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Tutorial outline

Part 1: Structure and models for networks
= What are properties of large graphs?
= How do we model them?

Part 2: Dynamics of networks
= Diffusion and cascading behavior
= How do viruses and information propagate?

Part 3: Matrix tools for mining graphs
= Singular value decomposition (SVD)
= Random walks

Part 4: Case studies
= 240 million MSN instant messenger network
= Graph projections: how does the web look like
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Part 4: Case studies

Patterns and observations:

— Microsoft Messenger communication network
* How does the world communicate

Community and anomaly detection:

— Co-clustering
* finding communities in netwokrs

— Finding fraudsters on eBay

Queries on graphs:

— Center piece subgraphs

* How to find best path between the query nodes
— Web projections

* How to do learning from contextual subgraphs
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Co-clustering and finding
communities in graphs

e Dhillon et al. Information-Theoretic Co-clustering, KDD’03
e Chakrabarti et al. Fully Automatic Cross-Associations, KDD’04



Co-clustering

Given data matrix and the number of row and
column groups k and /
Simultaneously

= Cluster rows of p(X, Y) into k disjoint groups
= Cluster columns of p(X, Y) into I/ disjoint groups

Row Clusters

Row Clusters

200 400 600 800

100 200 300 400 500 G600 700 800 200
Column Clusters
Column Clusters
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Co-clustering

Let Xand Y be discrete random variables
= X and Y takevaluesin{1, 2, .., m}and {1, 2, ..., n}

= p(X, Y) denotes the joint probability distribution—if not
known, it is often estimated based on co-occurrence data

= Application areas: text mining, market-basket analysis,
analysis of browsing behavior, etc.

Key Obstacles in Clustering Contingency Tables
= High Dimensionality, Sparsity, Noise
= Need for robust and scalable algorithms

Reference:
1. Dhillon et al. Information-Theoretic Co-clustering, KDD’03
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Co-clustering

Observations
uses KL divergence, instead of L2
the middle matrix is not diagonal

= we’ll see that again in the Tucker tensor
decomposition

Leskovec&Faloutsos, WWW 2008
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Problem with Information Theoretic
Co-clustering

= Number of row and column groups must be
specified

Desiderata:
v" Simultaneously discover row and column groups

X Fully Automatic: No “magic numbers”

v’ Scalable to large graphs
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Cross-association

Raw Clusters

Row Clustars

70O

: ! 800

00 200 300 400 500 600 700 800 %00 200 400 800
Column Clustars

Column Clusters

200

Desiderata:

v’ Simultaneously discover row and column groups

v" Fully Automatic: No “magic numbers”

v’ Scalable to large matrices

Reference:
1. Chakrabarti et al. Fully Automatic Cross-Associations, KDD'04 oart 411




What makes a cross-association “good”?

Row groups
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What makes a cross-association “good”?

Row groups

Column groups

| versus

Why is this

better?

Row groups

100 200 200 400 500 600

Column groups

simpler; easier to describe
easier to compress!
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What makes a cross-association “good”?

Pro

e decide on the # of col. and row groups k and |

200 0 400 500 600 100 200 300 400
Column Clusters Column Clusters

nlem definition: given an encoding scheme

e and reorder rows and columns,

* 10

achieve best compression
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Main ldea

Good .| Better
Compression Clustering
_ ok ) 4+ Cost of describing
Total Encoding Cost = 3. size; ™ H(x;) Cross-associations
N J
Y .Y.
Code Cost Description
Cost

Minimize the total cost (# bits)

for lossless compression
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Algorithm

Code for cross-associations (matlab):

www. ¢s. cmu. edu/ deepay/mywww/software/CrossAssociati
ons—01-27-2005. tgz

Variations and extensions:
= ‘Autopart’ [Chakrabarti, PKDD’04]

" www. cs. cmu. edu/ deepay
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Fraud detection on e-bay

How to find fraudsters on e-bay?

Pandit, Chau, Wang, Faloutsos: NetProbe: A Fast
and Scalable System for Fraud Detection in Online
Auction Networks, WWW 2007



Problem description

= Motivation:
= eBay had 192 million registered users in 2006

" |[n 2005 Internet Crime Center receive 203k
complains of which 62% were auction frauds

= Victims reported monetary average loss of 3855

= “non-delivery” fraud: seller takes SS and
disappears

= Task:

= Automatically find fraudulent nodes
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Online Auctions: How They Work

Non-delivery fraud

@ $$$ .
- X .

tenﬁai/Buyer A

Seller \ S

What If somethin%@%oes Bé@@

Potential Buyer B
Potential Buyer C
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Modeling Fraudulent Behavior (contd.)

" How would fraudsters behave in this graph?
" interact closely with other fraudsters
= fool reputation-based systems

ould lead to nice an
Jues of fraudsters ..

= Wow!
detec!

Repubd@bAUI 53 49
= experiments with a real eBay dataset showed they

rarely form cliques
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Modeling Fraudulent Behavior

= fraudster

= homestplice

LL’r
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Modeling Fraudulent Behavior

* The 3 roles

= Honest

= people like you and me

= Fraudsters

= those who actually commit fraud

= Accomplices
= erstwhile behave like honest users
= accumulate feedback via low-cost transactions

= secretly boost reputation of fraudsters (e.g.,
occasionally trading expensive items)
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Fraud network

Labeled and rearranged

Labeled
Network
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Belief Propagation




Evaluation and conclusions

= Hard to obtain real/ground truth data

= Using a network of 55 people and 620 edges
we were able to identify all 6 confirmed
fraudsters

Leskovec&Faloutsos, WWW 2008 26 of 40



Web Projections

Learning from contextual
graphs of the web

How to predict user intention from the
web graph?

Leskovec, Dumais and Horvitz: Web projections: learning
from contextual subgraphs of the web, WWW 2007



Motivation

= Information retrieval traditionally considered
documents as independent

= Web retrieval incorporates global hyperlink
relationships to enhance ranking (e.g.,
PageRank, HITS)
= Operates on the entire graph
= Uses just one feature (principal eigenvector) of the
graph
= Our work on Web projections focuses on

= contextual subsets of the web graph; in-between the
independent and global consideration of the
documents

" 3rich set of graph theoretic properties
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Web projections

= Web projections: How they work?
" Project a set of web pages of interest onto the web
graph
" This creates a subgraph of the web called projection
graph
= Use the graph-theoretic properties of the subgraph for
tasks of interest

= Query projections
= Query results give the context (set of web pages)

= Use characteristics of the resulting graphs for
predictions about search quality and user behavior
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Query

Q-

Query projection graph

"

Query projections

Results

TN

Projection on t\he‘web graph

Generate graphical

features Construct b
ONnsStruct | = pPredictions
case library /
Leskovec&Faloutsos;-AWAAAAL2008 /
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Questions we explore

" Q1: How do query search results project
onto the underlying web graph?

= Q2: Can we predict the quality of search
results from the projection on the web
graph?

" Q3: Can we predict users’ behaviors with
issuing and reformulating queries?
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Is this a good set of search results?

ssssssssssssssssssssssss



Will the user reformulate the query?

A
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Resources and concepts

= Web as a graph
= URL graph:

= Nodes are web pages, edges are hyper-links
= March 2006
= Graph: 22 million nodes, 355 million edges

= Domain graph:
= Nodes are domains (cmu.edu, bbc.co.uk). Directed edge (u,v)
if there exists a webpage at domain U pointing to v

= February 2006
= Graph: 40 million nodes, 720 million edges

= Contextual subgraphs for queries
" Projection graph
= Connection graph

= Compute graph-theoretic features
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“Projection” graph

Example query: Subaru

Project top 20 results by the z 19 it
search engine ©

Number in the node denotes 8 5 [ 4
the search engine rank ;

Color indicates relevancy as 13 11

assigned by human:
20|

— Perfect

— Irrelevant
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“Connection” graph

Projection graph is generally

disconnected 0] U T
5 - / /-

Find connector nodes

8 5 4
Co-nn.ector nodes are 7 i
existing node§ ’Fhat are not = 12 SO s
part of the original result /L
set \ :

|deally, we would like to L g
introduce fewest possible ./

nodes to make projection \ / Connector
graph connected Projection nodes

nodes
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Finding connector nodes

" Find connector nodes is a Steiner tree problem which is NP

hard

= Qur heuristic:

= Connect 2" |argest connected component via shortest path to the

largest

= This makes a new largest component
= Repeat until the graph is connected

Largest
component

N\

29 |argest
component
< 7 -p /
2"d |argest
\—~
component
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Extracting graph features

* The idea

Find features that describe the
structure of the graph

= Then use the features for machine

learning

= Want features that describe

Connectivity of the graph

Centrality of projection and
connector nodes

Clustering and density of the core
of the graph

Leskovec&Faloutsos, WWW 2008
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Examples of graph features

" Projection graph
= Number of nodes/edges
* Number of connected components

= Size and density of the largest
connected component

* Number of triads in the graph

= Connection graph -
* Number of connector nodes
= Maximal connector node degree "

* Mean path length between ot
projection/connector nodes -

= Triads on connector nodes
= We consider 55 features total
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Query

Q-

Query projection graph

"

Experimental setup

Results

TN

Projection on t\he‘web graph

Generate graphical

features Construct b
ONnsStruct | = pPredictions
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Constructing case library for machine
learning

= Given a task of interest

" Generate contextual subgraph and extract
features

= Each graph is labeled by target outcome

= |earn statistical model that relates the
features with the outcome

" Make prediction on unseen graphs
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Experiments overview

" Given a set of search results generate projection
and connection graphs and their features

" Predict quality of a search result set

= Discriminate top20 vs. top40to60 results

" Predict rating of highest rated document in the set —
= Predict user behavior

" Predict queries with high vs. low reformulation ==
probability

" Predict query transition (generalization vs. specialization)
" Predict direction of the transition
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Experimental details

Features
= 55 graphical features
= Note we use only graph features, no content

Learning
= We use probabilistic decision trees (“DNet”)

Report classification accuracy using 10-fold cross
validation

Compare against 2 baselines
= Marginals: Predict most common class

= RankNet: use 350 traditional features (document, anchor

text, and basic hyperlink features)

Leskovec&Faloutsos, WWW 2008
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Search results quality

= Dataset:
= 30,000 queries

= Top 20 results for each

= Each result is labeled by a human judge using a 6-
point scale from "Perfect" to "Bad"

= Task:

= Predict the highest rating in the set of results
= 6-class problem

= 2-class problem: “Good” (top 3 ratings) vs. “Poor”
(bottom 3 ratings)
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Search quality: the task

" Predict the rating of the top result in the
set

Predict “Good” Predict “Poor”
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Search quality: results

Predict top human rating in
the set

— Binary classification: Good vs.

Poor

10-fold cross validation
classification accuracy

Observations:

— Web Projections outperform
both baseline methods

— Just projection graph already
performs quite well

— Projections on the URL graph
perform better

Attributes Gli;c;_h ch) rr;]s;]n
Marginals 0.55 0.55
RankNet 0.63 0.60
Projection 0.80 0.64
Connection 0.79 0.66
Comnecton | 082 | 069
All 0.83 0.71

Leskovec&Faloutsos, WWW 2008
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Search quality: the model

B
The learned model shows €ecteConres
graph properties of good
result sets -
Good result sets have: "
el
P Sea r‘Ch result nodes ar‘e hub < 22.6 {2024} Not = 16.2 [1508) Not = 0.295 (264} Not = 8.72 (184}

nodes in the graph (have ot <0378 348

large degrees)
— Small connector node

degrees AN {/f.j
— Big connected component R mm,
— Few isolated nodes in ]
projection graph E —
— Few connector nodes oTuosgen  orse 1
PrG:DegONodes

= 8.1 (368}

=872 (80}
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Predict user behavior

= Dataset
= Query logs for 6 weeks

= 35 million unique queries, 80 million total query
reformulations

= We only take queries that occur at least 10 times
" This gives us 50,000 queries and 120,000 query
reformulations
= Task

= Predict whether the query is going to be
reformulated
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Query reformulation: the task

= Given a query and corresponding projection and
connection graphs

" Predict whether query is likely to be reformulated
\
/R A
/I\ A
7
1

Ak

Query likely to be reformulated

6 [Tt

Query not likely to be reformulated
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Query reformulation: results

Observations:

. URL | Domain
— Gradual improvement as Attributes Graph | Graph
using more features
— Using Connection graph Marginals 0.54 0.54
features helps —
— URL graph gives better Projection 0.59 0.58
performance Connection 0.63 0.59
We can also predict
type of reformulation Projection + | o .a | 560
(specialization vs. Connection
generalization) with Al 071 0.67

0.80 accuracy

Leskovec&Faloutsos, WWW 2008
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Query reformulation: the model

Pl
<091 (2?:)
Queries likely to be
reformulated have: Not<6.64(401) Not<091(131)
(3]
— Search result nodes have
<6.64@l
low degree ]D[u] <0.821 (464) ]
— Connector nodes are <0.716 (994
hubs s
Not<0.716 (893) <4.38 (T71) <2.54(£§

— Many connector nodes

CcG:MxConninDeg Not < 0.821 (307) CcG:MxSrDeq

— Results came from many 4312 ot <G8 ot <2t
different domains G [
— Results are sparsely knit <0526 221)
[4]
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Query transitions

= Predict if and how will user transform the
query

IEE_ \ / I /u
"y —>
B
ke
— transition
ot G \u
B o\
' 19
Q: Strawberry Q: Strawberry shortcake
shortcake pictures
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Query transition

With 75% accuracy we can say whether a
query is likely to be reformulated:

= Def: Likely reformulated p(reformulated) > 0.6

With 87% accuracy we can predict whether
observed transition is specialization or
generalization

With 76% it can predict whether the user will
specialize or generalize
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Conclusion

= Web projections

= A general approach of using context-sensitive sets of

web pages to focus attention on relevant subset of the
web graph

* And then using rich graph-theoretic features of the
subgraph as input to statistical models to learn
predictive models

= Web projections use search result graphs for
= Predicting result set quality
= Predicting user behavior when reformulating queries
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Center Piece Subgraphs

What is the best explanatory path
between the nodes in a graph?

Hanghang Tong and Christos Faloutsos:
Center Piece Subgraphs, KDD 2006



Center-Piece Subgraph(Ceps)

o

Given Q query nodes d 4 a
Find Center-piece (<b) Q Q @
— Social Networks
— Law Inforcement, ...
ldea: | ¢ | b
— Proximity -> random walk ¢ @‘®©

with restarts

o . ©
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Case Study: AND query

R. Agrawal

Leskovec&Faloutsos, WWW 2008 Part 4-57



Case Study: AND query

5 H.V. 10
Jagadish

10

Laks V.S.
akshmana 13 E

4 Corinna 6
Cortes
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databases

o 13

R. Agrawal
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ldea: use random walk with restarts, to
measure ‘proximity’ p(i,j) of node jto node i

Prob (RW will finally stay at j)

eStarting from 1
eRandomly to neighbor

eSome p to return to 1
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Individual Score Calculation

Q1 Q2 Q3
Node 1 0.5767 0.0088 0.0088
Node 2 0.1235 0.0076 0.0076
Node 3 0.0283 0.0283 0.0283
Node 4 0.0076 0.1235 0.0076
Node 5 0.0088 0.5767 0.0088
Node 6 0.0076 0.0076 0.1235
Node 7 0.0088 0.0088 0.5767
Node 8 0.0333 0.0024 0.1260
Node 9 0.1260 0.0024 0.0333
Node 10 0.1260 0.0333 0.0024
Node 11 0.0333 0.1260 0.0024
Node 12 0.0024 0.1260 0.0333
Node 13 0.0024 0.0333 0.1260
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Individual Score Calculation

Q1 Q2 Q3
Node 1 0.5767 0.0088 0.0088
Node 2 0.1235 0.0076 0.0076
Node 3 0.0283 0.0283 0.0283
Node 4 0.0076 0.1235 0.0076
Node 5 0.0088 0.5767 0.0088
Node 6 0.0076 0.0076 0.1235
Node 7 0.0088 0.0088 0.5767
Node 8 0.0333 0.0024 0.1260
Node 9 0.1260 0.0024 0.0333
Node 10 0.1260 0.0333 0.0024
Node 11 0.0333 0.1260 0.0024
Node 12 0.0024 0.1260 0.0333
Node 13 0.0024 0.0333 0.1260

Individual Score matrix

Leskovec&Faloutsos, WWW 2008




AND: Combining Scores

Q: How to combine
scores?

A: Multiply

...= prob. 3 random
particles coincide on
node j

Leskovec&Faloutsos, WWW 2008
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K_SoftAnd: Combining Scorew

Generalization — SoftAND:

We want nodes close to k

of Q (k<Q) query
nodes.

Q: How to do that?

Leskovec&Faloutsos, WWW 2008 64



K_SoftAnd: Combining Scorew

Generalization — softAND:

We want nodes close to k

of Q (k<Q) query
nodes.

Q: How to do that?

A: Prob(at least k-out-of-
Q will meet each other
at j)

Leskovec&Faloutsos, WWW 2008 65



AND query vs. K SoftAnd query

X -
0.1010 0.1010
0.071

0 1010

0.1010 0.1010 ’
0.4505 @/ 0.4505

And Query

2_SoftAnd Query

Leskovec&Faloutsos, WWW 2008
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1 SoftAnd query = OR query

0.0103
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Challenges in Ceps

Q1: How to measure the importance?
—A: RWR
= Q2: How to do it efficiently?

Leskovec&Faloutsos, WWW 2008
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Graph Partition: Efficiency Issue

Straightforward way
— solve a linear system:
— time: linear to # of edges

Observation
— Skewed dist.
— communities

How to exploit them?
— Graph partition

Leskovec&Faloutsos, WWW 2008
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Even better:

" We can correct for the deleted edges (Tong+,
ICDM’06, best paper award)

Leskovec&Faloutsos, WWW 2008 Part 4-70



Experimental Setup

Dataset
—DBLP/authorship
— Author-Paper

— 315k nodes
—1.8M edges

Leskovec&Faloutsos, WWW 2008 Part 4-71



Query Time vs. Pre-Computation Time

Log dluery Time O S
food - ® & LinEosoon |
B_Lin(s0,4000)
il w FreCompute
% | eQuality: 90%+
E‘ eOn-line:
- eUp to 150x speedup
E ePre-computation:
or T eTwo orders saving
Log Pre-computation Time
kg/j 1 1 1 |
= 10 100 X oo

Fre_Compute Time{Haour)
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Query Time vs. Storage

Log Query Time B OnTheFly
1000 - B_Lin{100, 4000) |
@& B Lin(30 4000
E_Lin{s0,4000)
*  PreCompute
|
£ 1oof |
|_
&
10+ i
Log Storage
y vﬁ
<) L 1 | ] * ]
100 1000 10000 100000 1000000

Fre_Storage Cost (M)
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eQuality: 90%+
eOn-line:

eUp to 150x speedup
ePre-storage:

eThree orders saving
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Conclusions 5

O
Q1:How to measure the importance? ° o
Al: RWR+K_ SoftAnd
Q2: How to find connection subgraph?
A2:"Extract” Alg.)
Q3:How to do it efficiently?
A3:Graph Partition and Sherman-Morrison
—~90% quality

—6:1 speedup; 150x speedup (ICDM’06, b.p.
award)
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Microsoft Instant Messenger
Communication Network

How does the whole world
communicate?

Leskovec and Horvitz: Worldwide Buzz: Planetary-Scale
Views on an Instant-Messaging Network, WWW 2008



The Largest Social Network

= What is the largest social network in the world
(that one can relatively easily obtain)? ©

For the first time we had a chance to look at
complete (anonymized) communication of the
whole planet (using Microsoft MSN instant
messenger network)
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Instant Messaging
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GIA[

-

Get faster, better and more relevant results with MSN Search

e Contact (buddy) list
* Messaging window
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Instant Messaging as a Network




IM — Phenomena at planetary scale

Observe social phenomena at planetary scale:

" How does communication change with user
demographics (distance, age, sex)?

" How does geography affect communication?

= What is the structure of the communication
network?
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Communication data (1)

The record of communication
* User demographic data (self-reported):
= Age
= Gender
= Location (Country, ZIP)
= Language
= Presence data:
= user status events (login, status change)
= Communication data:
= who talks to whom
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Communication data (2)

For every conversation (session) we have a list of
users who participated in the conversation

There can be multiple people per conversation

For each conversation and each user:
= User Id (anonymized)

= Time Joined

= Time Left

= Number of Messages Sent

= Number of Messages Received

No message text
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Data collection

= We collected the data for June 2006

" Log size:
150Gb/day (compressed)

" Total: 1 month of communication data:
4.5Tb of compressed data
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Network: Conversations

=== Conversation



Data statistics

Activity over June 2006 (30 days)
= 245 million users logged in

= 180 million users engaged in conversations

= 17,5 million new accounts activated
= More than 30 billion conversations
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Data statistics per day

Activity on June 1 2006
= 1 billion conversations
= 93 million users login

= 65 million different users talk (exchange
messages)

* 1.5 million invitations for new accounts sent
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User characteristics: age
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Conversation: Who talks to whom?

" Cross gender edges:

= 300 male-male and 235 female-female edges

= 640 million female-male edges

Unknown | Female | Male Unknown | Female | Male
Unknown 1.3 3.6 3.7 Unknown 277 301 277
Female 21.3 49.9 Female 275 304
Male 20.2 Male 252

(a) Proportion of conversations

(b) Conversation duration (seconds)

Unknown | Female | Male Unknown | Female | Male

Unknown 5.7 7.1 6.7 Unknown 1.25 1.42 1.38
Female 6.6 7.6 Female 1.43 1.50
Male 5.9 Male 1.42

(¢) Exchanged messages per conversation

(d) Exchanged messages per minute
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Number of people per conversation

10 F— :
10° =\ -
10"

106 & =
% 105 ;_ \ -3.5 _;

810

10° & .
102 | T\‘N E
10" B

; That
100 ; I R R N I L %
10 10" 102
Number of users per session

" Max number of people simultaneously talking
is 20, but conversation can have more people

89



Conversation duration

10" ¢
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10° B
108 E
107 &
10° E
10° F
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103 E

Count

Yo 2 S .

Conversation duration

" Most conversations are short



Conversations: number of messages

Sessions between 2 to 5 people

(%]
=
=

|

W N
; w”‘»\/ ey

0 100 200 300 400 500 G600 700 800
session duration [minutes]

Sessions between fewer people run out of steam
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Time between conversations

Individuals are highly diverse — Data
What is probability to login 10|\ =399x % R=0.06
into the system after t .
minutes? 3107 T
Power-law with exponent 1.5 N ,
Task queuing model [Barabasi] 10" A

= My email, Darvin’s and o l o8

. . ’
Einstein’s letters follow the time between conversations [min]

same pattern
P « [N I
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User self reported age

Age: Number of conversations
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User self reported age

Age: Total conversation duration
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User self reported age

Age: Messages per conversation
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User self reported age

Age: Messages per unit time

High




Who talks to whom:
Number of conversations

Venezuela

hile

rgentina

AN

Can:

Australia

/’. : PE"}.,rtug Turkey Germai
Egyeﬁ \ Netherlands
/ Braz :
_ Dominican Republic
Malaysia

Thailand
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Who talks to whom:
Conversation duration

Yugoslavia .Croatia

Poland

Italy
‘-Qameroon
.,Bosnia
AalLlc ""“-11-‘&.‘
Austria '
Australia



Geography and communication

" Count the number of users logging in from
particular location on the earth
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70

65

60

55

50

45

40

35

30

How is Europe talking

= Logins from Europe

-20 -10 0 10 20 30 40 100



Users per geo location

Wiras

Blue circles have
more than 1 million
logins.
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Fraction of population
using MSN:

e|lceland: 35%

*Spain: 28%
*Netherlands, Canada,
Sweden, Norway: 26%
*France, UK: 18%
*USA, Brazil: 8%

Users per capita
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= For each conversation between geo points (A,B) we
increase the intensity on the line between A and B
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Homophily (gliha v kup Striha) ©

= Correlation: = Probability:

Attribute | Random | Communicate Attribute | Random | Communicate
Age -0.0001 0.297 Age 0.030 0.162
Gender 0.0001 -0.032 Gender ().434 0.426
Z1P -0.0003 0.557 71P 0.001 0.23
County 0.0005 0.704 County 0.046 0.734
Language | -0.0001 0.694 Language | 0.030 0.798

Age vs. Age

- 10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
(a) Random (b) Communicate 104



Instant Messaging as a Network




IM Communication Network

" Buddy graph (estimate):
= 240 million people (at least)
= 9.1 billion edges (friendship links)

= Communication graph:

" There is an edge if the users exchanged at Ieast
one message in June 2006 |

= 180 million people B
= 1.3 billion edges £
= 30 billion conversations o

106



Buddy network: Number of buddies

108: T T T T T T §
107 e 600 buddies -

10" - L
100_ o] ] TR & A

10Y 10 10° 10°
Number of buddies

= Buddy graph: 240 million nodes, 9.1 billion
edges (~40 buddies per user)
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Communication Network: Degree
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Count

Network: Small-world

Distance
" 6 degrees of separation [Milgram "60s]

= Average distance 5.5
" 90% of nodes can be reached in < 8 hops

Hops
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Communication network: Clustering

" How many triangles & e >
are closed?

. High clustering Low clustering
" Clustering normally O
decays as k' _ |
S @
= Communication s
. . o 10
network is highly 3
(®)]
clustered: k937 £
2 107
=
Q
O
107
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Communication Network Connectivity
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k-Cores decomposition

= What is the structure of the core of the
network?
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k-Cor

10° ¢
10° ¢
107 F
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10%
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Number of nodes

es: core of the network

|
k=60-68, n=79 —®
[ | I I [T R R

o
10
10"

10’
Core of order K

10°

People with k<20 are the periphery

Core is composed of 79 people, each having 68

edges among them
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Network robustness

= We delete nodes (in some order) and observe
how network falls apart:

* Number of edges deleted
= Size of largest connected component
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Deleted edges

Robustness: Nodes vs. Edges
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Component size
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Robustness: Connectivity
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Conclusion

A first look at planetary scale social network

= The largest social network analyzed

Strong presence of homophily: people that
communicate share attributes

Well connected: in only few hops one can
research most of the network

Very robust: Many (random) people can be
removed © and the network is still connected
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