	Analysis 000000	Conclusions ○●
We would like to t	hank:		

- our annotators: Jörg Brunstein and Matthew Bell
- discussion: Alan Black and Liz Shriberg
- funding: EU CHIL

★ 문 → ★ 문 →