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Chapter 8

Driving Simulation

The goal of this experiment is to distinguish different people’s driving styles. The data was

lected from five people using a simulator. The simulator, shown in Figure 8-1, was design

M.C.Nechyba.

Figure 8-1: Driving simulator interface. (Courtesy M.C.Nechyba)

road trajectory
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8.1 Experimental data

The human operator has the full control over steering (horizontal mouse position), the

(left mouse button) and the accelerator (right mouse button). Although the dynamics of the

ulator strictly follows the form of some real vehicles [Nechyba et al, 98, (a) and (b)], the hu

drivers’ behavior is quite different from the real one on the real roads. One reason is th

road trajectory of the simulator is generated as a sequence of straight-line segments and

arcs, which differs from the real roads in the real world, illustrated by Figure 8-2.

We generated three road trajectories, each of them is around 20km. Five people were inv

operate on these three different roads after they had warmed up. The simulator took the

of the state of the vehicle and the environmental variables (described in details later) five

per second, while the simulator itself runs 50 Hz. Thus, we collected fifteen datasets,Oij, i =

length length

curvature curvature

(a) (b)

Figure 8-2: The simulator’s road trajectory is generated in a way illustrated by (a), in
which the curvature of the road changes abruptly. However, a high way in the real world
is actually designed in the style of (b), in which the curvature changes smoothly.
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1, 2, ..., 5, j = 1, 2, 3, i represents the operators, andj corresponds to the different road trajec

tories.

The state and environmental variables are listed in the following table:

If a human driver is viewed as a system, the input consists of the following information: (1

current and recent vehicle states,{vξ(t-nξ), ..., vξ(t-1), vξ(t)}, {vη(t-nη), ..., vη(t-1), vη(t)}, {ω(t-

nω), ..., ω(t-1), ω(t)}, wherenξ, nη, nω are the time delays. (2) previous control actions,{α(t-

nα), ...,α(t-1), α(t)}, {δ(t-nδ), ...,δ(t-1), δ(t)}. (3) The visible view of the road ahead,{x(t+1),

y(t+1), ..., x(t+nr), y(t+nr)}. The outputs should beδ(t+1) andα(t+1).

Notice that even for the same human driver, very similar inputs may lead to radically diffe

outputsδ(t+1) andα(t+1), referring to [Nechyba, 98 (b)].

The time delays of the inputs (includingnr of the road median ahead) were decided based

our empirical experiments. Because of the time delays, the input dimensionality of a dyn

system tends to be very high, in this case, it is 50. The high dimensionality may have s

negative impact on the efficiency of both the information retrieval from memory and the c

 Table 8-1: State of vehicle and the environmental variables

Description
Time Delay

(0.42 Seconds)

vξ The lateral velocity 6

vη The longitudinal velocity 6

ω The angular velocity 6

(x, y) The car-body-relative coordinates of the road median 10

δ The user-applied steering angle 6

α The user-applied longitudinal force on the front tires 6
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sification process afterwards. For kernel regression, the computational cost isO(Nd), whereN

is the memory size andd is the input space dimensionality. Even though we used kd-tree

re-organize the memory in order to speed up the information retrieval process, kd-tree p

mance is not satisfactory when the input dimensionality is too high.

Principal Component Analysis (PCA) [Jolliffe, 86] can be used to compress the input spa

some of the inputs are linearly correlated. Notice that, theoretically there is no guarante

PCA can shrink the dimensionality of the dataset in all cases especially when the

attributes are not linearly correlated; however in practice, PCA is a very popular method.

simulation driving experiment, we used PCA to compress the input space from 50 dimen

to 3 dimensions, with only 7.2% loss of information.

8.2 Experimental results

As mentioned above, we collected fifteen datasets from five people driving on three roa

jectories. We assigned one dataset to be a testing dataset; say,O21, which is actually the datase

generated by the second driver along the first road. We did not tell OMEGA who was the

driver, and asked OMEGA to figure it out. To do so, OMEGA needed somelabeledtraining

datasets. In our experiments, we let those datasets collected from the other roads be the

datasets, i.e.Oik, i = 1, ..., 5, k = 2, 3. By “labeled” we mean for each training dataset, OMEG

knew exactly who was the operator.

Using the OMEGA technique described in Chapter 2, we calculated the average of the ne

log likelihood of each testing dataset with respect to all five human operators. Hence, for

testing dataset, we got five likelihood curves corresponding to the five possible dri

OMEGA detected the hidden driver according to the tails of the likelihood curves: the lo

one indicates the most likely operator.



8.2 Experimental results 137

rivers

hows

is the

the

rator

pro-

le.

d in

ond

rdly
There are in total fifteen testing datasets, OMEGA succeeded in detecting the hidden d

correctly thirteen times. A typical correct case is demonstrated in Figure 8-3(a), which s

how OMEGA detected the underlying operator of a testing dataset,O11. The horizontal axis is

the number of data points in the testing dataset OMEGA has processed. The vertical axis

average of the negative log likelihood. Tony’s negative log likelihood curve is closest to

horizon, and it is remote from all other drivers’ curves. Hence, Tony is the most likely ope

of the testing dataset,O11. At the early stage when only a few testing data points have been

cessed, the curves are not stable, but afterwards they become smoother and more stab

Although OMEGA did not make any mistakes in the fifteen experiments, it was confuse

two cases1. One of them is shown in Figure 8-3(b), in which the lowest curve does corresp

the real driver, Larry; however, Tony’s curve is too close to Larry’s, so that OMEGA can ha

tell who is more likely to be the hidden driver between Larry and Tony.

1. To distinguish the confusing cases, we assign the significance levelα to be 5%, referring to Chapter 2.
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Figure 8-3: Simulation driving style OMEGA detection. (a) A correct case. (b) A
sample of the confused cases. There are two confused cases out of the fifteen
experiments, all others are correct.
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As an on-line detection tool, OMEGA is capable of starting its job with very few data poi

As expected, the precision is very bad. Thus, the likelihood curves look chaotic at first. But

more and more data come, the curves converge to be stable.

Sometimes the likelihood curves are bumpy, because the driver did something unusua

pared with his behavior in the training datasets. After studying the datasets carefully, we n

that the abnormal behavior usually occurs when the curvatures of the road change ra

referring to Figure 8-2(a). If the human operator does not pay sufficient attention, he may

off the road when the abrupt change of the curvature happens. Therefore, a careful d

curve is smoother and more stable than others, illustrated by Figure 8-4(a). However, som

the curvature changes so much and so suddenly that no one was able to keep his opera

consistent manner. In those cases, all the curves are bumpy and roughly parallel to each

referring to Figure 8-4(b).

Another interesting observation is that some people’s curves tend to be close to each oth

example, Moe’s and Groucho’s. The short distances between their curves implies tha
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Figure 8-4: When some data points in the testing dataset are not consistent with a
certain training dataset, the corresponding likelihood curve may look bumpy. If the
data points are so unusual that there is no similar scenario in all the training datasets,
then all the curves are bumpy, and roughly paralleling to each other, referring to (b).
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driving behaviors are close to each other in the experiments. But does it give any hint t

similarity of their personalities? This is an open question, but it is interesting to observe

Moe and Groucho do spend a lot of time together during weekends.

8.3 Comparison with other methods

Although OMEGA works well for detecting the hidden drivers in these simulation exp

ments, some legitimate questions are still opened, such as: is there any simpler method

can work as well or better?

8.3.1 Bayes classifier

Bayes classifier is a simple method which compares the features. Referring to Table 8-

state of the vehicle and the driver’s action are the instantaneous velocity (includingvξ andvη),

angular velocityω, user applied steering angleδ and acceleration or brake forceα. We treated

the vehicle’s state variables, the environmental variables, in conjunction with the co

actions as the feature and applied Bayes classifier, with tuned-up parameters, to distingu

five human operators. The result is shown in the first row of Table 8-2 :

Obviously, feature-based Bayes classifier did not perform well. The reason are that: (1

tures-based approach does not consider the mapping between the inputs and the outp

 Table 8-2: Comparison of OMEGA with other alternatives

Correct Wrong Confused

Bayes classifier 6 6 10

HMM 13 0 2

Global linear 12 1 2

OMEGA 13 0 2
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some features are also influenced by the road conditions, besides the different human d

styles. (3) different human operators’ feature values have a large overlapping region, exh

in Table 8-3.

The numbers in parentheses are the standard deviations. Since the mean values of

velocities and steering angles depend on the specific road trajectories, only their standar

ations are listed in the table.

8.3.2 Hidden Markov Model

With rich mathematical fundamentals, the Hidden Markov Model [Rabiner, 89] is very us

in speech recognition. When we hear the sentence “I love you”, in fact, our perception sy

recognizes the states [ai] [la] [v] [ju:] in sequence. The order is also important. However

to the difference in emphasis, skipping, and pausing, the transitions among the states

deterministic. Some states may last longer, others may be skipped. For the same example

be expressed in a different way: [ai] [pause] [la] [la] [v] [ju:], or “I, lo-ve you”, which soun

more romantic than the plain tone. Therefore, HMM assumes the transitions among the

ent states are probabilistic instead of deterministic. To recognize a piece of speech, HMM

on the approximation of those state transition probabilities.

 Table 8-3: Aggregate features of human simulation data (based on
Nechyba’s data)

Velocity
( v )

Angularvelocity
( ω )

Steering angle
( δ )

Longitudinal
force (α )

Tony 67.2 (12.6) (0.205) (0.097) 2.03 (3.86)

Larry 72.2 (7.8) (0.193) (0.072) 1.85 (2.37)

Moe 70.5 (7.9) (0.198) (0.074) 1.91 (3.25)

Curly 63.3 (10.1) (0.175) (0.056) 1.33 (1.88)

Groucho 73.2 (9.3) (0.259) (0.100) 2.33 (2.68)
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Due to accents and/or personal styles, few people can precisely pronounce every word

the states (i.e. [ai], [la], [v], and [ju:]) are hidden underneath the stream of the sound sig

The mapping between the sound signals and the hidden states is not so simple as one-

instead their relationship is also probabilistic. HMM is capable of approximating the prob

listic mapping between the sound signal and the states, as well as the transition probab

Although HMM is very successful for speech recognition, one should be careful before u

HMM as a general purpose time series recognizer. The reason is that HMM assumes th

transition probabilities are the most fundamental characteristic of a time series. And us

the transition probabilities are assumed to be time-invariant.

[Nechyba, 98 (a)] applied HMM to distinguish different simulation driving styles. He did

separate the inputs and outputs, instead, he treated the states of the vehicle and the envir

tal variables equally as parts of observations. He assumed that the observations were s

tically decided by some hidden states. Although the physical meanings of those states we

clear, he conjectured that their transitions probabilities differed with different drivers. Th

fore, given a unlabeled driving time series, Nechyba approximated a HMM which fit the

series well. Then he compared the new HMM with those in memory whose underlying dr

were known. Usually one HMM in memory is closer to the new one than the others are

closest HMM in memory indicated the driver who is most likely to be generator of the u

beled driving time series.

As Table 8-2 shows, the experimental performance of HMM is as good as that of OMEG

Why does HMM approach work in this domain? In our point of view, a hidden state is

abstract scenario of the state of the vehicle in conjunction with the environmental situation

the human driver’s control action. Facing a certain scenario, different drivers may give dis

ilar control responses which lead to different new scenarios at the next time step. Thus, dif
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drivers’ diverse responses make the transition probabilities of his HMM distinguishable

those of others.

Therefore, we think the fundamental methodology of [Nechyba, 98(a)] is similar to tha

OMEGA. There is no surprise that the accuracies of HMM and OMEGA are close to

other. While Table 8-2 gives a top-level comparison, Table 8-4 and Table 8-5 view the prec

in depth. Each number in the tables is a probability of a testing dataset being generate

certain operator. Each row corresponds to a specific testing data set, and the real opera

the leftmost column. The other columns represent the five candidate drivers. The number

(2,3)’th cell is the probability that a testing dataset, which was secretly generated by L

would be detected as the performance of Moe. Thus, the sum of the five probability valu

each row is always 1.0. The number on the shaded diagonal is expected to be bigger th

others. And the bigger the diagonal number is, the better the detection system performs

erwise, the detection fails.

Comparing Table 8-4 and Table 8-5, we claim that HMM and OMEGA have similar accu

in this simulation domain. No one is significant better than the other.

However, OMEGA outperforms HMM in other aspects, such as efficiency, data consump

flexibility, robustness, etc., referring to Chapter 2.

 Table 8-4: Cross validation of OMEGA

Tony Larry Moe Curly Groucho

Tony 0.677 0.139 0.020 0.031 0.133

Larry 0.243 0.441 0.014 0.129 0.173

Moe 0.037 0.001 0.836 0.114 0.012

Curly 0.060 0.030 0.272 0.570 0.068

Groucho 0.130 0.070 0.199 0.156 0.445
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8.3.3 Global linear model

OMEGA is a non-parametric method, which means it does not need any assumption abo

function relationship between the input and output. However, if we do know the function fo

we have more options to detect the system. For example, linear system is simple and ver

ular in practice, which assumes the output is a linear function of the inputs. To detect a

system, we can either follow the residual approach or compare the parameters of the

functions.

• Residual approach:For each training dataset, we approximate the parameters of the l

ear function between the inputs and the outputs. Then, given a unlabeled testing dat

we temporarily suppose it was generated by the first system. Through the first syste

linear function, we predict the outputs corresponding to the inputs of the testing d

points. There usually exist some residuals between the predicted outputs and the rea

puts in the testing dataset. The smaller the residuals, the more likely the first system is

underlying system of the testing datasets. We enumerate all the candidate systems, th

with the smallest residuals is most likely to be the underlying system.

• Parameter approach:We can approximate the linear function’s parameters of the testin

dataset, as well as those of each training dataset. By comparing the parameters of the

 Table 8-5: Cross validation of HMM (based on Nechyba’s data)

Tony Larry Moe Curly Groucho

Tony 0.425 0.157 0.217 0.154 0.047

Larry 0.202 0.538 0.116 0.101 0.043

Moe 0.212 0.077 0.429 0.172 0.110

Curly 0.154 0.073 0.180 0.413 0.180

Groucho 0.066 0.040 0.163 0.237 0.494
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ing dataset with those of each training dataset, one by one, we can tell which train

dataset is most similar to the testing dataset, hence, we detect the underlying operat

the unlabeled testing dataset.

It is interesting to find that the simulation driving domainhappensto be linear. Referring to

Table 8-2, the global linear approach performed satisfactorily compared with OMEGA

HMM. It did the correct detection job in most cases.

In our previous work [Deng et al, 97], we compared the driving behaviors of an identical hu

operator, but under two conditions: sober and intoxicated. We found that ARMA(4,4)2 was a

good model for the behaviors under both conditions. We approximated the ARMA param

of the datasets under different sobriety conditions, and found the parameters of the intox

driving behavior deviated from the sober ones, shown in Figure 8-5. The drunken param

were more widely scattered due to the fact that the human operator experienced the varyi

els of intoxication.

8.4 Summary

In this chapter, we applied OMEGA to detect the driving style using simulation datasets.

domain is more complicated than the tennis one because driving is dynamic with feedbac

there are a large number of variables effecting the driver’s control action. Hence, the pre

cessing of the datasets is important. We used PCA technique to compress the input spa

OMEGA does very job in this domain, but is not significantly better than the other meth

However, OMEGA has other good properties: it is simple, it is easy to update the memory

2. Auto Regression Moving Average (ARMA(p,q)) model [Brockwell et al, 91] is a popular linear time series
model. (p,q) refers to the window sizes of its AR part and MA part.
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computational efficient, it consumes fewer data, and finally it is an on-line system, with m

data involved in, it becomes more precise.

In next chapter, we will ask OMEGA to handle an even harder problem. We will see OME

performs more accurately than the other competing methods.
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Figure 8-5: ARMA(4,4) parameters of the sober driving behavior are deviated from
those of the intoxicated ones.
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