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Goal

Automatic speech/non-speech segmentation in close-talk micro-
phone recordings of meetings.

Why?

syntactic continuity → can leverage language modeling

speaker homogeneity → can leverage speaker adaptation
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Main Problem: Crosstalk

Automatic speech/non-speech segmentation in close-talk micro-
phone recordings of meetings.

participants share an acoustic space

everybody’s speech appears on everybody’s microphone

leads to high insertion rates (Pfau et al, ASRU01)
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K. Laskowski, C. Fügen, T. Schultz EUSIPCO 2007: Simultaneous Multispeaker Segmentation



Introduction Segmentation Recognition Data Experiments Conclusions

Main Problem: Crosstalk

Automatic speech/non-speech segmentation in close-talk micro-
phone recordings of meetings.

participants share an acoustic space

everybody’s speech appears on everybody’s microphone

leads to high insertion rates (Pfau et al, ASRU01)
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A Note on Terms

crosstalk

a descriptor of the observation on a single channel
farfield speech appearing on (nearfield) channel
relatively frequent

ignoring it can lead to WERs > 100%

overlap

a descriptor of the state of all participants
more than one participant vocalizing simultaneously
relatively infrequent

occurs <10% of the time (Çetin & Shriberg, MLMI06)

our approach: use statistics of the occurrence of overlap to
account for crosstalk (Laskowski & Schultz, MLMI07)
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occurs <10% of the time (Çetin & Shriberg, MLMI06)

our approach: use statistics of the occurrence of overlap to
account for crosstalk (Laskowski & Schultz, MLMI07)
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How to Address Crosstalk

Elsewhere:

1 model participants
independently

P (qt+1 = Sj |qt = Si)

=

K
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k=1

P
(

qk
t+1 = Sk

j |q
k
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)

2 supervised acoustic
models

3 small frame size
(≈10 ms)

This work:

1 model participants
jointly

P (qt+1 = Sj |qt = Si)
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P
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)

2 unsupervised acoustic
models

3 large frame size
(≈100 ms)
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Segmentation System Architecture

3 pass segmentation decoding of meetings

TM
TM

TRAINING

AM
TRAININGILA

SMOOTHING
VITERBI

DECODING

AM

multichannel seg refs

multichannel audio

q̃

q∗

qr
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Segmentation System Architecture

3 pass segmentation decoding of meetings

prior to decoding: transition model (TM) training

TM

multichannel seg refs

multichannel audio
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AM

TRAINING
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VITERBI

AM
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Segmentation System Architecture

3 pass segmentation decoding of meetings

acoustic model (AM) training

multichannel audio

TM
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multichannel seg refs
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Segmentation System Architecture

3 pass segmentation decoding of meetings

PASS 2: Viterbi decoding

multichannel audio

TM
TRAINING
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Segmentation System Architecture

3 pass segmentation decoding of meetings

PASS 3: segmentation smoothing

TM
TRAINING

multichannel seg refs

ILA
AM

TRAINING
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multichannel audio

qr

q∗

q̃
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Transition Model Training

in a meeting of K participants, at time t:

each participant k is in one of two states
the meeting qt is in Si , 1≤i≤2K

model the probability of transition from state Si to Sj

P (qt+1 = Sj |qt = Si)

= P (‖qt+1‖ = ‖Sj‖, ‖qt+1 · qt‖ = ‖Sj · Si‖|‖qt‖ = ‖Si‖)

where a transition (ni , oij , nj )

ni = ‖Si‖ is the # of active speakers in Si

nj = ‖Sj‖ is the # of active speakers in Sj

oij = ‖Si · Sj‖ is the # of active speakers in both Si and Sj

the Extended Degree of Overlap (EDO) model (Laskowski &
Schultz, MLMI07)
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PASS 1: Initial Label Assignment

at time t, for each participant k, 1≤k≤K ,

compute energy φkk (0)
compute crosscorrelation φjk (τ) with every other participant j

NT-Normalize (Laskowski & Schultz, ICSLP04)
φjk (τ )
φjj (0)

assign the initial label

q̃ [k ] =

{

V , if
∑

j 6=k log
(

maxτ φjk (τ )
φjj (0)

)

> 0

N , otherwise

approximates declaring participant k as vocalizing (V) when
the dominant sound source is closer to microphone k than to

the centroid of the remaining microphones (Laskowski &
Schultz, NAACL07)
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Schultz, NAACL07)
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Acoustic Model Training

use the test audio and the initial labels from ILA to train

one Gaussian model
with a full covariance matrix
for a 2K -length vector (energy and zero-crossing rate per
channel) −→ may be different for different meetings
for each of 2K states

since many states may have too little data, train models
(Laskowski & Schultz, ICASSP06) using

shrinkage towards a global model (λG )
channel-rotated feature vectors (λR )
sample-level synthesized overlap (λS )
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K. Laskowski, C. Fügen, T. Schultz EUSIPCO 2007: Simultaneous Multispeaker Segmentation



Introduction Segmentation Recognition Data Experiments Conclusions

Acoustic Model Training

use the test audio and the initial labels from ILA to train

one Gaussian model
with a full covariance matrix
for a 2K -length vector (energy and zero-crossing rate per
channel) −→ may be different for different meetings
for each of 2K states

since many states may have too little data, train models
(Laskowski & Schultz, ICASSP06) using

shrinkage towards a global model (λG )
channel-rotated feature vectors (λR )
sample-level synthesized overlap (λS )
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Introduction Segmentation Recognition Data Experiments Conclusions

PASS 2: Viterbi Decoding

standard Viterbi decoding using

frame size and step of 110 ms
the pre-trained, meeting-independent transition model (TM)
the meeting-specific acoustic model (AM)
complexity: 1≤t≤T , 1≤i≤N≡2K

assume all participants are silent at time t = 0

following decoding, the state of each participant k at time t is

qt [k]∗ = q∗

t [k]
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Introduction Segmentation Recognition Data Experiments Conclusions

PASS 3: Smoothing

For the Viterbi segmentation of each participant k:

1 bridge V gaps shorter than 500 ms

2 eliminate V spurts shorter than 200 ms

3 pre-pad all V intervals with 100 ms

4 post-pad all V intervals with 300 ms

5 bridge remaining V gaps shorter than 400 ms

6 eliminate remaining V spurts shorter than 800 ms

Determined empirically during NIST RT-06s development (Fügen
et al, MLMI2006)
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K. Laskowski, C. Fügen, T. Schultz EUSIPCO 2007: Simultaneous Multispeaker Segmentation



Introduction Segmentation Recognition Data Experiments Conclusions

PASS 3: Smoothing

For the Viterbi segmentation of each participant k:

1 bridge V gaps shorter than 500 ms

2 eliminate V spurts shorter than 200 ms

3 pre-pad all V intervals with 100 ms

4 post-pad all V intervals with 300 ms

5 bridge remaining V gaps shorter than 400 ms

6 eliminate remaining V spurts shorter than 800 ms

Determined empirically during NIST RT-06s development (Fügen
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Introduction Segmentation Recognition Data Experiments Conclusions

Evaluating Segmentation for Speech Recognition

standard: frame-level miss and false alarm rates

in our work, these correlate poorly with WER rates

for meeting recognition, will use the WER gap between
automatic segmentation and manual reference segmentation

development ASR system: 1 pass, MFCC front-end,
out-of-domain LM
more realistic ASR system: 3 passes, MFCC and MVDR front
ends, in-domain LM
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3-Pass Recognition System Architecture

MFCC.1 MFCC.2 MFCC.3

MVDR.1 MVDR.2 MVDR.3

CNC.1 CNC.2 CNC.3

FIRST PASS SECOND PASS THIRD PASS

K. Laskowski, C. Fügen, T. Schultz EUSIPCO 2007: Simultaneous Multispeaker Segmentation



Introduction Segmentation Recognition Data Experiments Conclusions

NIST Rich Transcription Meeting Recognition Corpora

development set

10 meeting excerpts

2 × CMU
2 × EDI
2 × ICSI
2 × NIST
2 × VT

10 minutes each

one meeting with an
unmic’ed speaker
→ excluded during
development

evaluation set

9 meeting excerpts

2 × CMU
2 × EDI
2 × NIST
1 × TNO
2 × VT

10 minutes each
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K. Laskowski, C. Fügen, T. Schultz EUSIPCO 2007: Simultaneous Multispeaker Segmentation



Introduction Segmentation Recognition Data Experiments Conclusions

NIST Rich Transcription Meeting Recognition Corpora

development set

10 meeting excerpts

2 × CMU
2 × EDI
2 × ICSI
2 × NIST
2 × VT

10 minutes each

one meeting with an
unmic’ed speaker
→ excluded during
development

evaluation set

9 meeting excerpts

2 × CMU
2 × EDI
2 × NIST
1 × TNO
2 × VT

10 minutes each
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Baseline

segmentation system as described

one pass ASR system, MFCC only, out-of-domain LM

development data (one meeting excluded)
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Modification 1: Eliminate Zero Crossing Rate (noZCR)

remove the ZCR feature

reduces feature vector length from 2K to K features

retune acoustic model training parameters (λG , λR , λS)
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Modification 2: Reduce the Frame Size (F.100)

reduce the frame size and frame step from 110ms to 100ms

retune the smoothing pass parameters
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Modification 3: Select Data for the Silence Model (ILA.0)

OBSERVATION: ILA has high precision, but lower recall

SOLUTION: use only (quieter) half of the frames classified as
silence for training the silence model
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Modification 4: Distribute EDO Mass (MULT)

OBSERVATION: EDO transitions have multiple target states

eg. (2,1,1): {A, B} → {A} and {A, B} → {B}

SOLUTION: distribute the probability mass among same-EDO
next states with uniform probability
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K. Laskowski, C. Fügen, T. Schultz EUSIPCO 2007: Simultaneous Multispeaker Segmentation



Introduction Segmentation Recognition Data Experiments Conclusions

Modification 4: Distribute EDO Mass (MULT)

OBSERVATION: EDO transitions have multiple target states

eg. (2,1,1): {A, B} → {A} and {A, B} → {B}

SOLUTION: distribute the probability mass among same-EDO
next states with uniform probability

WER

34.2
34.4

35.2

37.0 36.937.5

35.0

32.5

34.1

B
L

no
Z

C
R

F
.1

00

IL
A

.0

R
E

F

M
U

L
T
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Modification 5: Limit Simultaneous Vocalization (OV.2)

explicitly eliminate all states with more than 2 participants
vocalizing at once
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Results Using the Development ASR System

initially, excluded one meeting from the devset

on the whole devset, WERs are higher all around

but each modification still leads to a reduction

overall relative error reduction of 82%

50.0

40.0

30.0

WER

37.0 36.9
35.2

34.2 34.1 34.4
34.4

no
Z

C
R

F
.1

00

IL
A

.0

O
V

.2

M
U

LTB
L

R
E

F
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Conclusions

modeling overlap is an effective means of suppressing
crosstalk in meetings

the proposed system improvements appear to generalize

to scenarios with uninstrumented participants
to improved language models in ASR
to more complex front ends in ASR
across ASR adaptation passes
to unseen evaluation data

WER error rates with automatic segmentation are currently
higher than with manual segmentation by:

3.3% absolute on the dev set
3.0% absolute on the eval set
similar to results published by others
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