
Harmonic Structure Transform for Speaker Recognition

Kornel Laskowski1,2 and Qin Jin2

1 KTH Speech, Music and Hearing, Stockholm, Sweden
2 Language Technologies Institute, Carnegie Mellon University, Pittsburgh PA, USA

kornel@cs.cmu.edu, qjin@cs.cmu.edu

Abstract
We evaluate a new filterbank structure, yielding the harmonic
structure cepstral coefficients (HSCCs), on a mismatched-
session closed-set speaker classification task. The novelty of
the filterbank lies in its averaging of energy at frequencies re-
lated by harmonicity rather than by adjacency. Improvements
are presented which achieve a 37%rel reduction in error rate un-
der these conditions. The improved features are combined with
a similar Mel-frequency cepstral coefficient (MFCC) system to
yield error rate reductions of 32%rel, suggesting that HSCCs
offer information which is complimentary to that available to
today’s MFCC-based systems.
Index Terms: speaker recognition, signal processing, harmonic
strucure, spectral analysis

1. Introduction
Speaker recognition is quickly becoming a key technology in
today’s society. Recent years have seen a surge in interest, par-
ticularly in feature modeling [1, 2]. Modeling, it is argued, is
likely to continue to attract attention. Meanwhile, the spectral
features being modeled are predominantly ones that have long
been in use; counter-intuitively, their development had been
motivated by a need for speaker-independent representations of
speech. The most cited example are the Mel-frequency cepstral
coefficients (MFCCs).

A key attraction of MFCCs is the simplicity of their compu-
tation; prior to decorrelation, the short-time Fourier spectrum is
merely passed through a filterbank. The latter averages energy
over contiguous intervals of frequency. Several alternatives to
the filterbank structure have been proposed for speaker recogni-
tion [3, 4, 5], with promising results.

In the current work, we explore an altogether different de-
sign, in which the filters average energy over frequencies re-
lated by harmonicity rather than by adjacency. This renders the
frequency support of each filter non-contiguous, and destroys
spectral envelope shape information. Our starting point is the
only direct application of this filterbank to the discrimination of
speakers (rather than of fundamental frequencies) that we know
of, namely [6]. The closed-set speaker classification experi-
ments presented there relied on 16-kHz close-talk-microphone
speech, much of it not spontaneous, under matched channel and
matched session conditions. For 10-second trials, the represen-
tation — referred to as the harmonic structure cepstral coeffi-
cients (HSCCs) — yielded accuracies at least as good as those
obtained with a comparable MFCC system.

The current paper first evaluates HSCCs on a more sponta-
neous data set, with session mismatch, otherwise retaining the
closed-set classification paradigm for comparison. It is shown
that accuracy is only 68% under these conditions, 17%abs lower

than that of the MFCC system. Second, we propose and eval-
uate several novel modifications to the filterbank used to com-
pute HSCCs. The new formulation yields a classification er-
ror reduction of 11.7%abs, or 37%rel. Finally, we show that
linearly combining the improved HSCC log-likelihoods with
MFCC log-likelihoods, thereby merging harmonic structure and
spectral envelope information, reduces the error rates achieved
by the MFCC system alone by 32%rel.

2. Data
Experiments are conducted on the MIXER5 Corpus [7], a col-
lection of face-to-face interviews containing different types of
speech. All participants took part on three days, each of which
involved two 30-minute interviews separated by a ≥30-minute
break. The audio was sampled at 16 kHz in 16-bit quality.

Given the amount of speech available, we selected 66 (39
female and 27 male) out of the 70 speakers recorded at the
LDC in Philadelphia, PA. All of our trials come from channel
2, recorded with a Shure MX185 Lavalier microphone worn on
each participant’s clothing (under the chin). Other channels (all
far-field) were not considered in the current work.

In selecting sessions, we located those fromwhich we could
obtain the maximum amount of speech for the least-productive
of our 66 speakers. These turned out to be sessions 2, 3, and
5 (the latter was least like the other two in that it did not in-
clude “sentence reading”). We identified at least 500 seconds
of speech from each participant in all three of them. 90 seconds
of training material were drawn from session 2 for TRAINSET;
10-second trials were drawn from session 5 for DEVSET and
from session 3 for EVALSET. The total number of trials in the
two test sets is 3041 and 3045, respectively.

3. Baseline Systems
3.1. Feature Processing

The audio of each trial is framed, without pre-emphasis, into
32-ms Hann windows every 8 ms. A 512-point FFT then yields
a 257-point magnitude frequency signal x. We multiply x by
a filterbank matrix H [6], which consists of Nh = 400 rows,
each corresponding to one candidate fundamental frequency

fh [i] = fmin
h +

i

Nh

“
fmax

h − fmin
h

”
, (1)

with 0 ≤ i < N . fmin
h = 50 Hz and fmax

h = 450 Hz; the
constant spacing between any fh [i] and fh [i + 1] is Δfh =`
fmax

h − fmin
h

´
/Nh = 1 Hz.

The rows of H are discrete comb filters with 257 entries.
Each row is constructed by Riemann sampling a continuous-
frequency comb, consisting of a sequence of triangular-shaped
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teeth whose apices fall on multiples of the ith filter’s fh [i].
Each tooth, of each filter, has a base with a width of Δft =
32.25 Hz and unity area.

H also has a unity-additive complement H̃ = 1 − H.
HSCCs are obtained by applying a linear discriminant (LDA)
transform to the vectors y, where

y = log
“
H

T
x
”
− log

“
H̃

T
x
”

. (2)

As in [6], signal energy below 306.375 Hz is zeroed prior to
multiplication byH or H̃. Each coefficient of y represents the
log-ratio of energy found at integer multiplies of a putative fun-
damental frequency to that found everywhere else.

3.2. Modeling and Classification

Speakers are modeled with Gaussian mixture models (GMMs),
estimated via maximum likelihood using each speaker’s
TRAINSET data only. A universal background model (UBM)
is not used, and its applicability to the HSCC representation
remains a subject for future exploration. We rely on the chunk
segmentation in the MIXER5 Corpus, and employ no additional
speech activity detector. This means that very short pauses may
be included in training and testing.

The classification system is as described in our previous
work [6]. The sequence of test feature vectors is scored by each
speaker’s model; the system hypothesizes that speaker whose
model best accounts for the observed vector sequence. Perfor-
mance is assessed using identification accuracy. The number of
frames per trial, under our conditions, is 1250.

We optimize the speaker-independent numberND of decor-
related dimensions by maximizing accuracy on DEVSET, using
a single diagonal-covariance Gaussian classifier. The speaker-
independent number NG of Gaussians in all GMMs is then
identified with ND fixed, again by maximizing DEVSET accu-
racy1. The baseline system, denoted base in Table 1, achieves
an accuracy of 59.8% on DEVSET, and 68.1% for EVALSET.
This represents a lack of robustness to session mismatch, since
we observe accuracies of 100% when disjoint training and test
data are drawn from the same session.

3.3. Contrastive F0 and MFCC Features

The supremum of the transformed-domain spectrum y, or of
others similarly constructed [8], corresponds to the fundamental
frequency (F0) of the signal in x. The HSCC vector is believed
to contain information beyond F0 [6]. To test this hypothesis,
we compare HSCC performance to that achieved by modeling
F0 only. We obtain estimates using the Snack Sound Toolkit
[9], and model voiced frames in the log domain using GMMs.
As can be seen in Table 1, classification accuracies achieved
with this single feature are much lower than for HSCCs.

We also contrast HSCC performance with that obtained us-
ing a more traditional set of features, namely the MFCC vec-
tor. We compute these by transforming the first 30 Mel filter-
bank outputs (MEL) using the staggered inverse cosine trans-
form (DCT), and retaining the first 20 coefficients. We apply
utterance-level cepstral mean subtraction (CMS), prior to train-
ing or testing. Models are GMMs, as for HSCCs; to make for a
fair comparison, we do not use a UBM. The performance of the
resulting system is shown in Table 1 as “MEL/DCT”.

1For all HSCC systems, we found ND ∈ [15, 44] and NG ∈
{256, 512, 1024}; details are not shown for all development systems
due to a lack of space. However, the parameters of the main systems,
benchmarked using EVALSET, are shown in Table 4.

Features ND NG DEVSET EVALSET
HSCC base 22 512 59.8 68.1
F0 only 1 8 14.1 16.2

20 256 74.4 84.8MEL/DCT
25 512 73.6 82.3
20 512 79.4 85.3MEL/LDA
25 512 81.5 87.8

Table 1: Baseline and constrast system classification accuracies
on DEVSET and EVALSET.

To make comparison with HSCCs more fair, we also
replace the data-independent DCT transform with a data-
dependent global LDA transform, such as used in computing
HSCCs. Table 1 shows that with the same number of coeffi-
cients (ordered by eigenvalue), the “MEL/LDA” achieves error
rates which are 5.0%abs and 0.5%abs better that “MEL/DCT”
on DEVSET and EVALSET, respectively. Selecting the num-
ber of coefficients by maximizing the accuracy of a 1-Gaussian
classifier on DEVSET, yielding ND = 25, improves on these
numbers by 2.1%abs and 2.5%abs, respectively.

4. Development Experiments
We describe several experiment suites treating the optimization
of linear candidate fundamental frequency spacing in the filter-
bank, the elimination of quefrency aliasing, the optimization of
logarithmic candidate fundamental frequency spacing in the fil-
terbank, and score fusion with Mel-based systems.

4.1. Linearly Spaced Filterbank Filters

First, we explore the accuracy of the HSCC system while vary-
ing the numberNh of filters in the filterbankH, as well as fmin

h

and fmax
h (cf. Equation 1). Table 2 shows the baseline system

in bold as Lin1e (“Lin” refers to uniform spacing of f0 candi-
dates in the interval

ˆ
fmin

h , fmax
h

˜
, with the integer following

“Lin” indicating the number of sub-intervals). What is clear
from this table is that holding Nh = 400 and fmin

h = 50 Hz
constant while repeatedly lowering fmax

h by 50% (e.g., Lin1i,
Lin1m, and Lin1q) leads to better performance, until Δfh

reaches a density of 0.25 Hz per filter at fmax
h = 150 Hz. Also,

keeping fmax
h fixed but moving fmin

h to 1/2 (fmax
h − fmax

h )
(e.g., Lin1g versus Lin1e, Lin1k versus Lin1i, Lin1o
versus Lin1m) always leads to worse-performing systems. It
appears that, given any interval, its lower-order half achieves
higher accuracies than its higher-order half.

Informed by this observation, we constructed filterbanks
consisting of two sets of filters, with different fh densi-
ties. The second panel in Table 2 shows the results. As
an example, Lin2c is a filterbank in which Nh = 400
filters span the sub-range

ˆ
fmin

h = 50 Hz, fmax
h = 250 Hz

´
and another Nh = 400 filters span the equal-size sub-rangeˆ
fmin

h = 250 Hz, fmax
h = 450 Hz

´
. This two-sub-range filter-

bank is seen to perform worse than Lin2d, which is identical
except that the second sub-range is spanned by only Nh = 200
filters. Both pairs Lin2f versus Lin2e, and Lin2h versus
Lin2g, exhibit the same trend.

Extending this argument to 3-, 4- and 5- sub-range filter-
banks, we found that, using a 1-Gaussian classifier, Lin4a
outperformed the other alternatives. This suggests that the pre-
ferred filterbank form is one in which the fh frequencies are
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Number of filters, in range A, w/ NGFeat.
100 | 150 | 250 | 450 | 850 | = 1 > 1

Lin1a 400 34.4 56.7
Lin1b 200 26.8 51.6
Lin1c 400 27.9 56.7
Lin1d 200 27.2 49.6
Lin1e 400 38.0 59.8
Lin1f 200 26.5 48.2
Lin1g 400 28.5 56.7
Lin1h 200 28.9 48.5
Lin1i 400 42.2 63.9
Lin1j 200 28.4 52.5
Lin1k 400 30.3 60.4
Lin1l 200 37.1 59.4
Lin1m 400 42.4 67.7
Lin1n 200 26.8 54.5
Lin1o 400 33.3 64.7
Lin1p 200 41.6 65.0
Lin1q 400 42.0 66.5
Lin2a 400 400 41.6 64.6
Lin2b 400 200 40.2 62.5
Lin2c 400 400 42.3 65.4
Lin2d 400 200 42.8 66.1
Lin2e 400 400 43.1 66.5
Lin2f 400 200 43.5 66.8
Lin2g 400 400 42.0 67.2
Lin2h 400 200 42.3 67.1
Lin3a 400 200 200 44.0 65.1
Lin3b 400 200 200 44.1 66.6
Lin3c 400 200 200 43.4 66.3
Lin4a 400 200 200 200 45.4 66.3
Lin4b 400 200 200 200 44.1 66.5
Lin5a 400 200 200 200 200 45.3 65.5

Table 2: DEVSET accuracies (A), in %, for different linearly-
spaced-F0 filterbanks, achieved first with a single-Gaussian
classifier (NG = 1) to select ND and then NG > 1 with ND

fixed (cf. Subsection 3.2). Per row, the number Nh of filters is
shown in white, spanning the frequency support in Hz indicated
on line 2; the left-most edge is at 50 Hz. Accuracies in italics
are linear estimates based on limited NG optimization efforts.

logarithmically spaced, at least in a piece-wise fashion. Multi-
Gaussian experiments (NG > 1), however, indicate that the
single-sub-range filterbank Lin1m may be the better option.

4.2. Eliminating Quefrency Aliasing

As demonstrated in [6], constructing comb filters with fh <
62.5 Hz leads to what we have called quefrency aliasing; this is
because, for 16-kHz signals and 512-point FFTs, frequency bin
centers are 31.25 Hz apart. To avoid this phenomenon, fmin

h

is henceforth moved to 62.5 Hz. For the Lin1m system of the
previous subsection, this yields DEVSET accuracies of 39.9%
and 63.1% for single-Gaussian and multi-Gaussian models, re-
spectively (versus 42.4% and 67.7% in Table 2). Accuracies

for the Lin4a system are reduced to to 43.4% and 65.4%, re-
spectively (versus 45.5% and 66.3% in Table 2); we denote the
modification with “+CUT” in Table 3. It is not known at this
time why the fh < 62.5 Hz filters help; we aim to explore this
issue in subsequent work. For the purposes of the current paper,
elimination of quefrency aliasing renders the Lin4a filterbank
more competitive than the Lin1m filterbank (65.4% vs 63.1%).

4.3. Logarithmically Spaced Filterbank Filters

Given the evidence in Subsection 4.1, we construct filterbanks
whose inter-fh spacing is continuously logarithmic,

fh [i] = fmin
h

„
fmax

h

fmin
h

«i/Nh

. (3)

We express density at a reference frequency of 100 Hz,

Δfh ≡
dfh

di

˛̨̨
˛
fh=100 Hz

=
100 Hz

Nh
· loge

„
fmax

h

fmin
h

«
(4)

since it varies with frequency. Our initial logarithmic system,
denoted Log1, has the same fmin

h , fmax
h , and Nh as Lin4a.

Its performance is shown in Table 3; as can be seen, it is only
slightly worse than Lin4a (also shown). We then move fmin

h

to 62.5 Hz, as in Subsection 4.2, to avoid quefrency aliasing,
yielding filterbank Log1+CUT. The drop in performance from
Log1 is similar to that observed in Subsection 4.2.

Δfh fmin
h fmax

h A, w/ NGFeat.
(Hz) (Hz) (Hz)

Nh
= 1 > 1

base 1.00 50.0 450 400 38.0 59.8
Lin4a — 50.0 850 1000 45.4 66.3
+CUT — 62.5 850 950 43.4 65.4

Log1 0.28 50.0 850 1000 45.3 66.0
+CUT 0.28 62.5 850 921 43.4 64.7

Log2 0.28 62.5 4000 1468 50.6 70.2
Log3 0.37 62.5 4000 1129 51.2 70.9

Table 3: DEVSET accuracies (A), in %, for different filterbanks,
achieved first with a single-Gaussian classifier (NG = 1) to se-
lect ND and then NG > 1 with ND fixed (cf. Subsection 3.2).

Next, we explore the effect of extending fmax
h , while hold-

ing Δfh = 0.28 Hz constant. The best cutoff, at fmax
h =

4000 Hz, is found for the system denoted Log2 in the table. It
significantly improves accuracies, by 7.2%abs and 5.5%abs for
the NG = 1 and NG > 1 classifiers, respectively.

Lastly, varying the density Δfh while holding fmin
h =

62.5 Hz and fmax
h = 4000 Hz constant identifies a system with

Δfh = 0.37 Hz as optimal; it is denoted Log3. The observed
improvement in accuracy is 0.6–0.7%abs, despite fewer filters.

4.4. Score-Level Fusion with Mel-based Systems

Finally, we combine the Log3 HSCC log-likelihoods with
those provided by our contrastive Mel-based system, via linear
interpolation log P = (1− α) log PMFCC + α log PHSCC ; a
weight of α = 0 corresponds to the Mel-based system alone. α
is selected by maximizing accuracy on DEVSET.

As is clear from the figure, interpolation with Log3 HSCC
log-likelihoods helps. 20-dimensional Mel-based vectors yield
better-performing interpolated systems than 25-dimensional

367



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
70

75

80

85

MEL/DCT 20
MEL/DCT 25
MEL/LDA 20
MEL/LDA 25

Figure 1: DEVSET accuracies (along y-axis) achieved by lin-
early interpolating a Mel-system log-likelihood (on the left,
α = 0) with one produced by the Log3 HSCC system (on the
right, α = 1) using weight α (along x-axis).

vectors. Optimal weighting in all cases was found to be 0.5
or 0.4 (in favor of Mel-based systems). The reduction of er-
ror is 6.4%abs for the 20-dimension “MEL/DCT” system, and
4.4%abs for the 20-dimension “MEL/LDA” system; these cor-
respond to 25%rel and 22%rel, respectively. The results suggest
that MFCCs and HSCCs contain complementary information.

5. Generalization to Unseen Data
We now apply selected manipulations to EVALSET, as shown in
Table 4. The major trends observed for DEVSET appear to gen-
eralize well. Increasing the fh range and density, with either
a piecewise logarithmic (Lin4a) or a continuously logarith-
mic (Log1) structure, results in a 4.4-4.6%abs improvement in
classification accuracy. Surprisingly, the subsequent reduction
due to our attempts to avoid quefrency aliasing yields only a
0.6%abs drop for Log1 and no difference for Lin4a. The in-
crease in the number of logarithmically inter-spaced filters for
candidate fundamental frequencies up to 4 kHz (Log2) yields
an improvement of 6.0%abs. An additional 1.7%abs is obtained
by reducing inter-filter density.

NG = 1 NG > 1Features
ND A NG A

HSCC base 22 44.3 512 68.1
Lin4a 21 50.8 512 72.5
+CUT 22 49.6 512 72.5

Log1 23 50.8 512 72.7
+CUT 29 49.6 512 72.1

Log2 27 57.8 256 78.1
Log3 27 59.2 512 79.8

MEL/DCT — — — 84.8
MEL/DCT ⊕ Log3 — — — 89.0
MEL/LDA — — — 84.3
MEL/LDA ⊕ Log3 — — — 89.3

Table 4: EVALSET accuracies (A), in %, for different filter-
banks designed using DEVSET (cf. Tables 2 and 3 and Fig-
ure 1). Also shown areND andNG, optimized using DEVSET.
“⊕” denotes score-level fusion.

We observe improvements over the Mel-based systems
when interpolating with Log3 log-likelihoods, of a magni-

tude approximately equalling that seen for DEVSET. Over
“MEL/DCT”, the reduction of error is 4.2%abs or 28%rel. Over
“MEL/LDA”, the reduction is 5.0%abs or 32%rel.

6. Conclusions & Future Work
Session mismatch in nearfield same-microphone speech record-
ings appears to significantly degrade the performance of the
HSCC features proposed in [6]. The current work has presented
two improvements to the HSCC representation to address this
problem, which yield a reduction in error rate of 11.7%abs
or 37%rel for our unseen EVALSET session. The improve-
ments consist of the replacement of constant spacing between
the modeled candidate fundamental frequencies by a logarith-
mic mapping, and an increase in the upper bound for those fre-
quencies. The final HSCC system — whose performance is
5%abs lower than that of a comparable MFCC system — com-
bines well with the latter to achieve relative error reductions of
32% on unseen data, over MFCC performance alone.

We intend to pursue the current work, with the aim of reduc-
ing the size of the still very large HSCC vector, and of identi-
fying an appropriate data-independent decorrelating transform.
Our final goal is to make the representation sufficiently compact
to easily apply the feature modeling techniques (e.g. universal
background models) used so successfully with other spectral
representations. We anticipate that these measures will enable
the assessment of HSCCs on larger problems, such as those in
the NIST Speaker Recogntion Evaluations.
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