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Abstract

Automatic dialog act (DA) modeling has been shown to benefit
meeting understanding, but current approaches to DA recog-
nition tend to suffer from a common problem: they under-
represent behaviors found at turn edges, during which the
“floor” is negotiated among meeting participants. We propose a
new approach that takes into account speech from other talkers,
relying only on speech/non-speech information from all partic-
ipants. We find (1) that modeling other participants improves
DA detection, even in the absence of other information, (2)
that only the single locally most talkative other participant mat-
ters, and (3) that 10 seconds provides a sufficiently large local
context. Results further show significant performance improve-
ments over a lexical-only system — particularly for the DAs of
interest. We conclude that interaction-based modeling at turn
edges can be achieved by relatively simple features and should
be incorporated for improved meeting understanding.

Index Terms: vocal interaction, cross-speaker modeling,
speech/non-speech, dialog acts, meetings

1. Introduction

The automatic understanding of naturally occurring conversa-
tions has to date focused largely on techniques relevant to the
indexing, retrieval, and summarization of propositional content.
For these tasks, automatic segmentation and classification of
DAs [1] has been shown to improve performance [2].
However, the focus on propositional content has optimized
systems for those intervals of conversation in which such con-
tent is deployed, namely away from speaker turn boundaries.
Turn initiation and termination are frequently implemented by
DA types that account for only a fraction of verbal effort by
time. Often for this reason, current DA recognition systems
lump many of these DA types together [1]. For example, floor
grabbers, which have been shown to correlate with conversa-
tional hot spots [4], find themselves in the same group as floor
holders, of which there are many more and which exhibit the op-
posite correlation. As a result, hot spots and other short events
related to participant interaction have been under-represented.
In the current work, we investigate what happens at turn
edges by considering other participants’ speech in the immedi-
ate temporal neighborhood. We analyze only the time-aligned
speech/non-speech patterns of all participants, a representation
that we will refer to as the vocal interaction record [5]. Previous
work which has explored this representation includes the clas-
sification of speaker role [6, 7, 8], the detection of interaction
groups [9], the ranking of participants by dominance and influ-
ence [10], and the recognition of meeting group actions [12].
However, these applications collect and model the szatistics de-
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scribing vocal interaction over long observation intervals. To
the best of our knowledge, vocal interaction features for seg-
menting and classifying talk found in individual utterances have
not been modeled or even proposed.

In this research we investigate turn-related-DA recognition
in meetings using a novel computational and experimental ap-
proach. We ask the following questions:

e To what extent does local interlocutor speech/non-
speech activity predict DA type?

e How many interlocutors should be considered?
e How much time around turn edges is needed?

e Can modeling vocal interaction augment the perfor-
mance of a state-of-the-art lexical DA recognizer?

Our experiments indicate that considering interlocutor speech
significantly improves performance; that it suffices to model
speech activity inside of a temporal neighborhood of only 10
seconds; that, under our proposed model, only the locally most
talkative interlocutor need be considered; and, finally, that our
simple speech activity features are complimentary to oracle lex-
ical information, in particular for the detection of those behav-
iors which tend to occur at turn boundaries.

2. Data

The data used in this work is the ICSI Meeting Corpus, consist-
ing of 75 longitudinal recordings of naturally occurring meet-
ings by several groups at ICSI [13, 14]. We rely on the previ-
ously published split of this data into a TRAINSET of 51 meet-
ings, and a DEVSET and a TESTSET of 11 meetings each.

The meetings are provided with lexical forced alignment
and DA annotation. We focus on three groups of DA types, the
first that of floor mechanisms, including floor grabbers (£g),
floor holders (£h), and holds (h). The second group con-
sists of backchannels (b) and acknowledgments (bk); we also
consider accepts (aa). All six have been reported to share a
common vocabulary [14], suggesting that lexical content may
not adequately distinguish among them. All other speech im-
plements either statements (s) or questions (q), representing
propositional-content DAs. The priors of these 8 DA types by
time, for all three datasets, are in the ranges: 1.10-1.18% for
aa, 2.65-2.86% for b, 1.42-1.48% for bk, 0.55-0.63% for f£g,
2.29-3.00% for £h, 0.21-0.36% for h, 6.53—-6.72% for g, and
84.83-85.18% for s.

3. Methods

As mentioned earlier, inference of DA type in this work is
made using only the vocal interaction record of a meeting. This
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record consists of, for each participant, contiguous “ON” in-
tervals of speech, which we refer to as talkspurts, and inter-
talkspurt “OFF” gaps. A talkspurt segmentation, comprising
the input to our proposed methods, is formed by concatenating
the time spans of adjacent human-transcribed words. Because
a single talkspurt can implement a sequence of DAs, we treat
talkspurts as constructed out of smaller atomic units; for sim-
plicity, we choose these units to be 100 ms frames. The task we
consider is the classification of each frame of speech as one of
the 8 DA types in Section 2. We propose to decode a meetings
one target participant at a time, and to model the speech/non-
speech posterior of non-target participants in the target partic-
ipant’s feature space. DA segmentation is not assumed during
classification, and boundaries are implicitly postulated where
two adjacent frames are assigned dissimilar labels.

We optimize our systems by maximizing the unweighted
arithmetic mean over the F'-scores for all 8 DA types. Tuning
to individual-DA F'-scores is part of our final analysis in Sub-
section 4.3.

3.1. Simple Distance-to-Speech-Edge Features

As apreliminary set of context features for a given speech frame
at time ¢, we consider distance to nearby speech from both the
target speaker and their interlocutors. For the target speaker, we
compute 4 features: the number of frames to the nearest pre-
vious speech frame, the number of frames to the nearest next
speech frame, and similarly for the nearest non-speech frames.
We also compute 3 interlocutor features, namely the number of
frames to the nearest previous and nearest next speech frame
from any non-target participants, as well as the number of con-
current non-target speakers at time ¢.

Given these features, we train a decision tree using TRAIN-
SET, whose performance on DEVSET for target participant fea-
tures alone is 16.51%; adding the three non-target participant
features improves performance to 18.51%. We note that this
approach has two main limitations, namely that (1) frames are
assumed conditionally independent, as the decision tree does
not leverage sequence information, and (2) the features capture
only distance to the nearest edge, and not what lies beyond it.

3.2. A Hidden Markov Model Topology

To address the first limitation, we propose a decoder topology
whose elements are shown in Figure 1. A talkspurt fragment
(TSF) refers to the longest contiguous interval of speech be-
longing to at most one talkspurt and at most one DA. Each TSF
sub-network has a minimum duration constraint of 1 frame, and
a maximum no-repeat state sequence of 5 frames to constrain
topology size. Since many TSFs are longer than 500 ms, we
allow a single self-loop on the center-most state in the TSF sub-
network; we prohibit self-loops elsewhere in order to precisely
model speech context in the neighborhood of TSF edges.

The network for each DA type consists of one non-DA-
terminal and one DA-terminal TSF sub-network; networks for
g and s DA types have two additional DA-terminal TSF sub-
networks: one for abandoned DAs and one for interrupted
DAs. As a result, the complete HMM topology contains 20
distinct TSF sub-networks. Transition from a non-DA-terminal
TSF to a DA-terminal TSF must pass through an intra-DA
gap (GAP) sub-network; DA networks may be entered through
a DA-terminal TSF sub-network for DAs with no intra-DA
gaps. Egress states in DA-terminal TSFs are punctuation-
bearing. The complete decoder topology involves full connec-
tivity among the 8 DA networks via inter-DA GAPs.
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(a) TSF (b) intra-DA GAP  (c¢) inter-DA GAP

Figure 1: Element sub-networks in an HMM topology for con-
versational speech, with a frame step of 100 ms; states shown
in white denote non-speech. In (a), egress states, optionally
punctuation-bearing, are shown in black. Note that (b) and (c)
differ in that inter-DA GAPs may have zero duration.

Transition probabilities are maximum likelihood estimates
inferred from the best Viterbi path through TRAINSET. When
only the binary speech/non-speech activity at time ¢ of the
target participant is used, this system achieves an average 8-
class DEVSET F'-score of 20.60%. To include the simple fea-
tures of the previous section, we model them in log-space us-
ing Gaussian mixture models (GMMs). The number of Gaus-
sian components, as well as the emission model weight, are
optimized to maximize the average 8-class F'-score on DE-
VSET. The DEVSET performance of this system is 21.93% for
target-participant features only, and 24.06% when non-target-
participant features are included.

3.3. Improved Vocal Interaction Features

We now turn to the second limitation mentioned in Subsec-
tion 3.1, namely that the simple features capture only the nearest
talkspurt-edge events; the latter are modeled even when they are
temporally very distant. Although we could generalize feature
extraction beyond the first edge, we instead propose an alter-
native approach, relying on only a /ocal neighborhood of AT
seconds around instant ¢, t — AT to t+AT'. In our experiments,
we have used AT = 5 seconds.

We first rank non-target participants, based on their amount
of talk in this neighborhood. Vocal interaction features are
then extracted for the most talkative non-target participants by
considering 0.5 s windows to the left and right of the cur-
rent instant ¢, as well as single frames at t. Finally, from
each window, we compute the mean of the speech activity pos-
terior from the frames in that window. We denote the fea-
ture vector consisting of means drawn from the speech pat-
terns of only the target participant as TARGET. Feature vec-
tors describing the locally most talkative non-target participant,
the two locally most talkative non-target participants, and the
three locally most talkative non-target participants are denoted
OTHER] D OTHER2 D OTHER3, respectively. Finally, the
concatenation of TARGET and OTHERN will simply be re-
ferred to a VOCINTIN. An example of interlocutor ranking and
VOCINT3 extraction regions is shown in Figure 2.

‘We model the correlated VOCINTN features using GMMs,
following a linear discriminant analysis (LDA) transform. The
number of Gaussian components and LDA discriminants, as
well as the emission model weight, are separately optimized us-
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Figure 2: An example of interlocutor rotation and feature ex-
traction at instant ¢, with time depicted from left to right, when
decoding participant C. Non-target participants A, B, D, and E
have been ranked according to their amount of talk in the lo-
cal neighborhood, shown as black squares. Windows for which
features are extracted are shown as ovals; a single mean speech
activity posterior is computed for each, out to ¢ — 5.0 s and
t + 0.5 s (only windows near ¢ are shown).

ing DEVSET. Within the proposed HMM framework, DEVSET
performance using TARGET is 24.88%. When OTHER3 features
are included, the performance increases to 28.37%. This repre-
sents absolute improvements of 2.95% and 4.31% with respect
to the combination of the simple features of Subsection 3.1 and
the HMM topology. In the remainder of the work, we rely only
on these improved VOCINTN features. We note that they offer
two additional advantages, to be explored in future work: (1)
they rely on a finite context and may be more suitable for online
processing; and (2) they are in principle more robust to speech
activity insertion and deletion errors.

4. Experiments

This section presents two experiments. In the first, we compare
a baseline in which only TARGET features are modeled to one
with OTHERN features added. In the second, we compare a
strong lexical baseline to itself with VOCINT3 added.

4.1. Vocal Interaction Features

The average 8-class F'-score of the HMM system, using our
improved vocal interaction features, is shown in Figure 3 as a
function of the size of the neighborhood from which these fea-
tures are computed. As can be seen, performance for TARGET
and for its combinations with OTHERN increases sharply as the
neighborhood grows to approximately 15 seconds for TARGET
and 10 seconds for the TARGET+OTHERIV systems.

A second observation is that differences among the
TARGET+OTHERN systems are quite small, relative to their
differences with TARGET. This indicates that modeling more
than just the single locally most talkative non-target participant
offers little additional gain. We suspect that the noisy behavior
ofthe TARGET+OTHERN curves for larger window sizes is due
to our technique of ranking participants during feature extrac-
tion; it is possible that participants who speak in close temporal
proximity to the current instant ¢ should be ranked higher than
those who may speak more but also much sooner or much later.

Over the entire range of explored context sizes, the perfor-
mance of TARGET features alone is always lower than the best
TARGET+OTHERN system by approximately 2-4%. It is pos-
sible, given the asymptotic behavior of the TARGET+OTHER/NV
curves and the fact that the TARGET curve is only slowly ris-
ing for 40-second contexts, that TARGET eventually catches up
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with TARGET+OTHERN. This requires further investigation.
In the meantime, what Figure 3 makes clear is that, at its high-
est observed performance (achieved using a 40-second context),
TARGET is outperformed by all TARGET+OTHERN systems
with only 5 seconds of context. This may have implications
for real-time conversation processing systems.
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Figure 3: Average 8-class F'-score for 5 systems, as a function
of the neighborhood size 2AT, shown on a logarithmic scale in
seconds along the z-axis.

4.2. Complimentarity with Lexical Features

In our second experiment, we construct an oracle lexical base-
line as the most optimistic single-source measure of perfor-
mance on this task. We note that DA classification is biased
towards lexical information because of the way the data was
labeled, making a lexical baseline extremely hard to beat.

The features in our proposed lexical HMM system are the
observed lexical bigrams. Each frame of speech occurs clos-
est to the center of a single word; we assign to it the left and
right bigrams containing that word. Only those left and right
bigrams per state are modeled whose probability of occurrence
for at least one DA type exceeds 0.1% in TRAINSET. During
decoding, emission and transition probabilities are combined
using a global weight as for VOCINTN systems.

The average 8-class F'-score achieved by the lexical HMM
system on DEVSET is 50.10%, which is indicative of the dif-
ficulty of this task, even when perfect word information is
present. As a measure of the competitiveness of this system,
we have retrained it on the traditional 5-class DA task reported
in [1] and re-optimized the lexical model weight. Although
its complexity is much smaller than the hidden event language
model (HE-LM) in [1], it achieves an error rate of 22.62% on
the “lenient” classification error metric (with its own automatic
DA segmentation) on the unseen TESTSET data, an error rate
which is 2.5% lower than that achieved by HE-LM.

To assess feature complimentarity, on the 8-class task, we
combine VOCINT3 with this lexical baseline (using a second
emission model weight). The maximum F'-score achieved by
the combined system is 52.33%. This represents a 2.23% abso-
lute improvement, and indicates that the proposed VOCINTN
features offer complimentary information for DA detection.

4.3. Analysis of Performance on Unseen TESTSET Data

On TESTSET, the average 8-class F'-score follows a trend quite
similar to that on DEVSET. TARGET improves the performance
of the HMM topology alone from 21.81% to 25.48% by 3.67%



OTHER3 added VOCINT3 added

DA to TARGET to LEX

abs,% rel,% abs,% rel,%
fg 104 — 13.7 +31.8* 245 —27.0 +9.8*
h 1.1 - 63 +485.6*%7 | 41.5—423 +2.0*
fh | 21.7—25.6 4+183*f | 63.5—645 +1.5
b 56.7 — 57.8 +1.9%t | 770 =779  +1.1*
bk 126 - 149  +18.5* 563 —56.0 —0.5
aa 87— 13.0 +49.4%f | 40.0 —42.0 +5.0%}
q 234 —263  +12.3*%t | 39.8 =425 4+6.8%F
s 914 —913 —0.08* 933 —93.5 +0.2%}
int 10.7 —22.6 +111.3*%F | 21.9 - 34.1 +56.0%f
aba 7.0 — 6.6 —6.1 13.0 - 144 4103 7
ter | 61.4—62.1 +1.2%t | 69.1 —69.6 +0.7 7

Table 1: Absolute (“abs™) and relative (“rel”’) improvements in
F'-score on EVALSET, for individual DA conditions, obtained
by including non-target participant featurees in the non-lexical
baseline, and those obtained by including all VOCINT3 features
in the lexical baseline. “*” indicates significance at p < 0.01
using a randomization test; “{” indicates significance at p <
0.05 when labels are stratified into talkspurts; inf = interruption,
aba = abandonment, fer = (normal) termination.

absolute. Inclusion of OTHER3 improves it further to 29.33%,
by 3.85% absolute. When included in the lexical baseline,
which achieves 52.98% on TESTSET, VOCINT3 improves per-
formance to 54.74% by 1.76%.

We present EVALSET F'-scores for systems optimized for
specific DA types in Table 1; optimization consisted of tun-
ing model combination weights only. The table also shows F-
scores for the retrieval of frames implementing specific DA ter-
mination types; these scores were not included in the average
8-class F'-score during development.

It can be seen that the relative improvement in F'-score for
most DA types is high, when TARGET features are augmented
with OTHER3 features; this is due in large part to their rather
poor absolute F-scores. All positive improvements were shown
to be statistically significant at the frame level, at p < 0.01, us-
ing a randomization test'. Performance using lexical features
is much higher, for all DA and DA-termination types. When
the VOCINT3 model is used alongside the oracle lexical model,
the improvements observed in the left part of the table become
smaller. Nevertheless, for all DA types but acknowledgements
(bk), the relative improvements are positive. Floor grabbers
(£g) exhibit the largest relative increase, followed by questions
(a), which tend to terminate speaker turns, and asserts (aa).
The largest improvement is seen for the interruption of the on-
going DA (of 56%), which is a single-frame event. Many of
the F'-score increases are significant not only at the frame level,
but also when label sequences are stratified into talkspurts. Fi-
nally, we note that significant but small improvements are also
observed for statements, backchannels, and normal DA termi-
nation events.

5. Conclusions

We have defined a new set of features for DA recognition in
multi-party meetings, to aid in the detection of phenomena oc-

'We used Sebastian Pado’s SIGF impementation, found at
http://www.nlpado.de/ sebastian/sigf.html.
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curring at speaker turn edges. The features describe the local
distribution of speech/non-speech activity for the target partic-
ipant and for his/her interlocutors. Our results indicate that in-
clusion of interlocutor behavior significantly improves overall
DA recognition, with the largest gains for the short, turn-related
DAs under-represented in standard systems. We find that only
the single locally most talkative interlocutor matters, corrobo-
rating findings in conversation analysis regarding the orderli-
ness of floor change and its immutability to group size [3]. A
temporal context of 5 seconds in each direction appears suffi-
cient for capturing inter-participant DA dependency. We also
demonstrate that when combined with a purposely optimistic
oracle lexical system, the proposed features yield consistent im-
provements in average 8-class F'-score. Most importantly, we
observe large relative gains for specifically those behaviors that
initiate turns (floor grabbers, of 9.8%), and those which accom-
pany their completion (questions, of 6.8%, and interruption, of
56%). Together, these results indicate that the modeling of inter-
action at turn edges can be achieved with surprisingly simple-to-
compute features. Because the features and modeling approach
are text-independent, they offer the possibility of general appli-
cability across different languages and speaking styles.
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