Chapter 7

Feature Selection

Feature selection is not used in the system classification experiments, which will be discussed
in Chapter 8 and 9. However, as an autonomous system, OMEGA includes feature selection as

an important module.

7.1 Introduction

A fundamental problem of machine learning is to approximate the functional relatioiighip
between an inpuk = { Xy, X5, ... Xy} and an outpytbased on a memory of data points,
{X;,Y;},i=1, ..., N usually theX;'s are vectors of reals and ths are real numbers. Some-
times the outpuY is not determined by the complete set of the input feat{isgsx., ... Xy} ,
instead, it is decided only by a subset of th(a»ql), X(2) e x(m)} , where M . With suf-
ficient data and time, it is fine to use all the input features, including those irrelevant features,
to approximate the underlying function between the input and the output. But in practice, there
are two problems which may be evoked by the irrelevant features involved in the learning pro-

Cess.

1.The irrelevant input features will induce greater computational cost. For example, using
cachedkd-trees as we discussed in last chapter, locally weighted linear regression’s com-

putational expense @(mg +m? log N) for doing a single prediction, whefis the num-

117

118 Chapter 7: Feature Selection

ber of data points in memory amdis the number of features used. Apparently, with more
features, the computational cost for predictions will increase polynomially; especially
when there are a large number of such predictions, the computational cost will increase

immensely.

2.The irrelevant input features may lead to overfitting. For example, in the domain of medi-
cal diagnosis, our purpose is to infer the relationship between the symptoms and their cor-
responding diagnosis. If by mistake we include the patient ID number as one input feature,
an over-tuned machine learning process may come to the conclusion that the iliness is

determined by the ID number.

Another motivation for feature selection is that, since our goal is to approximate the underlying
function between the input and the output, it is reasonable and important to ignore those input
features with little effect on the output, so as to keep the size of the approximator model small.
For example, [Akaike, 73] proposed several versions of model selection criteria, which basi-

cally are the trade-offs between high accuracy and small model size.

The feature selection problem has been studied by the statistics and machine learning commu-
nities for many years. It has received more attention recently because of enthusiastic research
in data mining. According to [John et al., 94]'s definition, [Kira et al, 92] [Almuallim et al., 91]
[Moore et al, 94] [Skalak, 94] [Koller et al, 96] can be labelled as “filter” models, while [Caru-
ana et al., 94] [Langley et al, 94]'s research is classified as “wrapped around” methods. In the
statistics community, feature selection is also known as “subset selection”, which is surveyed
thoroughly in [Miller, 90].

The brute-force feature selection method is to exhaustively evaluate all possible combinations
of the input features, and then find the best subset. Obviously, the exhaustive search’s compu-

tational cost is prohibitively high, with considerable danger of overfitting. Hence, people resort

7.2 Cross Validation vs. Overfitting 119

1. Shuffle the data set and split into a training set of 70% of the data
and a testset of the remaining 30%.

2. Letj vary among feature-set siz¢ss (0,1,2,...,m)

a. Letfs = best feature set of size j, where “best” is measured as
the minimizer of the leave-one-out cross-validation error over
the training set.

b. LetTestscorg= the RMS prediction error of feature $gon
the test set.

End of loop of (j).
3. Select the feature sEsffor which the test-set score is minimized.

Figure 7-1: Cascaded cross-validation procedure for finding

the best set of up to m features.
to greedy methods, such as forward selection. In this paper, we propose three greedier selection
algorithms in order to further enhance the efficiency. We use real-world data sets from over ten

different domains to compare the accuracy and efficiency of the various algorithms.

7.2 Cross Validation vs. Overfitting

The goal of feature selection is to choose a subget of the complete set of input features
X = { X, Xy, ... » X} SO thatthe subset; can predict the outpulith accuracy comparable
to the performance of the complete input Xeaind with great reduction of the computational

cost.

First, let us clarify how to evaluate the performance of a set of input features. In this chapter we
use a very conservative form of feature set evaluation in order to avoid overfitting. This is
important. Even if feature sets are evaluated by testset cross-validation or leave-one-out cross
validation, an exhaustive search of possible feature-sets is likely to find a misleadingly well-
scoring feature-set by chance. To prevent this, we useabeaded cross-validatiggrocedure

in Figure 7-1, which selects from increasingly large sets of features (and thus from increasingly

120 Chapter 7: Feature Selection

large model classes). The score for the best feature set of a given size is computed by an inde-

pendent cross-validation from the score for the best size of feature set.

Two notes about the procedure in Figure 7-1: First, the choice of 70/30 split for training and
testing is somewhat arbitrary, but is empirically a good practical ratio according to more
detailed experiments. Second, note that Figure 7-1 does not describe how we search for the best

feature set of sizein Step 2a. This is the subject of Section 7-3.

To evaluate the performance a feature selection algorithm is more complicated than to evaluate
a feature set. This is because in order to evaluate an algorithm, we must first ask the algorithm
to find the best feature subset. Second, to give a fair estimate of how well the feature selection
algorithm performs, we should try the first step on different datasets. Therefore, the full proce-
dure of evaluating the performance of a feature selection algorithm, which is described in Fig-
ure 7-2, has two layers of loops. The inner loop is to use an algorithm to find the best subset of

features. The outer loop is to evaluate the performance of the algorithm using different datasets.

7.3 Feature selection algorithms

In this section, we introduce the conventional feature selection algorithm: forward feature
selection algorithm; then we explore three greedy variants of the forward algorithm, in order to

improve the computational efficiency without sacrificing too much accuracy.

7.3.1 Forward feature selection

The forward feature selection procedure begins by evaluating all feature subsets which consist
of only one input attribute. In other words, we start by measuring the Leave-One-Out Cross
Validation (LOOCYV) error of the one-component subs@ts}, {X5}, ..., {Xu}, whereM is the

input dimensionality; so that we can find the best individual feaXyfg,

7.3 Feature selection algorithms 121

Collect a training data set from the specific domain.
Shuffle the data set.
Break it intoP partitions, (say’ = 20)
For each partition (=0, 1, ..., P-1)
a. LetOuterTrainset(i}= all partitions except
b. LetOuterTestset(iy thei'th partition
c. LetlnnerTrain(i) = randomly chosen 70% of tiuterTrain-
set(i).
d. LetInnerTest(i)= the remaining 30% of theuterTrainset(i)
e. Forj=0,1,..,m
Search for the best feature set witomponentsfs;.using
leave-one-out omnerTrain(i)
Let InnerTestScore= RMS score ofs; onInnerTest(i).
End loop of (j).
f. Select thds; with the best inner test score.
g. LetOuterScorg= RMS score of the selected feature seCon
terTestset(i)
End of loop of (i).
5. Return the mean Outer Score.

PonNE

Figure 7-2: Full procedure for evaluating feature
selection of up to m attributes.

Next, forward selection finds the best subset consisting of two compodggjtand one other
feature from the remaininiyl - 1 input attributes. Hence, there are a totahWbf 1 pairs. Let’s

assumeX,) is the other attribute in the best pair besigg

Afterwards, the input subsets with three, four, and more features are evaluated. According to
forward selection, the best subset witifieatures is then-tuple consisting 0Ky, X(2), -, Xm),

while overall the best feature set is the winner out of all ¥heteps. Assuming the cost of a
LOOCYV evaluation withi features iC(i), then the computational cost of forward selection

searching for a feature subset of sizeut of M total input attributes will be
MC(1)+(M-1)C(2)+...+ (M—=m+1)C(m).

For example, the cost of one prediction with one-nearest-neighbor as the function approxima-

tor, using a kd-tree witlinputs, isO(j log N) whereN is the number of datapoints. Thus, the

122 Chapter 7: Feature Selection

cost of computing the mean leave-one-out error, which invdiWpeedictions, iO(j N log N).

And so the full cost of feature selection using the above form@éni& M N log N)

To find the overall best input feature set, we can also employ exhaustive search. Exhaustive
search begins with searching the best one-component subset of the input features, which is the
same in the forward selection algorithm; then it goes to find the best two-component feature
subset which may consist ahy pairs of the input features. Afterwards, it moves to find the
best triple out of all the combinations of any three input features, etc. It is straightforward to

see that the cost of exhaustive search is the following:

MC(1) + g\z"gc(z) - E‘I\"ﬂ%c(m)

Compared with the exhaustive search, forward selection is much cheaper.

However, forward selection may suffer because of its greediness. For exan)@jsaisithe best
individual feature, it does not guarantee that eifxyy, X2} or{X(1), X3)} must be better than
{X(2) X(3)}- Therefore, aforward selection algorithm may select a feature set different from that
selected by exhaustive searching. With a bad selection of the input features, the pré&giction

of a queryX, = { X1 X5, ... Xy} may be significantly different from the tige

7.3.2 Three Variants of Forward Selection

In this subsection, we will investigate the following two questions based on empirical analysis

using real world datasets mixed with artificially designed features.

1.How severely does the greediness of forward selection lead to a bad selection of the input

features?

2.1f the greediness of forward selection does not have a significantly negative effect on accu-

racy, how can we modify forward selection algorithm to be greedier in order to improve

7.3 Feature selection algorithms 123

the efficiency even further?

We postpone the first question until the next section. In this chapter, we propose three greedier
feature selection algorithms whose goal is to select no morentifaatures from a total a1

input attributes, and with tolerable loss of prediction accuracy.

Super Greedy Algorithm

Do all the 1-attribute LOOCV calculations, sort the individual features according to their
LOOCV mean error, then take tinebest features as the selected subset. We thivs clampu-
tations involving one feature and one computation involvimfgatures. If nearest neighbor is

the function approximator, the cost of super greedy algoritl@g(id + m) N log N)

Greedy Algorithm

Do all the 1-attribute LOOCVs and sort them, take the best two individual features and evaluate
their LOOCYV error, then take the best three individual features, and so onifetitures have

been evaluated. Compared with the super greedy algorithm, this algorithm may conclude at a
subset whose size is smaller tharbut whose inner testset error is smaller than that ofithe
component feature set. Hence, the greedy algorithm may end up with a better feature set than
the super-greedy one does. The cost of the greedy algorithm for nearest neigh§it ismz)

N log N)

Restricted Forward Selection (RFS)

1.Calculate all the 1-feature set LOOCV errors, and sort the features according to the corre-
sponding LOOCYV errors. Suppose the features ranking from the most important to the

least Important ara(l), X(Z)’ ey X(M)

2.Do the LOOCVs of 2-feature subsets which consist of the winner of the first rdﬁmd,

along with another feature, eith¥{,), or X(3), or any other one untKyy , 5y There are

124 Chapter 7: Feature Selection

M/ 2 of these pairs. The winner of this round will be the best 2-component feature subset
chosen by RFS.

3.Calculate the LOOCYV errors df1/3 subsets which consist of the winner of the second
round, along with the otheM/3 features at the top of the remaining rank. In this way,
RFS will select its best feature triple.

4.Continue this procedure, until RFS has found therbesimponent feature set.

5.From Step 1 to Step 4, RFS has foundeature sets whose sizes range frbio m. By

comparing their LOOCYV errors, RFS can find the best overall feature set.

The difference between RFS and conventional Forward Selection (FS) is that at each step to
insert an additional feature into the subset, FS considers all the remaining features, while RFS
only tries a part of them which seem more promising. The cost of RFS for nearest neighbor is

O(M m N log N)

For all these varieties of forward selection, we want to know how cheap and how accurate they
are compared with the conventional forward selection method. To answer these questions, we

resort to experiments using real world datasets.

7.4 Experiments

In this section, we compare the greedy algorithms with the conventional methods empirically.
We run ten experiments; for each experiment, we try two datasets with different input dimen-

sionalities; and for each dataset, we use three different function approximators.

To evaluate the influence of the greediness on the accuracy and efficiency of the feature selec-
tion process, we use twelve real world datasets from StatLib/CMU and UCI's machine learning
data repository. These datasets come from different domains, such as biology, sociology, robot-

ics, etc. The datasets each contain 62 to 1601 points, and each point consists of an input vector

7.4 Experiments 125

and a scalar output. The dimensionality of the input varies from 3 to 13. In all of these examples

we setm (the maximum feature set size) to be 10.

Table 7-1: Preliminary comparison of ES vs. FS

Domain 20Fold Mean Errors Time Cost Selected Features

(dim)

ES FS ES/F$S ES F8 ES/KS E F$

U)
1"

Crab (7) || 0.415| 0469 0885 35644 532 6848 ARG Al
Halibut (7)|| 57.972 52.26f 1.109 61759 7143 86.62 B,G.G ADEG
Irish (5) | 0.863 0.905] 0.954| 138088 1142 12091 AGE AD
Litter 3) || 0.780 0.868| 0.899| 4982 11f 4258 AB|C ABC

Our first experiment demonstrates that Exhaustive Search (ES) is prohibitively time-consum-
ing. We choose four domains with not-too-large datasets and limited input dimensionality for
this test. Referring to Table 7-1, even for these easy cases, ES is far more expensive than the
Forward Selection algorithm (FS), while it is not significantly more accurate than FS. However,
the features selected by FS may differ from the result of ES. That is because some of the input

features are not mutually independent.

Our second experiment investigates the influence of greediness. We compare the three greedier
algorithms, Super Greedy, Greedy and Restricted Forward Selection (RFS), with the conven-
tional FS in three aspects:(1) The probabilities for these algorithms to select any useless fea-
tures, (2) The prediction errors using the feature set selected by these algorithms, and (3) The

time cost for these algorithms to find their feature sets.

For example, if a raw data file consists of three input attributes/ W and an outpuy, we
generate a new dataset consisting of more input featured, W, cU, cV cW Ry, Ry,..., Ry,

and the outpuy, in which cU, cV andcW are copies otJ, V andW but corrupted with 20%

126

Chapter 7: Feature Selection

noise, whileR; to R, are independent random numbers. The chance that any of these useless

features is selected can be treated as an estimation of the probability for the certain feature

selection algorithm to make a mistake.

Table 7-2: Greediness comparison

Domain | Funct. # Corrupt / Total Corrupts # Noise / Total Noise
(dim) Apprx. Super| Greedy RFS FS Super Greedy RFS |FS
Nearest|| 0.23| 0.2/ 010 012 010 005 005 0.06
B‘(’f%’;at LocLin | 031 | 008 | 017 018 000 0.0 0.05 0.0
GlbLin || 031 = 023 | 0.15 000 000 0.00 0.00 040
Nearest|| 0.23| 0.9/ 021 017 020 020 0723 0.35
B&S?E;’” LocLin | 015 | 015 | 012/ 015 030 0.30 0.30 033
GlbLin || 015 012 | 0.15 023 040 030 0.30 040
Nearest|| 0.29| 029/ 029 029 030 013 017 0.20
C(r;‘;’ LocLin | 029 | 0.14°| 021 021 040 040 020 0.15
GlbLin || 029 = 014 | 029 024 040 030 0.15 0417
Nearest|| 0.57| 057/ 014 043 010 010 010 0.10
H"?%)“t LocLin | 043 | 021 | 004 024 020 010 0.0 0.0
GlbLin || 036 029 | 0.00 014 025 010 0.20 0.10
Nearest|| 0.60| 0.60| 000 000 020 020 010 0.10
'”g)‘ LocLin || 0.40 = 040 | 0.38 038 030 030 0.5 025
GlbLin || 060 = 060 | 0.30 040 030 030 0.40 025
Nearest|| 0.67| 0.33] 033 033 030 000 005 0.07
Li(tgr LocLin | 067 | 033 | 033 033 030 000 005 007
GlbLin || 033 = 033 | 000 043 050 020 0.35 050

7.4 Experiments

127

Table 7-2: Greediness comparison

Domain | FEunct. # Corrupt / Total Corrupts # Noise / Total Noise
(dim) ApprX. Super | Greedy RFS FS Super Greedy RFS |FS
Nearest 0.44 0.44 041 0.44 0.00 0.00 0.07 Q.05
M(gg)’ LocLin || 0.44 033 | 022 030 000 000 0.10 023
GlbLin || 033 028 | 022 017 000 000 0.20 0.20
Nearest | 0.33 ~ 0.00| 025 025 030 0.10 015 0.15
N“(%S)ing LocLin || 0.33 = 008 | 0.33 022 040 025 0.20 0.20
GlbLin || 033 = 025 | 0.33 025 040 0.35 0.20 0.30
Nearest| 031 000/ 0.0 000 015 0.0 0.0 0.00
P'(aS‘):eS LocLin || 0.38 024 | 0.16 040 020 010 0.00 0.10
GlbLin || 025 025 | 023 031 035 015 0.15 025
Nearest 0.29 0.00 0.04 0.04 0.25 0.10 013 Q.17
S'(e7§’p LocLin || 0.43 = 011 | 0.03 000 020 003 0.08 0.0
GlbLin || 026 = 021 | 026 029 040 015 0.18 040
Nearest 0.33 0.17 0.17 0.1 0.30 0.00 0.03 Q.03
Szgre LocLin || 058 = 0.00 | 0.00 000 015 0.00 0.00 0.05
GlbLin || 050 @ 033 | 022 033 015 0.00 0.08 0.8
Nearest| 0.15 0.15 0.08 023 040 020 015 0.25
C\Q’Hhi(tleé) LocLin || 0.15 0.04 | 0.2 002 004 010 0.27 027
GlbLin || 012 = 014 | 0.08 004 040 035 025 025
Mean | Nearest| 0.37| 027 017 021 023 010 011 0.13
overall ™= o in | 038 | 048 | 017] 020 024 013 013 048
twelve
datasets GloLin || 0.30 | 0.26 | 0.19| 023 029 018 021 028
TOTAL i 035 024 | 018 021 025 014 015 0.20

128 Chapter 7: Feature Selection

As we observe in Table 7-2, FS does not eliminate more useless features than the greedier com-
petitors except the Super Greedy one. However, the greedier an algorithm is, the more easily it

is confused by the relevant but corrupted features.

Since the input features may be mutually dependent, the different algorithms may find different
feature sets. To measure the goodness of these selected feature sets, we calculate the mean 20-
fold score. As described in Section 7-2, our scoring is carefully designed to avoid overfitting,
so that the smaller the score, the better the corresponding feature set is. To confirm the consis-
tency, we test the four algorithms in all the twelve domains from StatLib and UCI. For each
domain, we apply the algorithms to two datasets. Both of the datasets are generated based on
the same raw data file, but with different numbers of corrupted features and independent noise.
And for each dataset, we try three function approximators, nearest neighbor (Nearest), locally
weighted linear regression (LocLin) and global linear regression (GlbLin). For the sake of con-
ciseness, we only list the ratios. If a ratio is close to 1.0, the corresponding algorithm’s perfor-
mance is not significantly different from that of FS. The experimental results are shown in
Table 7-3. In addition, we also list the ratios of the number of seconds consumed by the greedier

algorithms to that of FS.

First, we observe in Table 7-3 that the three greedier feature selection algorithms do not suffer
greatloss in accuracy, since the average ratios of the 20-fold scores to those of FS are very close
to 1.0. In fact, RFS performs almost as well as FS. Second, as we expected, the greedier algo-
rithms improve the efficiency. Super greedy algorithm (Super) is ten times faster than forward
selection (FS), while greedy algorithm (Greedy) seven times, and the restricted forward selec-
tion (RFS) three times. Finally, restricted forward selection (RFS) performs better than the con-

ventional FS in all aspects.

To further confirm our conclusion, we do the third experiment. This time, we insert more inde-

pendent random noise and corrupted features to the datasets. For example, if the original data

7.4 Experiments

129

Table 7-3: Greediness comparison

Domain | Funct 20Fold() / 20Fold(FS) Cost() / Cost(FS)
(dim) Apprx. Super Greedy RFS Super Greedy RAS
Nearest| 0.975 ~ 0.969| 0.91% 0095 0126 0.380
B‘(’f%’;at LocLin || 1.080 | 1.015 @ 0.973| 0062 0.092 0.287
GlbLin || 0.984 | 00981 | 0.966] 0084 0109 0.247
Nearest| 0.876 ~ 0.872| 0.88] 0.105 0.145 0.389
Bas;;)” LocLin || 1.091 | 1.091 @ 0.969| 0.058 0.080 0.270
GlbLin || 1.059 | 1.052 | 1.068| 0.084 0.127 0.287
Nearest 1.107 1.039 0.973 0.123 0.149 0.3b8
Cr(a;)’ LocLin || 1.121 | 1.093 @ 1.024| 0.095 0.128 0.349
GlbLin || 1.123 | 1.101 | 0957 0079 0.116 0.319
Nearest|| 1.089 ~ 1.108 1.051 0.133 0.163 0.376
H"’(‘%)”t LocLin || 1.395 | 1.322 @ 1.198] 0079 0.130 0.312
GlbLin || 1.073 | 1.018 | 1.022] 0079 0.137 0.273
Nearest| 1.132| 1.072| 00954 0127 0.171 0.343
'”?Sh) LocLin || 1.039 | 0.979 @ 0984 008 0.137 0.316
GlbLin || 0981 | 00981 | 0.992] 0.096 0180 0.373
Nearest| 1.370| 1.014| 1.000 0.145 0222 0.419
Lit(tg)r LocLin || 1.301 | 0.960 @ 0989 0.099 0.179 0.361
GlbLin || 0.886 | 0902 | 00930 0111 0.179 0.410
Nearest| 1.384| 1.250 | 1.084 0112 0.165 0.308
M?99) LocLin || 1.550 | 1.524 @ 1.081 0.074 0.093 0.271
GlbLin || 1.295 | 1.317 | 1.014 0086 0.142 0.298
Nearest| 1.315| 1.128| 0998 0102 0.172 0.327
N”(rﬁs)ing LocLin || 1.171 | 1.106 @ 1.063] 0.072 0.121 0.260
GlbLin || 1.044 | 1.043 | 1.002 0.092 0.137 0.267

130 Chapter 7: Feature Selection
Table 7-3: Greediness comparison
Domain | Funct 20Fold() / 20Fold(FS) Cost() / Cost(FS)
(dim) Apprx. Super Greedy RFS Super Greedy RAS
Nearest|| 1.367| 1.000 1.000 0.118 0.154 0.364
P'Zf)es LocLin || 0.998 | 1.017 | 0.993 0071 0112 0.316
GlbLin || 1.041 | 1.044 | 1.064 0.091 0.130 0.265
Nearest| 1.008 0.883 0981 0143 0165 0.361
S"(a%p LocLin || 1.170 | 0.852 | 0922 0090 0.113 0.273
GlbLin || 0.918 | 0925 | 1.026] 0.096 0.122 0.276
Nearest|| 1.142] 0952 1.000 0161 0178 0.424
St(rg;e LocLin || 1.172 | 0.987 | 1.003 0068 0108 0.293
GlbLin | 1.004 | 0992 | 0.993] 0093 0166 0.310
Nearest| 0.854 ~ 0718 0.906 0.100 0.138 0.288
C\’ef’lri(tleé) LocLin || 1.259 | 0.821 @ 0.931) 0077 0088 0.254
GlbLin | 0.940 | 0.942 | 0910 0.098 0109 0.291
Mean | Nearest| 1.142] 1.001| 0978 0122 0163 0.3p5
overall ™ ociin || 1.196 | 1064 | 1011 0077 0115 029
twelve
datasets| GlbLin | 1.029 | 1.025 | 0.995] 0.091 0.138 0.301
TOTAL i 1122 | 1030 | 0995 0097 0.138 0.32L

set consists of three input featur@d,V,W}, the new artificial data file contaid¥), cU, V, cV,
cU *cV, W, cW, cV * cW, R.., Rig}. The results are listed in Table 7-4 and Table 7-5.

Comparing Table 7-2 with Table 7-4, we notice that with more input features, the probability
for any corrupted feature to be selected remains almost the same, while that of independent
noise reduces greatly. Comparing Table 7-3 with Table 7-5, with more input features, (1) the

prediction accuracies of the feature sets selected by the variety of the algorithms are roughly

7.4 Experiments 131

Table 7-4: Greediness comparison with more inputs

Corrupt / Total Corrupts # Noise / Total Noise
Funct.

Apprx. Super| Greedy RFS FS| Sup

elreed| pes | Es

Nearest|| 0.29 0.33 030 038 004 004 0.03 0J04

Mean I oolin || 038 | 038 | 025 041 005 003 002 003
Values
GlbLin 0.38 0.25 0.29 0.16 0.05 0.05 0.08 0.07
TOTAL - 0.35 0.32 0.28| 0.32| 0.05 0.04 0.04 0.05
Table 7-5: Greediness comparison with more inputs
Funct. 20Fold() / 20Fold(FS) Cost() / Cost(FS)
Apprx. Super| Greedyy RFS| Super Greedy RES
Nearest 1.197 1.056 1.00L 0.080 0.080 0.282
Mean [octin || 1.202 | 1.0s9 | 1.04d 0071 0084 0281
Values
GlbLin 1.032 1.026 | 0.998| 0.079 0.104 0.294
TOTAL - 1.144 1.047 1.013| 0.077 0.088 0.286

consistent, because the 20fold scores in the two tables are almost the same; (2) the efficiency

ratio of the greedier alternatives to FS is a little higher.

In summary, in theory the greediness of feature selection algorithms may lead to great reduc-
tion in the accuracy of function approximating, but in practice it does not happen quite often.
The three greedier algorithms we propose in this paper improve the efficiency of the forward
selection algorithm, especially for larger datasets with high input dimensionalities, without sig-
nificant loss in accuracy. Even in the case the accuracy is more crucial than the efficiency,

restricted forward selection is more competitive than the conventional forward selection.

132 Chapter 7: Feature Selection

7.5 Summary

In this chapter, we explore three greedier variants of the forward selection method. Our inves-
tigation shows that the greediness of the feature selection algorithms greatly improves the effi-
ciency, while does not corrupt the correctness of the selected feature set so that the prediction
accuracy using the selected features remains satisfactory. As an application, we apply feature

selection to a prototype system of Chinese and Japanese handwriting recognition.

	Chapter 7
	Feature Selection
	7.1 Introduction
	1. The irrelevant input features will induce greater computational cost. For example, using cache...
	2. The irrelevant input features may lead to overfitting. For example, in the domain of medical d...

	7.2 Cross Validation vs. Overfitting
	1. Shuffle the data set and split into a training set of 70% of the data and a testset of the rem...
	2. Let j vary among feature-set sizes: j = (0 , 1 , 2 , ... , m)
	a. Let fsj = best feature set of size j, where “best” is measured as the minimizer of the leave-o...
	b. Let Testscorej = the RMS prediction error of feature set fsj on the test set.

	3. Select the feature set fsj for which the test-set score is minimized.

	7.3 Feature selection algorithms
	7.3.1 Forward feature selection
	Figure 7-2: Full procedure for evaluating feature selection of up to m attributes.

	.
	7.3.2 Three Variants of Forward Selection
	1. How severely does the greediness of forward selection lead to a bad selection of the input fea...
	2. If the greediness of forward selection does not have a significantly negative effect on accura...
	Super Greedy Algorithm
	Greedy Algorithm
	Restricted Forward Selection (RFS)
	1. Calculate all the 1-feature set LOOCV errors, and sort the features according to the correspon...
	2. Do the LOOCVs of 2-feature subsets which consist of the winner of the first round, X(1), along...
	3. Calculate the LOOCV errors of subsets which consist of the winner of the second round, along w...
	4. Continue this procedure, until RFS has found the best m-component feature set.
	5. From Step 1 to Step 4, RFS has found m feature sets whose sizes range from 1 to m. By comparin...

	7.4 Experiments
	Table 7-1: Preliminary comparison of ES vs. FS
	Table 7-2: Greediness comparison
	Table 7-3: Greediness comparison
	Table 7-4: Greediness comparison with more inputs
	Table 7-5: Greediness comparison with more inputs

	7.5 Summary

