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Abstract
We explore pre-silence syllabic lengthening as a cue for next-
speakership prediction in spontaneous dialogue. When esti-
mated using a transcription-mediated procedure, lengthening is
shown to reduce error rates by 25% relative to majority class
guessing. Lengthening should therefore be exploited by dia-
logue systems. With that in mind, we evaluate an automatic
measure of spectral envelope change, Mel-spectral flux (MSF),
and show that its speaker-independent performance is at least as
good as that of the transcription-mediated measure. Modeling
MSF is likely to improve turn uptake in dialogue systems, and
to benefit other applications needing an estimate of durational
variability in speech.
Index Terms: end-of-turn prediction, final lengthening, rate of
speech, turn-taking.

1. Introduction
Durational aspects play an important role in spoken language.
Analyses of read speech reveal that syntactic boundaries are
often accompanied by segmental lengthening [1]. Perceptual
studies have further shown that final lengthening influences how
interlocutors perceive phrase structure in read speech [2]. Final
lengthening has also been observed in dialogue; analysis sug-
gests that lengthening occurs in all phrase-final positions, but
that syllable duration prior to speaker change is significantly
shorter than before pauses in turn-medial position [3].

For dialogue systems, regulating the timing of dialogue
contributions with the user is a crucial function. A common
strategy is to interpret silences longer than a threshold as in-
dicative of the user’s end of turn. This is problematic since
conversational speech is not produced at a constant pace, and
pause length in turn-medial position varies [4]. Detecting cues
in the speech preceding silence may therefore yield more robust
end-of-turn detection, sooner. [5, 6] have shown that intonation
features can be used to detect end-of-turn significantly better
than a pause-only baseline.

In the current work, we focus on the role of lengthening, by
itself, in predicting speaker change. We ask the question:
1. Is final lengthening more pronounced prior to turn-
medial silence than prior to silence followed by the other
party’s speech?

Although [5] explored this problem, the data consisted of
machine-directed speech with utterances only one syntactically
complete sentence long. [3] analyzed turn-taking cues only for
semantically and pragmatically “smooth switches”, a subset of
all speaker changes. The approach we follow is most similar to
[6], using a strict operational segmentation. No data were dis-
carded based on syntactic, semantic or pragmatic felicity. Our
analysis using reference syllable duration shows that, on aver-
age, the question can be answered in the affirmative. We then
ask a second question:

2. Can final lengthening be measured accurately enough,
automatically, to aid in predicting whether the conse-
quent silence is turn-medial?

Experiments with Mel-spectral flux (MSF) suggest that this sec-
ond question can be answered in the affirmative at least as often
as the first. Subsequent analysis indicates that for the proposed
task of predicting turn-medial silence, MSF and syllable dura-
tion yield results which are only negligibly different.

2. Dialogue Data
The data used in this work are human-human dialogues, col-
lected in a recording environment set up to mimic the interac-
tion in the DEAL domain [7]. The scenario is a price nego-
tiation between a buyer and a seller. In total, eight dialogues
of about 15 minutes each were collected. They were infor-
mal, face-to-face conversations in Swedish; two female and four
male subjects participated. The close-talk microphone record-
ings had been orthographically transcribed and the transcrip-
tions automatically time-aligned [7] with the speech signal1.

To analyze variation in segmental lengthening, each party’s
speech was segmented into inter-pausal units (IPUs). For our
purposes, an IPU is a sequence of words inter-separated by si-
lences no longer than 100 ms2. Our data contains 1897 such
IPUs; 942 (49%) are followed by turn-medial silences, while
955 (51%) are followed by silences which precede the other
party speaking. As in [6], we denote these two exclusive classes
of IPUs as not-speaker-change (¬SC) and speaker-change (SC),
respectively. The data was split to be disjoint in speakers, as
shown in Table 1.

Data Set Speaker ID(dialogues)role # ¬SC,SC
DEVSET ~B(1-2)b,|A(1-4)s,|D(7-8)b 533,517
EVALSET ~A(3-4)b,|B(5-8)s,|C (5-6)b 409,438

Table 1: Split of IPUs in the 8 DEAL dialogues into DEVSET
and EVALSET. “b” and “s” indicate the buyer and seller roles.

3. A Transcription-Mediated Measure
Perceived speech rate is a complex phenomenon that has been
shown to depend on several different parameters [9]. How-
ever, our preliminary experiments suggested that unnormalized
syllable duration could be appropriate for SC/¬SC classifica-
tion. The available phonemic alignments were used to locate

1N-align [8] was used for forced alignment. The phone boundary
timestamps were manually verified.

2100 ms was used since Swedish has long plosives; were these in-
cluded, plosive stops would be among our putative inter-word silences.

Copyright © 2011 ISCA 28-31 August 2011, Florence, Italy

INTERSPEECH 2011

2065



the boundaries of the last two syllables in each IPU. The maxi-
mum onset rule was invoked, where intra-word syllable bound-
aries are placed in a way that maximizes the number of con-
sonants at the beginning of each syllable. A histogram of the
durations of the last syllable in both IPU classes, derived in this
way, is presented in Figure 1. Despite considerable overlap, the
distributions suggest — as hypothesized — that terminal ¬SC
syllables are on average longer than terminal SC syllables.
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Figure 1: Unnormalized distribution of the natural logarithm of
the duration (in seconds) of the last syllable in speaker-change
(SC) and not-speaker-change (¬SC) IPUs.

4. A Novel Automatic Measure
As mentioned in the introduction, we seek a measure sensitive
to final lengthening differences in SC and ¬SC IPUs.

4.1. Speech Rate Estimation without Landmark Detection

Lengthening is a local reduction in speech rate; measurement
of the latter has been extensively studied. In the standard
approach, a landmark detector locates salient events such as
word boundaries, syllable boundaries [10, 11], syllable nuclei
[12, 13, 14, 15], vowel nuclei [16], broad phone-class nuclei
[17], phone boundaries [18], or phone-sequence boundaries
[19]. The number of landmarks or landmark-delineated inter-
vals is then divided by their temporal support to yield a rate3.

Landmark detectors have been proposed which rely on low-
pass-filtered energy [10], band-pass-filtered energy [12, 15],
smoothed modified loudness [16, 15], zero-crossing rate [16],
spectral and spectral change measures [11, 18, 13, 19, 17], spec-
tral correlations [13, 14], temporal correlations [14], and spec-
tral deviation from a stylized vowel spectrum [20]. They can
be optimized using event detection criteria, such as the mini-
mization of false alarms and misses. Alternately, they can be
optimized to directly improve the derived speech rate estimate.

This means of estimating rate relies on how accurately one
can detect landmarks, which are not in themselves of interest for
the current task. Landmark localization can be argued to com-
prise a hard decision made prematurely. The only examples of
estimation that we are aware of which avoid landmark detection
are in [21], where a first spectral moment is computed over 1-
to 2-second windows, and [22], where a Gaussian mixture over
MFCC features is defined for each discrete rate class of interest.
The former approach is simpler and therefore computationally
more appealing; however, its windows are likely too long to
quantify differences in final lengthening.

3There is also a considerable amount of literature on the segmenta-
tion of speech where a rate is not sought or computed.

4.2. Spectral Flux (SF)

A near-instantaneous measure of change, known as “spectral
flux” (SF), or “delta spectrum magnitude”, is popular in many
audio processing fields. The terms appear to have been coined
in [23], a year after [24] proposed “spectral dissimilarity”. Sev-
eral variants of this measure have found their way into the detec-
tion and/or classification of: transient notes [24], speech versus
music [23], auditory scenes [25], note onsets [26], musical gen-
res [27], and speech overlap [28]. A common aspect of these
works is that they compute an inter-frame dissimilarity measure
using the complete magnitude frequency spectrum. Maxima in
the measure are thus as likely to be due to change in spectral
envelope shape as to other things not of interest here, such as
change in interharmonic spacing.

4.3. Mel-Spectral Flux (MSF)

To elide the effects of intonation, we measure the “flux” of the
envelope only. The feature used here, Mel-spectral flux (MSF),
is the logit transform of one of the “auxillary” features in [29];
its individual contribution to the task in [29] was never verified.

We compute MSF every tfra seconds following standard
audio pre-emphasis (1−0.97z−1), over a centered frame whose
duration is twid = tsep + 2text seconds. Two Mel-frequency
spectra, mL for the left half and mR for the right half of the
frame, are computed using two windows whose maxima are
tsep seconds apart (cf. [29] for a precise description of the win-
dow shapes). Decoupling tfra and tsep enables optimization of
the MSF measure for the current task.

We then compute the cosine distance betweenmL andmR,
which implicitly normalizes the energy in both spectra, and
transform the distance using the logit function to gaussianize
the resulting feature. A sign change makes it positively corre-
lated with the notion of flux,

MSF = −logit

„
mL ·mR√

mL ·mL

√
mR ·mR

«
, (1)

where “·” denotes the inner (dot) product. An example of the
trajectory of this feature is shown in Figure 2. As can be seen,
the feature — particularly when averaged over a longer inter-
val — is high-valued during instants of high spectral change
(including transitions from speech to non-speech), and lowest
during the interval corresponding to the longest syllable.

The histograms of average MSF, for SC and ¬SC IPUs, in
Figure 3 suggest that separation is approximately as good as for
raw syllable duration in Figure 1.

5. Experiments
Binary logistic regression4 was used to estimate the probabil-
ity that an IPU is SC or ¬SC, given our transcription-mediated
and/or automatic features.

5.1. Individual Features

In a first experiment, we assess the utility of the absolute du-
ration in seconds of the last syllable in each IPU, computed as
described in Section 3; we refer to this feature as “DUR1”. The
accuracy on DEVSET is 59.0%, with an area under the ROC
curve (AUC) for SC detection of 62.7%. We have tried several
transformations and normalizations of DUR1, also using the
durations of the preceding syllables when available, but were

4As implemented in weka [30], version 3.5.
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Figure 2: An 1-s IPU (“How much do I (get)?”) with the word
units, syllable units, audio, and MSF feature shown, from top to
bottom. The MSF feature is computed every 8 ms, using frames
of 32 ms with tsep = 14 ms; its 200-ms running average, using
a larger line width, is also shown. Time in seconds from IPU
start, along the x-axis.
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Figure 3: Unnormalized distribution of the MSF feature (com-
puted every 8 ms using frames of 32 ms with tsep = 14 ms)
and averaged over the last 500 ms of each speaker-change (SC)
and not-speaker-change (¬SC) IPU. Compare with Figure 1.

not able to beat this performance. Guessing the majority class,
¬SC, yields an accuracy of 50.8% on DEVSET.

We repeat the experiment, with the MSF feature instead of
DUR1, to answer two questions. The first is the framing policy
used to compute MSF; in what follows, we explore three: (1)
twid = 32-ms frames with tsep = 14 ms; (2) twid = 64-ms
frames with tsep = 28 ms; and (3) twid = 128-ms frames
with tsep = 56ms. In all cases, we compute the feature every
tfra = 8ms. The second question concerns combining the time
sequence of these features into a single descriptor for each IPU.
We choose the average over the last τ seconds, and determine τ

empirically by optimizing the AUC on DEVSET.
Figure 4 suggests that the optimal interval over which to

compute the MSF average is approximately the last 400 ms of
each IPU. Furthermore, it appears that computing MSF using
frames which are 64 ms in duration, with two 40-ms frames
whose maxima are separated by 28 ms, yields the best results.
We note that using much shorter frames, even during slowly
evolving syllable nuclei, can be expected to indicate high flux
for creaky voice (which tends to occur at IPU end).
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Figure 4: ROC area under the curve (AUC; along the y-axis)
for DEVSET, as a function of the number of seconds (along the
x-axis) of audio from IPU end, over which MSF is averaged;
MSF is computed using three different framing policies.

Finally, we have also tried to model MSF dynamically; our
best system involved computing a sequence of averages, in non-
overlapping 150 ms intervals. The results were only negligibly
better than the IPU-global average above. Combining the IPU-
global averages, from all three framing policy streams, resulted
in no improvement over the single 8 ms/64 ms policy stream.

5.2. Combination, Generalization and Significance

We repeat the experiments for DUR1, as well as MSF (com-
puted every 8 ms for 64-ms frames and averaged over the last
400 ms of each IPU) on EVALSET. We also build logistic re-
gressors for a combined 2-feature system. The results are shown
in the first panel of Table 2; for DEVSET they are 10-fold cross-
validation results, while for EVALSET they are single-fold re-
sults with models trained on all of DEVSET.

DEVSET EVALSETData Features (#) Acc AUC Acc AUC
DUR1 (1) 59.0 62.7 62.5 64.7

all MSF (1) 65.9 72.2 64.2 69.1
⊕ DUR1 (2) 67.5 72.5 65.3 70.2
DUR2 (1) 57.3 59.5 54.3 55.8
DUR1 (1) 59.0 62.4 62.9 65.0
⊕ DUR2 (2) 64.3 66.5 62.5 66.3

sub MSF (1) 66.2 73.0 64.9 69.7
⊕ DUR2 (2) 66.4 73.5 66.2 70.4
⊕ DUR1 (2) 68.0 73.2 65.5 70.6
⊕ DUR2 (3) 68.4 73.8 67.4 71.4

Table 2: Accuracies (Acc) and area-under-the-curve (AUC)
measures using different feature sets, on all of DEVSET and
EVALSET, as well as on their subsets (“sub”) containing at least
2 syllables.

As can be seen, on DEVSET MSF performs much better
than DUR1, and their combination is negligibly better thanMSF
alone. On EVALSET, DUR1 is better, and MSF is worse, than
for DEVSET, but their relative rank is the same.

The second panel in the table repeats the experiments, for
the subset of DEVSET and EVALSET whose IPUs contain at
least 2 syllables. This allows for the computation of DUR2, the
duration of the penultimate IPU syllable. We observe that on
both DEVSET and EVALSET, DUR1 is more informative than
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DUR2 for our task; their combination helps for DEVSET but
on EVALSET the results are mixed. Numerically, combining all
three features appears to lead to improvement, on both data sets.

To assess the statistical significance of combining DUR1
and MSF, on all of EVALSET, we computed F -scores for
DUR1, MSF, and MSF⊕DUR1. Their ranges for the detection
of SC and¬SCwere 66.0–69.1% and 58.1–59.8%, respectively.
A two-tailed approximate randomization test5 revealed that the
differences are not statistically significant at the p < .05 level.
This suggests that MSF and DUR1 are measuring a very similar
if not identical phenomenon.

6. Conclusions
We explored the role of IPU-terminal lengthening for speaker-
independent next-speakership prediction, a function relevant to
dialogue systems. Modeling the duration of the last IPU sylla-
ble, obtained using partly automatic means, yields a 25% rela-
tive reduction in classification error over guessing. We expected
more errors in a fully automatic setting, since speech rate esti-
mators are errorful and lengthening is local. Contrary to expec-
tation, experiments show that Mel-spectral flux (MSF) offers
lower error rates. We anticipate that the new feature will play a
useful role in speech rate estimation, improving speech recog-
nition, fluency diagnosis, cognitive load estimation, and others.
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