
ussed

tion as

p

,

-

,

uf-

ures,

there

pro-

ing

m-
Chapter 7

Feature Selection

Feature selection is not used in the system classification experiments, which will be disc

in Chapter 8 and 9. However, as an autonomous system, OMEGA includes feature selec

an important module.

7.1 Introduction

A fundamental problem of machine learning is to approximate the functional relationshif()

between an input and an outputY, based on a memory of data points

, i = 1, ..., N, usually theXi’s are vectors of reals and theYi’s are real numbers. Some

times the outputY is not determined by the complete set of the input features

instead, it is decided only by a subset of them , where . With s

ficient data and time, it is fine to use all the input features, including those irrelevant feat

to approximate the underlying function between the input and the output. But in practice,

are two problems which may be evoked by the irrelevant features involved in the learning

cess.

1.The irrelevant input features will induce greater computational cost. For example, us

cachedkd-trees as we discussed in last chapter, locally weighted linear regression’s co

putational expense isO(m3 + m2 log N) for doing a single prediction, whereN is the num-

X x1 x2 ... ,, , xM{ }=

Xi Yi,{ }

x1 x2 ... ,, , xM{ }

x 1() x 2() ... x m(), , ,{ } m M<
117

118 Chapter 7: Feature Selection

lly

ase

di-

cor-

ure,

s is

lying

input

mall.

basi-

ommu-

search

1]

ru-

In the

eyed

ations

ompu-

sort
ber of data points in memory andm is the number of features used. Apparently, with more

features, the computational cost for predictions will increase polynomially; especia

when there are a large number of such predictions, the computational cost will incre

immensely.

2.The irrelevant input features may lead to overfitting. For example, in the domain of me

cal diagnosis, our purpose is to infer the relationship between the symptoms and their

responding diagnosis. If by mistake we include the patient ID number as one input feat

an over-tuned machine learning process may come to the conclusion that the illnes

determined by the ID number.

Another motivation for feature selection is that, since our goal is to approximate the under

function between the input and the output, it is reasonable and important to ignore those

features with little effect on the output, so as to keep the size of the approximator model s

For example, [Akaike, 73] proposed several versions of model selection criteria, which

cally are the trade-offs between high accuracy and small model size.

The feature selection problem has been studied by the statistics and machine learning c

nities for many years. It has received more attention recently because of enthusiastic re

in data mining. According to [John et al., 94]’s definition, [Kira et al, 92] [Almuallim et al., 9

[Moore et al, 94] [Skalak, 94] [Koller et al, 96] can be labelled as “filter” models, while [Ca

ana et al., 94] [Langley et al, 94]’s research is classified as “wrapped around” methods.

statistics community, feature selection is also known as “subset selection”, which is surv

thoroughly in [Miller, 90].

The brute-force feature selection method is to exhaustively evaluate all possible combin

of the input features, and then find the best subset. Obviously, the exhaustive search’s c

tational cost is prohibitively high, with considerable danger of overfitting. Hence, people re

7.2 Cross Validation vs. Overfitting 119

lection

er ten

tures

al

er we

is is

t cross

well-

ingly
to greedy methods, such as forward selection. In this paper, we propose three greedier se

algorithms in order to further enhance the efficiency. We use real-world data sets from ov

different domains to compare the accuracy and efficiency of the various algorithms.

7.2 Cross Validation vs. Overfitting

The goal of feature selection is to choose a subset of the complete set of input fea

so that the subset can predict the outputYwith accuracy comparable

to the performance of the complete input setX, and with great reduction of the computation

cost.

First, let us clarify how to evaluate the performance of a set of input features. In this chapt

use a very conservative form of feature set evaluation in order to avoid overfitting. Th

important. Even if feature sets are evaluated by testset cross-validation or leave-one-ou

validation, an exhaustive search of possible feature-sets is likely to find a misleadingly

scoring feature-set by chance. To prevent this, we use thecascaded cross-validationprocedure

in Figure 7-1, which selects from increasingly large sets of features (and thus from increas

Xs

X x1 x2 ... , xM, , ,{ }= Xs

1. Shuffle the data set and split into a training set of 70% of the data
and a testset of the remaining 30%.

2. Let j vary among feature-set sizes: j = (0 , 1 , 2 , ... , m)

a. Letfsj = best feature set of size j, where “best” is measured as
the minimizer of the leave-one-out cross-validation error over
the training set.

b. LetTestscorej = the RMS prediction error of feature setfsj on
the test set.

End of loop of (j).

3. Select the feature setfsj for which the test-set score is minimized.

Figure 7-1: Cascaded cross-validation procedure for finding
the best set of up to m features.

120 Chapter 7: Feature Selection

n inde-

and

ore

he best

aluate

orithm

ection

roce-

Fig-

set of

asets.

ture

er to

onsist

ross
large model classes). The score for the best feature set of a given size is computed by a

pendent cross-validation from the score for the best size of feature set.

Two notes about the procedure in Figure 7-1: First, the choice of 70/30 split for training

testing is somewhat arbitrary, but is empirically a good practical ratio according to m

detailed experiments. Second, note that Figure 7-1 does not describe how we search for t

feature set of sizej in Step 2a. This is the subject of Section 7-3.

To evaluate the performance a feature selection algorithm is more complicated than to ev

a feature set. This is because in order to evaluate an algorithm, we must first ask the alg

to find the best feature subset. Second, to give a fair estimate of how well the feature sel

algorithm performs, we should try the first step on different datasets. Therefore, the full p

dure of evaluating the performance of a feature selection algorithm, which is described in

ure 7-2, has two layers of loops. The inner loop is to use an algorithm to find the best sub

features. The outer loop is to evaluate the performance of the algorithm using different dat

7.3 Feature selection algorithms

In this section, we introduce the conventional feature selection algorithm: forward fea

selection algorithm; then we explore three greedy variants of the forward algorithm, in ord

improve the computational efficiency without sacrificing too much accuracy.

7.3.1 Forward feature selection

The forward feature selection procedure begins by evaluating all feature subsets which c

of only one input attribute. In other words, we start by measuring the Leave-One-Out C

Validation (LOOCV) error of the one-component subsets,{X1}, {X2}, ..., {XM}, whereM is the

input dimensionality; so that we can find the best individual feature,X(1).

7.3 Feature selection algorithms 121

ing to

n

xima-

e

Next, forward selection finds the best subset consisting of two components,X(1) and one other

feature from the remainingM - 1 input attributes. Hence, there are a total ofM - 1 pairs. Let’s

assumeX(2) is the other attribute in the best pair besidesX(1).

Afterwards, the input subsets with three, four, and more features are evaluated. Accord

forward selection, the best subset withm features is them-tuple consisting ofX(1), X(2), ..., X(m),

while overall the best feature set is the winner out of all theM steps. Assuming the cost of a

LOOCV evaluation withi features isC(i), then the computational cost of forward selectio

searching for a feature subset of sizem out ofM total input attributes will be

.

For example, the cost of one prediction with one-nearest-neighbor as the function appro

tor, using a kd-tree withj inputs, isO(j log N) whereN is the number of datapoints. Thus, th

Figure 7-2: Full procedure for evaluating feature
selection of up to m attributes.

1. Collect a training data set from the specific domain.
2. Shuffle the data set.
3. Break it intoP partitions, (sayP = 20)
4. For each partition (i = 0, 1, ..., P-1)

a. LetOuterTrainset(i) = all partitions except i.
b. LetOuterTestset(i) = thei’th partition
c. Let InnerTrain(i) = randomly chosen 70% of theOuterTrain-

set(i).
d. Let InnerTest(i) = the remaining 30% of theOuterTrainset(i).
e. Forj = 0, 1, ..., m

Search for the best feature set withj components,fsij .using
leave-one-out onInnerTrain(i)
Let InnerTestScoreij = RMS score offsij on InnerTest(i).

End loop of (j).
f. Select thefsij with the best inner test score.
g. LetOuterScorei = RMS score of the selected feature set onOu-

terTestset(i)
End of loop of (i).

5. Return the mean Outer Score.

MC 1() M 1–()C 2() ...+ + M m– 1+()C m()+

122 Chapter 7: Feature Selection

ustive

h is the

ature

e

rd to

that

ion

lysis

nput

ccu-

ve
cost of computing the mean leave-one-out error, which involvesN predictions, isO(j N log N).

And so the full cost of feature selection using the above formula isO(m2 M N log N).

To find the overall best input feature set, we can also employ exhaustive search. Exha

search begins with searching the best one-component subset of the input features, whic

same in the forward selection algorithm; then it goes to find the best two-component fe

subset which may consist ofanypairs of the input features. Afterwards, it moves to find th

best triple out of all the combinations of any three input features, etc. It is straightforwa

see that the cost of exhaustive search is the following:

Compared with the exhaustive search, forward selection is much cheaper.

However, forward selection may suffer because of its greediness. For example, ifX(1) is the best

individual feature, it does not guarantee that either{X(1), X(2)} or {X(1), X(3)} must be better than

{X(2), X(3)}. Therefore, a forward selection algorithm may select a feature set different from

selected by exhaustive searching. With a bad selection of the input features, the predict

of a query may be significantly different from the true .

7.3.2 Three Variants of Forward Selection

In this subsection, we will investigate the following two questions based on empirical ana

using real world datasets mixed with artificially designed features.

1.How severely does the greediness of forward selection lead to a bad selection of the i

features?

2.If the greediness of forward selection does not have a significantly negative effect on a

racy, how can we modify forward selection algorithm to be greedier in order to impro

MC 1() M
2 

  C 2() ...
M
m 

  C m()+ + +

Ŷq

Xq x1 x2 ... ,xM, ,{ }= Yq

7.3 Feature selection algorithms 123

eedier

heir

s

luate

e at a

et than

rre-

the
the efficiency even further?

We postpone the first question until the next section. In this chapter, we propose three gr

feature selection algorithms whose goal is to select no more thanm features from a total ofM

input attributes, and with tolerable loss of prediction accuracy.

Super Greedy Algorithm

Do all the 1-attribute LOOCV calculations, sort the individual features according to t

LOOCV mean error, then take thembest features as the selected subset. We thus doM compu-

tations involving one feature and one computation involvingm features. If nearest neighbor i

the function approximator, the cost of super greedy algorithm isO((M + m) N log N).

Greedy Algorithm

Do all the 1-attribute LOOCVs and sort them, take the best two individual features and eva

their LOOCV error, then take the best three individual features, and so on, untilm features have

been evaluated. Compared with the super greedy algorithm, this algorithm may conclud

subset whose size is smaller thanm but whose inner testset error is smaller than that of them-

component feature set. Hence, the greedy algorithm may end up with a better feature s

the super-greedy one does. The cost of the greedy algorithm for nearest neighbor isO((M + m2)

N log N).

Restricted Forward Selection (RFS)

1.Calculate all the 1-feature set LOOCV errors, and sort the features according to the co

sponding LOOCV errors. Suppose the features ranking from the most important to

least important are .

2.Do the LOOCVs of 2-feature subsets which consist of the winner of the first round,X(1),

along with another feature, eitherX(2), or X(3), or any other one untilX(M / 2). There are

X 1() X 2() ... X M(), , ,

124 Chapter 7: Feature Selection

set

nd

y,

tep to

e RFS

bor is

they

ns, we

cally.

men-

selec-

rning

robot-

t vector
of these pairs. The winner of this round will be the best 2-component feature sub

chosen by RFS.

3.Calculate the LOOCV errors of subsets which consist of the winner of the seco

round, along with the other features at the top of the remaining rank. In this wa

RFS will select its best feature triple.

4.Continue this procedure, until RFS has found the bestm-component feature set.

5.From Step 1 to Step 4, RFS has foundm feature sets whose sizes range from1 to m. By

comparing their LOOCV errors, RFS can find the best overall feature set.

The difference between RFS and conventional Forward Selection (FS) is that at each s

insert an additional feature into the subset, FS considers all the remaining features, whil

only tries a part of them which seem more promising. The cost of RFS for nearest neigh

O(M m N log N).

For all these varieties of forward selection, we want to know how cheap and how accurate

are compared with the conventional forward selection method. To answer these questio

resort to experiments using real world datasets.

7.4 Experiments

In this section, we compare the greedy algorithms with the conventional methods empiri

We run ten experiments; for each experiment, we try two datasets with different input di

sionalities; and for each dataset, we use three different function approximators.

To evaluate the influence of the greediness on the accuracy and efficiency of the feature

tion process, we use twelve real world datasets from StatLib/CMU and UCI’s machine lea

data repository. These datasets come from different domains, such as biology, sociology,

ics, etc. The datasets each contain 62 to 1601 points, and each point consists of an inpu

M 2⁄

M 3⁄

M 3⁄

7.4 Experiments 125

ples

sum-

y for

an the

ever,

input

reedier

nven-

s fea-

3) The
and a scalar output. The dimensionality of the input varies from 3 to 13. In all of these exam

we setm (the maximum feature set size) to be 10.

Our first experiment demonstrates that Exhaustive Search (ES) is prohibitively time-con

ing. We choose four domains with not-too-large datasets and limited input dimensionalit

this test. Referring to Table 7-1, even for these easy cases, ES is far more expensive th

Forward Selection algorithm (FS), while it is not significantly more accurate than FS. How

the features selected by FS may differ from the result of ES. That is because some of the

features are not mutually independent.

Our second experiment investigates the influence of greediness. We compare the three g

algorithms, Super Greedy, Greedy and Restricted Forward Selection (RFS), with the co

tional FS in three aspects:(1) The probabilities for these algorithms to select any useles

tures, (2) The prediction errors using the feature set selected by these algorithms, and (

time cost for these algorithms to find their feature sets.

For example, if a raw data file consists of three input attributes,U, V, W and an outputY, we

generate a new dataset consisting of more input features,U, V, W, cU, cV, cW, R1, R2,..., R10,

and the outputY, in which cU, cV andcWare copies ofU, V andW but corrupted with 20%

 Table 7-1: Preliminary comparison of ES vs. FS

Domain
(dim)

20Fold Mean Errors Time Cost Selected Features

ES FS ES / FS ES FS ES / FS ES FS

Crab (7) 0.415 0.469 0.885 35644 522 68.28 A,F,G A,E

Halibut (7) 57.972 52.267 1.109 61759 713 86.62 B,C,G A,D,E,G

Irish (5) 0.863 0.905 0.954 138088 1142 120.91 A,C,E A,D

Litter (3) 0.780 0.868 0.899 4982 117 42.58 A,B,C A,B,C

126 Chapter 7: Feature Selection

eless

eature
noise, whileR1 to R10 are independent random numbers. The chance that any of these us

features is selected can be treated as an estimation of the probability for the certain f

selection algorithm to make a mistake.

 Table 7-2: Greediness comparison

Domain
(dim)

Funct.
Apprx.

Corrupt / Total Corrupts # Noise / Total Noise

Super Greedy RFS FS Super Greedy RFS FS

Bodyfat
(13)

Nearest 0.23 0.12 0.10 0.12 0.10 0.05 0.05 0.06

LocLin 0.31 0.08 0.17 0.18 0.00 0.00 0.05 0.20

GlbLin 0.31 0.23 0.15 0.00 0.00 0.00 0.00 0.40

Boston
(13)

Nearest 0.23 0.19 0.21 0.17 0.20 0.20 0.23 0.35

LocLin 0.15 0.15 0.12 0.15 0.30 0.30 0.30 0.33

GlbLin 0.15 0.12 0.15 0.23 0.40 0.30 0.30 0.40

Crab
(7)

Nearest 0.29 0.29 0.29 0.29 0.30 0.13 0.17 0.20

LocLin 0.29 0.14‘ 0.21 0.21 0.40 0.40 0.20 0.15

GlbLin 0.29 0.14 0.29 0.24 0.40 0.30 0.15 0.17

Halibut
(7)

Nearest 0.57 0.57 0.14 0.43 0.10 0.10 0.10 0.10

LocLin 0.43 0.21 0.04 0.24 0.20 0.10 0.10 0.20

GlbLin 0.36 0.29 0.00 0.14 0.25 0.10 0.20 0.10

Irish
(5)

Nearest 0.60 0.60 0.00 0.00 0.20 0.20 0.10 0.10

LocLin 0.40 0.40 0.38 0.38 0.30 0.30 0.15 0.25

GlbLin 0.60 0.60 0.30 0.40 0.30 0.30 0.40 0.25

Litter
(3)

Nearest 0.67 0.33 0.33 0.33 0.30 0.00 0.05 0.07

LocLin 0.67 0.33 0.33 0.33 0.30 0.00 0.05 0.07

GlbLin 0.33 0.33 0.00 0.43 0.50 0.20 0.35 0.50

7.4 Experiments 127
Mpg
(9)

Nearest 0.44 0.44 0.41 0.44 0.00 0.00 0.07 0.05

LocLin 0.44 0.33 0.22 0.30 0.00 0.00 0.10 0.23

GlbLin 0.33 0.28 0.22 0.17 0.00 0.00 0.20 0.20

Nursing
(6)

Nearest 0.33 0.00 0.25 0.25 0.30 0.10 0.15 0.15

LocLin 0.33 0.08 0.33 0.22 0.40 0.25 0.20 0.20

GlbLin 0.33 0.25 0.33 0.25 0.40 0.35 0.20 0.30

Places
(8)

Nearest 0.31 0.00 0.00 0.00 0.15 0.00 0.00 0.00

LocLin 0.38 0.24 0.16 0.40 0.20 0.10 0.00 0.10

GlbLin 0.25 0.25 0.23 0.31 0.35 0.15 0.15 0.25

Sleep
(7)

Nearest 0.29 0.00 0.04 0.04 0.25 0.10 0.13 0.17

LocLin 0.43 0.11 0.03 0.00 0.20 0.03 0.08 0.10

GlbLin 0.26 0.21 0.26 0.29 0.40 0.15 0.18 0.40

Strike
(6)

Nearest 0.33 0.17 0.17 0.17 0.30 0.00 0.03 0.03

LocLin 0.58 0.00 0.00 0.00 0.15 0.00 0.00 0.05

GlbLin 0.50 0.33 0.22 0.33 0.15 0.00 0.08 0.18

White-
cell (13)

Nearest 0.15 0.15 0.08 0.23 0.40 0.20 0.15 0.25

LocLin 0.15 0.04 0.02 0.02 0.04 0.10 0.27 0.27

GlbLin 0.12 0.14 0.08 0.04 0.40 0.35 0.25 0.25

Mean
over all
twelve
datasets

Nearest 0.37 0.27 0.17 0.21 0.23 0.10 0.11 0.13

LocLin 0.38 0.18 0.17 0.20 0.24 0.13 0.13 0.18

GlbLin 0.30 0.26 0.19 0.23 0.29 0.18 0.21 0.28

TOTAL - 0.35 0.24 0.18 0.21 0.25 0.14 0.15 0.20

 Table 7-2: Greediness comparison

Domain
(dim)

Funct.
Apprx.

Corrupt / Total Corrupts # Noise / Total Noise

Super Greedy RFS FS Super Greedy RFS FS

128 Chapter 7: Feature Selection

r com-

asily it

erent

ean 20-

tting,

onsis-

ach

sed on

noise.

ocally

con-

rfor-

n in

eedier

suffer

y close

r algo-

ward

selec-

con-

nde-

al data
As we observe in Table 7-2, FS does not eliminate more useless features than the greedie

petitors except the Super Greedy one. However, the greedier an algorithm is, the more e

is confused by the relevant but corrupted features.

Since the input features may be mutually dependent, the different algorithms may find diff

feature sets. To measure the goodness of these selected feature sets, we calculate the m

fold score. As described in Section 7-2, our scoring is carefully designed to avoid overfi

so that the smaller the score, the better the corresponding feature set is. To confirm the c

tency, we test the four algorithms in all the twelve domains from StatLib and UCI. For e

domain, we apply the algorithms to two datasets. Both of the datasets are generated ba

the same raw data file, but with different numbers of corrupted features and independent

And for each dataset, we try three function approximators, nearest neighbor (Nearest), l

weighted linear regression (LocLin) and global linear regression (GlbLin). For the sake of

ciseness, we only list the ratios. If a ratio is close to 1.0, the corresponding algorithm’s pe

mance is not significantly different from that of FS. The experimental results are show

Table 7-3. In addition, we also list the ratios of the number of seconds consumed by the gr

algorithms to that of FS.

First, we observe in Table 7-3 that the three greedier feature selection algorithms do not

great loss in accuracy, since the average ratios of the 20-fold scores to those of FS are ver

to 1.0. In fact, RFS performs almost as well as FS. Second, as we expected, the greedie

rithms improve the efficiency. Super greedy algorithm (Super) is ten times faster than for

selection (FS), while greedy algorithm (Greedy) seven times, and the restricted forward

tion (RFS) three times. Finally, restricted forward selection (RFS) performs better than the

ventional FS in all aspects.

To further confirm our conclusion, we do the third experiment. This time, we insert more i

pendent random noise and corrupted features to the datasets. For example, if the origin

7.4 Experiments 129
 Table 7-3: Greediness comparison

Domain
(dim)

Funct.
Apprx.

20Fold() / 20Fold(FS) Cost() / Cost(FS)

Super Greedy RFS Super Greedy RFS

Bodyfat
(13)

Nearest 0.975 0.969 0.915 0.095 0.126 0.330

LocLin 1.080 1.015 0.973 0.062 0.092 0.287

GlbLin 0.984 0.981 0.966 0.084 0.109 0.247

Boston
(13)

Nearest 0.876 0.872 0.881 0.105 0.145 0.389

LocLin 1.091 1.091 0.969 0.058 0.080 0.270

GlbLin 1.059 1.052 1.068 0.084 0.127 0.287

Crab
(7)

Nearest 1.107 1.039 0.973 0.123 0.149 0.358

LocLin 1.121 1.093 1.024 0.095 0.128 0.349

GlbLin 1.123 1.101 0.957 0.079 0.116 0.319

Halibut
(7)

Nearest 1.089 1.108 1.051 0.133 0.163 0.376

LocLin 1.395 1.322 1.198 0.079 0.130 0.312

GlbLin 1.073 1.018 1.022 0.079 0.137 0.273

Irish
(5)

Nearest 1.132 1.072 0.954 0.127 0.171 0.343

LocLin 1.039 0.979 0.984 0.086 0.137 0.316

GlbLin 0.981 0.981 0.992 0.096 0.180 0.373

Litter
(3)

Nearest 1.370 1.014 1.000 0.145 0.222 0.419

LocLin 1.301 0.960 0.989 0.099 0.179 0.361

GlbLin 0.886 0.902 0.930 0.111 0.179 0.410

Mpg
(9)

Nearest 1.384 1.250 1.084 0.112 0.165 0.398

LocLin 1.550 1.524 1.081 0.074 0.093 0.271

GlbLin 1.295 1.317 1.014 0.086 0.142 0.298

Nursing
(6)

Nearest 1.315 1.128 0.998 0.102 0.172 0.327

LocLin 1.171 1.106 1.063 0.072 0.121 0.260

GlbLin 1.044 1.043 1.002 0.092 0.137 0.267

130 Chapter 7: Feature Selection

ility

ndent

) the

ughly
set consists of three input features,{U,V,W}, the new artificial data file contains{U, cU, V, cV,

cU * cV, W, cW, cV * cW, R1,..., R40}. The results are listed in Table 7-4 and Table 7-5.

Comparing Table 7-2 with Table 7-4, we notice that with more input features, the probab

for any corrupted feature to be selected remains almost the same, while that of indepe

noise reduces greatly. Comparing Table 7-3 with Table 7-5, with more input features, (1

prediction accuracies of the feature sets selected by the variety of the algorithms are ro

Places
(8)

Nearest 1.367 1.000 1.000 0.118 0.154 0.364

LocLin 0.998 1.017 0.993 0.071 0.112 0.316

GlbLin 1.041 1.044 1.064 0.091 0.130 0.265

Sleep
(7)

Nearest 1.098 0.883 0.981 0.143 0.165 0.361

LocLin 1.170 0.852 0.922 0.090 0.113 0.273

GlbLin 0.918 0.925 1.026 0.096 0.122 0.276

Strike
(6)

Nearest 1.142 0.952 1.000 0.161 0.178 0.424

LocLin 1.172 0.987 1.003 0.068 0.108 0.293

GlbLin 1.004 0.992 0.993 0.093 0.166 0.310

White-
cell (13)

Nearest 0.854 0.718 0.906 0.100 0.138 0.288

LocLin 1.259 0.821 0.931 0.077 0.088 0.254

GlbLin 0.940 0.942 0.910 0.098 0.109 0.291

Mean
over all
twelve
datasets

Nearest 1.142 1.001 0.978 0.122 0.163 0.365

LocLin 1.196 1.064 1.011 0.077 0.115 0.296

GlbLin 1.029 1.025 0.995 0.091 0.138 0.301

TOTAL - 1.122 1.030 0.995 0.097 0.138 0.321

 Table 7-3: Greediness comparison

Domain
(dim)

Funct.
Apprx.

20Fold() / 20Fold(FS) Cost() / Cost(FS)

Super Greedy RFS Super Greedy RFS

7.4 Experiments 131

ciency

educ-

ften.

ward

t sig-

iency,

.

consistent, because the 20fold scores in the two tables are almost the same; (2) the effi

ratio of the greedier alternatives to FS is a little higher.

In summary, in theory the greediness of feature selection algorithms may lead to great r

tion in the accuracy of function approximating, but in practice it does not happen quite o

The three greedier algorithms we propose in this paper improve the efficiency of the for

selection algorithm, especially for larger datasets with high input dimensionalities, withou

nificant loss in accuracy. Even in the case the accuracy is more crucial than the effic

restricted forward selection is more competitive than the conventional forward selection

 Table 7-4: Greediness comparison with more inputs

Funct.
Apprx.

Corrupt / Total Corrupts # Noise / Total Noise

Super Greedy RFS FS Super
Greed

y
RFS FS

Mean
Values

Nearest 0.29 0.33 0.30 0.38 0.04 0.04 0.03 0.04

LocLin 0.38 0.38 0.25 0.41 0.05 0.03 0.02 0.03

GlbLin 0.38 0.25 0.29 0.16 0.05 0.05 0.08 0.07

TOTAL - 0.35 0.32 0.28 0.32 0.05 0.04 0.04 0.05

 Table 7-5: Greediness comparison with more inputs

Funct.
Apprx.

20Fold() / 20Fold(FS) Cost() / Cost(FS)

Super Greedy RFS Super Greedy RFS

Mean
Values

Nearest 1.197 1.056 1.001 0.080 0.080 0.282

LocLin 1.202 1.059 1.040 0.071 0.084 0.281

GlbLin 1.032 1.026 0.998 0.079 0.104 0.294

TOTAL - 1.144 1.047 1.013 0.077 0.088 0.286

132 Chapter 7: Feature Selection

nves-

e effi-

diction

eature
7.5 Summary

In this chapter, we explore three greedier variants of the forward selection method. Our i

tigation shows that the greediness of the feature selection algorithms greatly improves th

ciency, while does not corrupt the correctness of the selected feature set so that the pre

accuracy using the selected features remains satisfactory. As an application, we apply f

selection to a prototype system of Chinese and Japanese handwriting recognition.

	Chapter 7
	Feature Selection
	7.1 Introduction
	1. The irrelevant input features will induce greater computational cost. For example, using cache...
	2. The irrelevant input features may lead to overfitting. For example, in the domain of medical d...

	7.2 Cross Validation vs. Overfitting
	1. Shuffle the data set and split into a training set of 70% of the data and a testset of the rem...
	2. Let j vary among feature-set sizes: j = (0 , 1 , 2 , ... , m)
	a. Let fsj = best feature set of size j, where “best” is measured as the minimizer of the leave-o...
	b. Let Testscorej = the RMS prediction error of feature set fsj on the test set.

	3. Select the feature set fsj for which the test-set score is minimized.

	7.3 Feature selection algorithms
	7.3.1 Forward feature selection
	Figure 7-2: Full procedure for evaluating feature selection of up to m attributes.

	.
	7.3.2 Three Variants of Forward Selection
	1. How severely does the greediness of forward selection lead to a bad selection of the input fea...
	2. If the greediness of forward selection does not have a significantly negative effect on accura...
	Super Greedy Algorithm
	Greedy Algorithm
	Restricted Forward Selection (RFS)
	1. Calculate all the 1-feature set LOOCV errors, and sort the features according to the correspon...
	2. Do the LOOCVs of 2-feature subsets which consist of the winner of the first round, X(1), along...
	3. Calculate the LOOCV errors of subsets which consist of the winner of the second round, along w...
	4. Continue this procedure, until RFS has found the best m-component feature set.
	5. From Step 1 to Step 4, RFS has found m feature sets whose sizes range from 1 to m. By comparin...

	7.4 Experiments
	Table 7-1: Preliminary comparison of ES vs. FS
	Table 7-2: Greediness comparison
	Table 7-3: Greediness comparison
	Table 7-4: Greediness comparison with more inputs
	Table 7-5: Greediness comparison with more inputs

	7.5 Summary

