Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary

Modeling Norms of Turn-Taking in Multi-Party Conversation

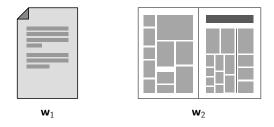
Kornel Laskowski

Carnegie Mellon University Pittsburgh PA, USA

13 July, 2010

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
00000					

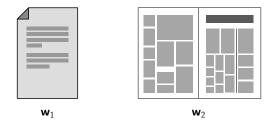
Comparing Written Documents



- If have a form for a density model Θ of word sequences, and
- ullet techniques for estimating the parameters of ullet from data, and
- techniques for estimating $P(\mathbf{w} | \mathbf{\Theta})$,
- Can easily compare w_1 with w_2 , with respect to
- ullet how far each deviates from the norms encoded in ullet

Prolegomena ●○○○○	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary

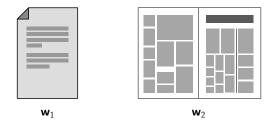
Comparing Written Documents



- \bullet If have a form for a density model Θ of word sequences, and
- ullet techniques for estimating the parameters of $m\Theta$ from data, and
- techniques for estimating $P(\mathbf{w} | \mathbf{\Theta})$,
- Can easily compare **w**₁ with **w**₂, with respect to
- ullet how far each deviates from the norms encoded in $m \Theta$

Prolegomena ●○○○○	Compositional Models	Direct Estimation	EDO Model	Experiments 00000	Summary

Comparing Written Documents

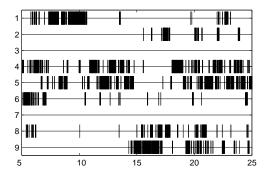


- \bullet If have a form for a density model Θ of word sequences, and
- ullet techniques for estimating the parameters of $m\Theta$ from data, and
- techniques for estimating $P(\mathbf{w} | \mathbf{\Theta})$,
- Can easily compare \mathbf{w}_1 with \mathbf{w}_2 , with respect to
- ullet how far each deviates from the norms encoded in $m \Theta$

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
00000					

Representing Spoken Documents

• K > 1 sources (participants)



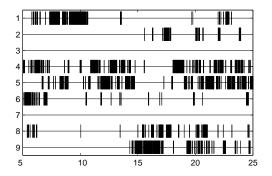
interaction chronograph (Chapple, 1939)

- aka vocal interaction record (Dabbs & Ruback, 1987)
- a content-independent representation

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
00000					

Representing Spoken Documents

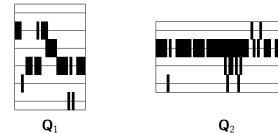
• K > 1 sources (participants)



- interaction chronograph (Chapple, 1939)
- aka vocal interaction record (Dabbs & Ruback, 1987)
- a content-independent representation

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
00000					

Comparing Spoken Documents



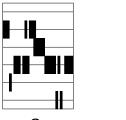
• Cannot compare spoken documents **Q**₁ and **Q**₂

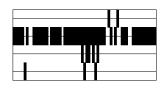
- $\bullet\,$ no candidate form for model $\Theta\,$
- ullet no techniques of estimating the parameters of $m{\Theta}$ from data,
- no techniques of estimating $P(\mathbf{Q} | \mathbf{\Theta})$.

• Comparison must remain manual and qualitative.

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
00000					

Comparing Spoken Documents





 \mathbf{Q}_1

 \mathbf{Q}_2

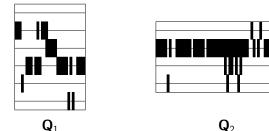
 $\bullet\,$ Cannot compare spoken documents ${\bf Q}_1$ and ${\bf Q}_2$

- no candidate form for model Θ ,
- $\bullet\,$ no techniques of estimating the parameters of Θ from data,
- no techniques of estimating $P(\mathbf{Q} | \mathbf{\Theta})$.

Comparison must remain manual and qualitative.

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
00000					

Comparing Spoken Documents



• Cannot compare spoken documents \mathbf{Q}_1 and \mathbf{Q}_2

- no candidate form for model Θ ,
- $\bullet\,$ no techniques of estimating the parameters of Θ from data,
- no techniques of estimating $P(\mathbf{Q} | \mathbf{\Theta})$.
- Comparison must remain manual and qualitative.

Prolegomena ○○○●○	Compositional Models	Direct Estimation	EDO Model	Experiments 00000	Summary
Wouldn'	t It Be Nice if	We Could			

- Compare meetings in organizations to determine which interaction patterns correlate with successful business practice?
- Find instants within conversations where interaction management breaks down (hotspots)?
- Classify conversations according to a spectrum of interactivity?
- Contrast conversational behavior across languages and cultures?
- Assess emergent turn-taking performance in dialogue systems?

Prolegomena ○○○○●	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
Outline	of this Talk				

- Compositional Modeling Framework
- ② Direct estimation in compositional models
- S "Extended Degree of Overlap" (EDO) Model
- Experiments with Naturally Occurring Conversation
 - within-conversation prediction
 - across-conversation prediction
- Summary

Prolegomena	Compositional Models ●○○○○○	Direct Estimation	EDO Model	Experiments 00000	Summary				
Turns a	Turns and Talk Spurts								

- turn-taking: generally observed phenomenon in conversation
 but turn: ?? (no generally agreed upon definition)
- **()** here: $turn \equiv (talk) spurt (Norwine & Murphy, 1938)$
 - prefer "speech regions uninterrupted by pauses longer than 500 ms" (Shriberg et al, 2001)
 - with a threshold $T_{\Box}=$ 300 ms (NIST RT Evaluations, 2002–)
 - similar to inter-pausal unit, $T_{\Box} = 100$ ms (Koiso et al, 1998)
- specific choice may have minor numerical consequences
- Solution to the mathematical viability of the modeling techniques of this work

Prolegomena	Compositional Models ●○○○○○	Direct Estimation	EDO Model	Experiments	Summary
Turns a	nd Talk Spurts				

- turn-taking: generally observed phenomenon in conversation
 but turn: ?? (no generally agreed upon definition)
- **(3)** here: $turn \equiv (talk)$ spurt (Norwine & Murphy, 1938)
 - prefer "speech regions uninterrupted by pauses longer than 500 ms" (Shriberg et al, 2001)
 - with a threshold $T_{\Box} = 300$ ms (NIST RT Evaluations, 2002–)
 - similar to inter-pausal unit, $T_{\Box} = 100$ ms (Koiso et al, 1998)
- specific choice may have minor numerical consequences
- Solution of the mathematical viability of the modeling techniques of this work

Prolegomena	Compositional Models ●○○○○○	Direct Estimation	EDO Model	Experiments	Summary
Turns a	nd Talk Spurts				

- turn-taking: generally observed phenomenon in conversation
 but turn: ?? (no generally agreed upon definition)
- **(3)** here: $turn \equiv (talk)$ spurt (Norwine & Murphy, 1938)
 - prefer "speech regions uninterrupted by pauses longer than 500 ms" (Shriberg et al, 2001)
 - with a threshold $T_{\Box} = 300$ ms (NIST RT Evaluations, 2002–)
 - similar to inter-pausal unit, $T_{\Box} = 100$ ms (Koiso et al, 1998)
- specific choice may have minor numerical consequences
- but no impact on the mathematical viability of the modeling techniques of this work

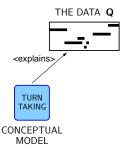
Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
	00000				

THE DATA **Q**

• data Q: speech activity in time and across participants

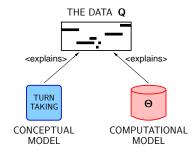
- turn-taking: name of a conceptual model
- goal in this work: propose a computational model

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
	00000				



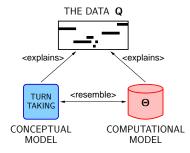
- data **Q**: speech activity in time and across participants
- turn-taking: name of a conceptual model
- goal in this work: propose a computational model

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
	00000				



- data **Q**: speech activity in time and across participants
- turn-taking: name of a conceptual model
- goal in this work: propose a computational model

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
	00000				



- data **Q**: speech activity in time and across participants
- turn-taking: name of a conceptual model
- goal in this work: propose a computational model

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
What Is	Q ?				

1 time-align speech \Box/\blacksquare activity of all K participants

② close all \Box gaps shorter than $T_{\Box} = 300$ ms

I discretize with a frame step of 100 ms

• yields a $\mathbf{Q} \in \{\Box, \blacksquare\}^{K \times T}$

Prolegomena	Compositional Models ○○●○○○	Direct Estimation	EDO Model	Experiments	Summary
What Is	Q ?				

- **1** time-align speech \Box/\blacksquare activity of all K participants
- 2 close all \Box gaps shorter than $T_{\Box} = 300$ ms
- I discretize with a frame step of 100 ms $K \times T$

participant index, *k*

Prolegomena	Compositional Models ○○●○○○	Direct Estimation	EDO Model	Experiments	Summary
What Is	Q ?				

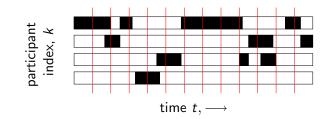
- **1** time-align speech \Box/\blacksquare activity of all K participants
- 2 close all \Box gaps shorter than $T_{\Box} = 300$ ms
- **3** discretize with a frame step of 100 ms

participant index, *k*

Prolegomena	Compositional Models ○○●○○○	Direct Estimation	EDO Model	Experiments	Summary
What Is	Q ?				

- **1** time-align speech \Box/\blacksquare activity of all K participants
- 2 close all \Box gaps shorter than $T_{\Box} = 300$ ms
- o discretize with a frame step of 100 ms

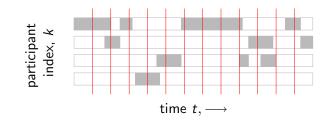
] yields a $\mathbf{Q} \in \{\Box, \blacksquare\}^{\kappa imes}$



Prolegomena	Compositional Models ○○●○○○	Direct Estimation	EDO Model	Experiments 00000	Summary
What Is	Q ?				

- **1** time-align speech \Box/\blacksquare activity of all K participants
- 2 close all \Box gaps shorter than $T_{\Box} = 300$ ms
- o discretize with a frame step of 100 ms

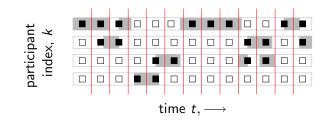
) yields a $\mathbf{Q} \in \{\Box, \blacksquare\}^{K imes}$



Prolegomena	Compositional Models ○○●○○○	Direct Estimation	EDO Model	Experiments	Summary
What Is	Q ?				

- **1** time-align speech \Box/\blacksquare activity of all K participants
- 2 close all \Box gaps shorter than $T_{\Box} = 300$ ms
- o discretize with a frame step of 100 ms

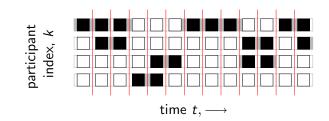
) yields a $\mathbf{Q} \in \{\Box, \blacksquare\}^{K imes}$



Prolegomena	Compositional Models ○○●○○○	Direct Estimation	EDO Model	Experiments	Summary
What Is	Q ?				

- **1** time-align speech \Box/\blacksquare activity of all K participants
- 2 close all \Box gaps shorter than $T_{\Box} = 300$ ms
- 3 discretize with a frame step of 100 ms

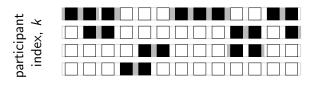
() yields a $\mathbf{Q} \in \{\Box, \blacksquare\}^{K \times n}$



Prolegomena	Compositional Models ○○●○○○	Direct Estimation	EDO Model	Experiments	Summary
What Is	Q ?				

- **1** time-align speech \Box/\blacksquare activity of all K participants
- 2 close all \Box gaps shorter than $T_{\Box} = 300$ ms
- 3 discretize with a frame step of 100 ms

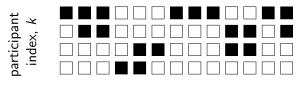
() yields a $\mathbf{Q} \in \{\Box, \blacksquare\}^{K \times n}$



Prolegomena	Compositional Models ○○●○○○	Direct Estimation	EDO Model	Experiments	Summary
What Is	Q ?				

- **1** time-align speech \Box/\blacksquare activity of all K participants
- 2 close all \Box gaps shorter than $T_{\Box} = 300$ ms
- 3 discretize with a frame step of 100 ms

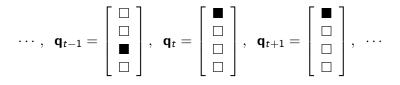
③ yields a
$$\mathbf{Q} \in \{\Box, \blacksquare\}^{K imes T}$$



Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary

Modeling A Vector-Valued Markov Process

• model conversation as a Markov process



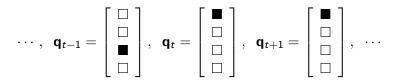
then (assuming first-order model Θ)

• easy to train, just count bigrams !

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
	000000				

Modeling A Vector-Valued Markov Process

model conversation as a Markov process



• then (assuming first-order model Θ)

$$P(\mathbf{Q}|\mathbf{\Theta}) = P_0 \prod_{t=1}^{T} P(\mathbf{q}_t | \mathbf{q}_0, \mathbf{q}_1, \cdots, \mathbf{q}_{t-1}, \mathbf{\Theta})$$

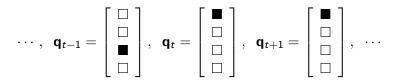
$$\doteq P_0 \prod_{t=1}^{T} P(\mathbf{q}_t | \mathbf{q}_{t-1}, \mathbf{\Theta})$$

easy to train, just count bigrams !

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
	000000				

Modeling A Vector-Valued Markov Process

• model conversation as a Markov process



• then (assuming first-order model Θ)

$$P(\mathbf{Q} | \mathbf{\Theta}) = P_0 \prod_{t=1}^{T} P(\mathbf{q}_t | \mathbf{q}_0, \mathbf{q}_1, \cdots, \mathbf{q}_{t-1}, \mathbf{\Theta})$$

$$\doteq P_0 \prod_{t=1}^{T} P(\mathbf{q}_t | \mathbf{q}_{t-1}, \mathbf{\Theta})$$

• easy to train, just count bigrams !

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
Some Pa	ast Work				

- interaction chronography (Chapple, 1939; Chapple, 1949)
- modeling in dialogue: K = 2
 - telecomminications (Norwine & Murphy, 1938; Brady, 1969)
 - sociolinguistics (Jaffe & Feldstein, 1970)
 - psycholinguistics (Dabbs & Ruback, 1987)
 - dialogue systems (cf. Raux, 2008)
- modeling in multi-party settings: K > 2
 - psycholinguistics: GroupTalk model (Dabbs et al, 1987)
 - not quite serviceable for current task
 - pre-ASR segmentation: EDO model (Laskowski & Schultz, 2007)

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
	000000				

Defining Turn-Taking Perplexity (PPL)

In language modeling,

- \mathbf{w} : word $\|\mathbf{w}\|$ -sequence
- **Θ** : "language model"

Here,

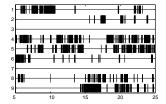
- \mathbf{Q} : $K \times T$ chronograph
- **Θ** : "turn-taking model"

NLL =
$$-\frac{1}{\|\mathbf{w}\|} \log_e P(\mathbf{w} | \mathbf{\Theta})$$
 NLL = $-\frac{1}{KT} \log_2 P(\mathbf{Q} | \mathbf{\Theta})$
PPL = 10^{NLL} PPL = 2^{NLL}
= $(P(\mathbf{Q} | \mathbf{\Theta}))^{-1/\kappa T}$

 Can also window negative log-likelihood (NLL) to yield a measure of local perplexity (in time).

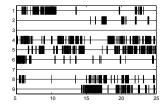
Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
		00000			

obtain Q for ICSI Bmr024 K = 9 participants ≈ 55 minutes train the Θ model compute local perplexity using 60-second Hamming



Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
		00000			

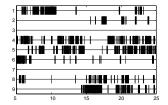
obtain Q for ICSI Bmr024 K = 9 participants ≈ 55 minutes train the Θ model compute local perplexity using 60-second Hamming



Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
		00000			

obtain Q for ICSI Bmr024

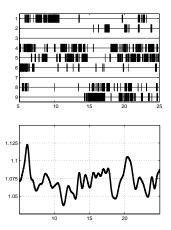
- K = 9 participants
- \approx 55 minutes
- **2** train the Θ model
- compute local perplexity using 60-second Hamming windows



Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
		00000			

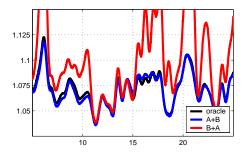
obtain Q for ICSI Bmr024

- K = 9 participants
- \approx 55 minutes
- **2** train the Θ model
- compute local perplexity using 60-second Hamming windows



Prolegomena	Compositional Models	Direct Estimation ○●○○○	EDO Model	Experiments	Summary
Generalization					

- A+B: train on first half (A) only, test on A
- B+A: train on second half (B) only, test on A



- a multi-participant compositional model Θ generalizes poorly
- even to other parts of the same conversation!

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
		00000			

$$P(\mathbf{Q}) \approx P_0 \cdot \prod_{t=1}^{I} P\left(\mathbf{q}_t | \mathbf{q}_{t-1}, \mathbf{\Theta}^{CD}\right) \qquad 2^{K} \cdot \left(2^{K} - 1\right)$$

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
		00000			

$$P(\mathbf{Q}) \approx P_0 \cdot \prod_{t=1}^{T} P\left(\mathbf{q}_t | \mathbf{q}_{t-1}, \mathbf{\Theta}^{CD}\right) \qquad 2^{K} \cdot \left(2^{K} - 1\right)$$
$$\approx P_0 \cdot \prod_{t=1}^{T} \prod_{k=1}^{K} P\left(\mathbf{q}_t [k] | \mathbf{q}_{t-1}, \mathbf{\Theta}_k^{CI}\right) \qquad K \cdot 2^{K}$$

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
		00000			

$$P(\mathbf{Q}) \approx P_{0} \cdot \prod_{t=1}^{T} P\left(\mathbf{q}_{t} | \mathbf{q}_{t-1}, \mathbf{\Theta}^{CD}\right) \qquad 2^{K} \cdot \left(2^{K} - 1\right)$$
$$\approx P_{0} \cdot \prod_{t=1}^{T} \prod_{k=1}^{K} P\left(\mathbf{q}_{t} [k] | \mathbf{q}_{t-1}, \mathbf{\Theta}_{k}^{CI}\right) \qquad K \cdot 2^{K}$$
$$\approx P_{0} \cdot \prod_{t=1}^{T} \prod_{k=1}^{K} P\left(\mathbf{q}_{t} [k] | \mathbf{q}_{t-1}, \mathbf{\Theta}_{any}^{CI}\right) \qquad 2^{K}$$

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
		00000			

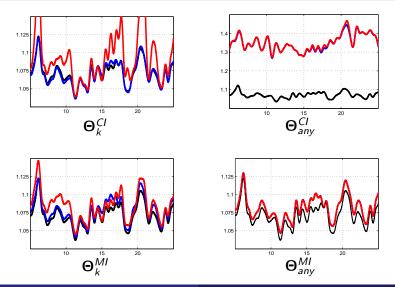
$$P(\mathbf{Q}) \approx P_{0} \cdot \prod_{t=1}^{T} P\left(\mathbf{q}_{t} | \mathbf{q}_{t-1}, \mathbf{\Theta}^{CD}\right) \qquad 2^{K} \cdot \left(2^{K} - 1\right)$$
$$\approx P_{0} \cdot \prod_{t=1}^{T} \prod_{k=1}^{K} P\left(\mathbf{q}_{t} [k] | \mathbf{q}_{t-1}, \mathbf{\Theta}^{CI}_{k}\right) \qquad K \cdot 2^{K}$$
$$\approx P_{0} \cdot \prod_{t=1}^{T} \prod_{k=1}^{K} P\left(\mathbf{q}_{t} [k] | \mathbf{q}_{t-1}, \mathbf{\Theta}^{CI}_{any}\right) \qquad 2^{K}$$
$$\approx P_{0} \cdot \prod_{t=1}^{T} \prod_{k=1}^{K} P\left(\mathbf{q}_{t} [k] | \mathbf{q}_{t-1} [k], \mathbf{\Theta}^{MI}_{k}\right) \qquad K \cdot 2$$

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
		00000			

$$P(\mathbf{Q}) \approx P_{0} \cdot \prod_{t=1}^{T} P\left(\mathbf{q}_{t} | \mathbf{q}_{t-1}, \mathbf{\Theta}^{CD}\right) \qquad 2^{K} \cdot \left(2^{K} - 1\right)$$
$$\approx P_{0} \cdot \prod_{t=1}^{T} \prod_{k=1}^{K} P\left(\mathbf{q}_{t} [k] | \mathbf{q}_{t-1}, \mathbf{\Theta}^{CI}_{k}\right) \qquad K \cdot 2^{K}$$
$$\approx P_{0} \cdot \prod_{t=1}^{T} \prod_{k=1}^{K} P\left(\mathbf{q}_{t} [k] | \mathbf{q}_{t-1}, \mathbf{\Theta}^{CI}_{any}\right) \qquad 2^{K}$$
$$\approx P_{0} \cdot \prod_{t=1}^{T} \prod_{k=1}^{K} P\left(\mathbf{q}_{t} [k] | \mathbf{q}_{t-1} [k], \mathbf{\Theta}^{MI}_{k}\right) \qquad K \cdot 2$$
$$\approx P_{0} \cdot \prod_{t=1}^{T} \prod_{k=1}^{K} P\left(\mathbf{q}_{t} [k] | \mathbf{q}_{t-1} [k], \mathbf{\Theta}^{MI}_{any}\right) \qquad 2$$

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary

Circumscribing Model Complexity: Perplexity Trajectories



Laskowski ACL

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
		00000			

- Direct compositional models either:
 - Periodically underperform grossly due to overfitting, or
 - **2** Do not model interaction $(\Theta_k^{\overline{M}I}, \Theta_{any}^{\overline{M}I})$.

• Variants which **do** model interaction $(\Theta^{CD}, \Theta_k^{CI}, \Theta_{any}^{CI})$:

Fail to exhibit K-independence.

- the number and identity of states is a function of K
- cannot be trained on conversations with K participants, and applied to conversations with K' ∠K participants
- Fail to exhibit R-independence.
 - sensitive to participant index assignment
 - perplexities differ if Q is rotated by arbitrary rotation R.
 - exhaustive rotation during training has complexity K!
- Insufficiently parsimonious theoretically vacuous.

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
		00000			

- Direct compositional models either:
 - Periodically underperform grossly due to overfitting, or
 - 2 Do not model interaction $(\Theta_k^{MI}, \Theta_{any}^{MI})$.
- Variants which **do** model interaction (Θ^{CD} , Θ^{CI}_k , Θ^{CI}_{any}):
 - **1** Fail to exhibit *K*-independence.
 - the number and identity of states is a function of ${\boldsymbol K}$
 - cannot be trained on conversations with K participants, and applied to conversations with $K' \neq K$ participants
 - Fail to exhibit R-independence.
 - sensitive to participant index assignment
 - $\bullet\,$ perplexities differ if Q is rotated by arbitrary rotation R
 - exhaustive rotation during training has complexity K!
 - 3
- Insufficiently parsimonious \longrightarrow theoretically vacuous

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
		00000			

- Direct compositional models either:
 - Periodically underperform grossly due to overfitting, or
 - 2 Do not model interaction $(\Theta_k^{MI}, \Theta_{any}^{MI})$.
- Variants which **do** model interaction (Θ^{CD} , Θ^{CI}_k , Θ^{CI}_{any}):
 - **1** Fail to exhibit *K*-independence.
 - the number and identity of states is a function of ${\boldsymbol K}$
 - cannot be trained on conversations with K participants, and applied to conversations with $K' \neq K$ participants
 - 2 Fail to exhibit **R**-independence.
 - sensitive to participant index assignment
 - ${\ensuremath{\,\circ\,}}$ perplexities differ if Q is rotated by arbitrary rotation R
 - exhaustive rotation during training has complexity K!
 - Insufficiently parsimonious \longrightarrow theoretically vacuous.

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
		00000			

- Direct compositional models either:
 - Periodically underperform grossly due to overfitting, or
 - **2** Do not model interaction $(\Theta_k^{MI}, \Theta_{anv}^{MI})$.
- Variants which **do** model interaction (Θ^{CD} , Θ^{CI}_{μ} , Θ^{CI}_{anv}):
 - Fail to exhibit K-independence.
 - the number and identity of states is a function of K
 - cannot be trained on conversations with K participants, and applied to conversations with $K' \neq K$ participants
 - Pail to exhibit R-independence.
 - sensitive to participant index assignment
 - perplexities differ if **Q** is rotated by arbitrary rotation **R**
 - exhaustive rotation during training has complexity K!

 - Insufficiently parsimonious \rightarrow theoretically vacuous.

Prolegomena	Compositional Models	Direct Estimation	EDO Model ●○○○○	Experiments 00000	Summary
Degree-o	of-Overlap (D0	D) Model			

Replace the probability of transition between **compositional states** by the probability of transition between **the number of participants speaking simultaneously** in them:

$$P\left(\mathbf{q}_{t} | \mathbf{q}_{t-1}, \mathbf{\Theta}^{CD}\right) \doteq \alpha P\left(\|\mathbf{q}_{t}\| | \|\mathbf{q}_{t-1}\|, \mathbf{\Theta}^{DO}\right)$$

where

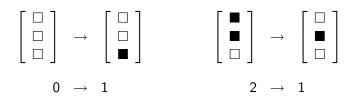
$$\|\mathbf{q}\| = \sum_{k=1}^{K} \delta(\mathbf{q}[k], \blacksquare)$$

 $\in \{0, 1, \cdots, K\}$

Model contains only $K \cdot (K+1)$ free parameters.

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
00000	000000	00000	00000	00000	0000

DO Model Examples



But unfortunately,

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
			00000		

Extended-Degree-of-Overlap Model (Laskowski & Schultz, 2007)

Extend the "to" state,

- to a 2-element vector, with the
- number of participants speaking in both q_{t-1} and q_t:

$$P\left(\mathbf{q}_{t} | \mathbf{q}_{t-1}, \mathbf{\Theta}^{CD}\right) \doteq \alpha P\left(\|\mathbf{q}_{t}\|, \|\mathbf{q}_{t} \cdot \mathbf{q}_{t-1}\| | \|\mathbf{q}_{t-1}\|, \mathbf{\Theta}^{EDO}\right)$$

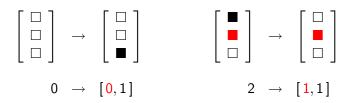
where

$$(\mathbf{q} \cdot \mathbf{q}')[k] = \begin{cases} \blacksquare & \text{if } \mathbf{q}[k] = \blacksquare \text{ and } \mathbf{q}'[k] = \blacksquare \\ \Box & \text{otherwise} \end{cases}$$

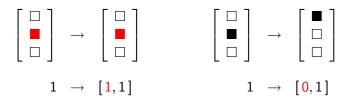
Also easy to train: just count the bigrams!

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
			00000		

EDO Model Examples



And as desired,



Prolegomena	Compositional Models	Direct Estimation	EDO Model ○○○○●	Experiments 00000	Summary

EDO Desiderata Scorecard

The EDO Model achieves R-invariance:

- $\|\cdot\|$ is a sum
- $\bullet \ \ commutative \longrightarrow rotation-independent$
- results same regardless of participant index assignment

2 The EDO Model achieves *K*-invariance:

- sums performed over -state participants only
- remaining participants, in □, ignored
- can apply to any K, with $K_{train} \neq K_{test}$

The EDO state space is tractably small:

- parameters are individually meaninful
- can be further constrained by mapping all $\|\cdot\| > K_{max}$ to K_{max}

Prolegomena	Compositional Models	Direct Estimation	EDO Model ○○○○●	Experiments 00000	Summary

EDO Desiderata Scorecard

The EDO Model achieves R-invariance:

- $\|\cdot\|$ is a sum
- $\bullet \ \ commutative \longrightarrow rotation-independent$
- results same regardless of participant index assignment
- The EDO Model achieves K-invariance:
 - sums performed over ■-state participants only
 - remaining participants, in \Box , ignored
 - can apply to any K, with $K_{train} \neq K_{test}$
- The EDO state space is tractably small:
 - parameters are individually meaninful
 - can be further constrained by mapping all $\|\cdot\| > K_{max}$ to K_{max}

Prolegomena	Compositional Models	Direct Estimation	EDO Model ○○○○●	Experiments	Summary

EDO Desiderata Scorecard

The EDO Model achieves R-invariance:

- $\|\cdot\|$ is a sum
- $\bullet \ \ commutative \longrightarrow rotation-independent$
- results same regardless of participant index assignment
- The EDO Model achieves K-invariance:
 - sums performed over ■-state participants only
 - remaining participants, in \Box , ignored
 - can apply to any K, with $K_{train} \neq K_{test}$
- The EDO state space is tractably small:
 - parameters are individually meaninful
 - can be further constrained by mapping all $\|\cdot\| > K_{max}$ to K_{max}

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments ●○○○○	Summary
Data					

ICSI Meeting Corpus (Janin et al, 2003; Shriberg et al, 2004):

- 75 meetings
- would have occurred even if they had not been recorded
- approximately 1 hour long
- 3–9 participants each
- forced-alignment-mediated ■/□ references available

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments ○●○○○	Summary

Same-Conversation Training

- iterate over all meetings:
 - split meeting into halves A and B
 - 2 A+B condition: { train A, score A } & { train B, score B }
 - B+A condition: { train A, score B } & { train B, score A }
- scoring intervals of the same conversation
 - number of participants K invariable
 - participant index assignment R invariable
- assess
 - independent-participant model Θ^{MI}_{any}
 - compositional models: Θ^{CD} , Θ^{CI}_k , Θ^{MI}_k
 - EDO model, with $K_{max} = K$

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
				00000	

Same-Conversation Results

Model	PP, A+B		PP, B+A	
Model	"all"	"sub"	"all"	"sub"
oracle	1.0905	1.6444	1.0905	1.6444
Θ^{CD}	1.0905	1.6444	1.1225	1.8395
$\{\mathbf{\Theta}_k^{CI}\}$	1.0915	1.6576	1.1156	1.7809
$\{\mathbf{\Theta}_k^{MI}\}$	1.0978	1.7236	1.1086	1.7950
Θ^{MI}	1.1046	1.8047	1.1047	1.8059
Θ^{EDO}	1.0977	1.7257	1.0985	1.7323

 on unseen same-conversation data, EDO model outperforms all compositional models

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
				00000	

Same-Conversation Results

Model	PP, A+B		PP, B+A	
Model	"all"	"sub"	"all"	"sub"
oracle	1.0905	1.6444	1.0905	1.6444
Θ^{CD}	1.0905	1.6444	1.1225	1.8395
$\{\mathbf{\Theta}_k^{CI}\}$	1.0915	1.6576	1.1156	1.7809
$\{\mathbf{\Theta}_k^{MI}\}$	1.0978	1.7236	1.1086	1.7950
Θ^{MI}	1.1046	1.8047	1.1047	1.8059
Θ^{EDO}	1.0977	1.7257	1.0985	1.7323

 on unseen same-conversation data, EDO model outperforms all compositional models

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
				00000	

Other-Conversation Training

• iterate over all meetings:

- train on remaining 74 meetings
- score held out meeting

scoring different conversations

- number of participants K variable
- participant index assignment R unknown

assess

- EDO model, over a range of K_{max}

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
				00000	

Other-Conversation Results

Model	Р	Р	ΔΡΡ (%)		
Model	"all"	"sub"	"all"	"sub"	
oracle	1.0921	1.6616	-100	-100	
Θ^{MI}	1.1051	1.8170	0	0	
Θ^{EDO} (6)	1.0992	1.7405	-45	-49	
Θ^{EDO} (5)	1.0968	1.7127	-64	-67	
Θ^{EDO} (4)	1.0953	1.6947	-75	-79	
Θ^{EDO} (3)	1.1082	1.8502	+24	+21	

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments 00000	Summary ●○○○		
Conclusions							

1 The Extended-Degree-of-Overlap (EDO) model:

- can be used as a density estimator for any conversation;
- any conversation can be used to infer its parameters.
- The EDO model vastly outperforms standard single-participant alternatives,
 - e.g., those used in speech activity detection,
 - by 75% rel from the oracle.
- Participant behavior is (in measurable part) predicted by interlocutor behavior.

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary ●○○○
Conclusi	ons				

1 The Extended-Degree-of-Overlap (EDO) model:

- can be used as a density estimator for any conversation;
- any conversation can be used to infer its parameters.
- The EDO model vastly outperforms standard single-participant alternatives,
 - e.g., those used in speech activity detection,
 - by 75% rel from the oracle.
- Participant behavior is (in measurable part) predicted by interlocutor behavior.

Prolegomena	Compositional Models 000000	Direct Estimation	EDO Model	Experiments 00000	Summary ●○○○
Conclus	ions				

1 The Extended-Degree-of-Overlap (EDO) model:

- can be used as a density estimator for any conversation;
- any conversation can be used to infer its parameters.
- The EDO model vastly outperforms standard single-participant alternatives,
 - e.g., those used in speech activity detection,
 - by 75% rel from the oracle.
- Participant behavior is (in measurable part) predicted by interlocutor behavior.

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary ○●○○
Contribu	utions				

- A framework for computing perplexity in ■/□ interaction chronographs;
- Evidence of the unsuitability of directly estimated compositional models;
- Evidence of the suitability of the EDO model as a baseline for future research; and
- Empirical assessment of EDO performance on one of the largest multi-party corpora of naturally occurring conversation.

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments 00000	Summary ○●○○
Contribu	itions				

- A framework for computing perplexity in ■/□ interaction chronographs;
- Evidence of the unsuitability of directly estimated compositional models;
- Evidence of the suitability of the EDO model as a baseline for future research; and
- Empirical assessment of EDO performance on one of the largest multi-party corpora of naturally occurring conversation.

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments 00000	Summary ○●○○
Contribu	itions				

- A framework for computing perplexity in ■/□ interaction chronographs;
- Evidence of the unsuitability of directly estimated compositional models;
- Evidence of the suitability of the EDO model as a baseline for future research; and
- Empirical assessment of EDO performance on one of the largest multi-party corpora of naturally occurring conversation.

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments 00000	Summary ○●○○
Contribu	itions				

- A framework for computing perplexity in ■/□ interaction chronographs;
- Evidence of the unsuitability of directly estimated compositional models;
- Evidence of the suitability of the EDO model as a baseline for future research; and
- Empirical assessment of EDO performance on one of the largest multi-party corpora of naturally occurring conversation.

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
					0000

Impact/Recommendations

- The precise EDO model formulation complements and possibly supersedes the (heretofore usefully) imprecise notion of taking turns.
 - both account for the distribution of speech in time and across participants
- The EDO model and PPL measure provide a computational means for corroborating the findings of conversation analysis (in particular) on vastly larger collections of conversation than have been analyzed to date.
- The EDO model and PPL measure provide an unambiguous measure of spoken document similarity; can now easily:
 - compare turn-taking across conversations,
 - find where turn-taking deviates from norms ("hotspots"), and
 - assess turn-taking appropriateness in dialogue systems.

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary
					0000

Impact/Recommendations

- The precise EDO model formulation complements and possibly supersedes the (heretofore usefully) imprecise notion of taking turns.
 - both account for the distribution of speech in time and across participants
- The EDO model and PPL measure provide a computational means for corroborating the findings of conversation analysis (in particular) on vastly larger collections of conversation than have been analyzed to date.
- The EDO model and PPL measure provide an unambiguous measure of spoken document similarity; can now easily:
 - compare turn-taking across conversations,
 - find where turn-taking deviates from norms ("hotspots"), and
 - assess turn-taking appropriateness in dialogue systems.

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary ○○●○

Impact/Recommendations

- The precise EDO model formulation complements and possibly supersedes the (heretofore usefully) imprecise notion of taking turns.
 - both account for the distribution of speech in time and across participants
- The EDO model and PPL measure provide a computational means for corroborating the findings of conversation analysis (in particular) on vastly larger collections of conversation than have been analyzed to date.
- The EDO model and PPL measure provide an unambiguous measure of spoken document similarity; can now easily:
 - compare turn-taking across conversations,
 - find where turn-taking deviates from norms ("hotspots"), and
 - assess turn-taking appropriateness in dialogue systems.

Prolegomena	Compositional Models	Direct Estimation	EDO Model	Experiments	Summary ○○○●

Thank You!