

http://www.cs.cmu.edu/~jure/talks/www08tutorial

Tools for large networks

WWW 2008 tutorial

Jure Leskovec and Christos Faloutsos Machine Learning Department

Joint work with: Lada Adamic, Deepay Chakrabarti, Natalie Glance, Carlos Guestrin, Bernardo Huberman, Jon Kleinberg, Andreas Krause, Mary McGlohon, Ajit Singh, and Jeanne VanBriesen.

About the tutorial

Introduce properties, models and tools for

- large real-world networks
- diffusion processes in networks

through real mining applications

- Goal: find patterns, rules, clusters, outliers, ...
 - in large static and evolving graphs
 - In processes spreading over the networks

http://www.cs.cmu.edu/~jure/talks/www08tutorial

Networks – Social and Technological

- Social network analysis: sociologists and computer scientists – influence goes both ways
 - Large-scale network data in "traditional" sociological domains
 - Friendship and informal contacts among people
 - Collaboration/influence in companies, organizations, professional communities, political movements, markets, ...
 - Emerge of rich social structure in computing applications
 - Content creation, on-line communication, blogging, social networks, social media, electronic markets, ...
 - People seeking information from other people vs. more formal channels: MySpace, del.icio.us, Flickr, LinkedIn, Yahoo Answers, Facebook, ...

Examples of Networks

- Internet (a)
- Citation network (b)
- World Wide Web (c)

- Sexual network (d)
- Dating network(e)

Networks of the Real-world (1)

- Information networks:
 - World Wide Web: hyperlinks
 - Citation networks
 - Blog networks
- Social networks: people + interactions
 - Organizational networks
 - Communication networks
 - Collaboration networks
 - Sexual networks
 - Collaboration networks
- Technological networks:
 - Power grid
 - Airline, road, river networks
 - Telephone networks
 - Internet
 - Autonomous systems

Florence families

Karate club network

Friendship network

Collaboration network

Networks of the Real-world (2)

- Biological networks
 - metabolic networks
 - food web
 - neural networks
 - gene regulatory networks
- Language networks
 - Semantic networks
- Software networks

• • •

Language network

Software network

Networks as Phenomena

The emergence of 'cyberspace' and the World Wide Web is like the discovery of a new continent.

- Jim Gray, 1998 Turing Award address
- Complex networks as phenomena, not just designed artifacts
- What are the common patterns that emerge?

Models and Laws of Networks

We want Kepler's Laws of Motion for the Web.

- Mike Steuerwalt, NSF KDI workshop, 1998
- Need statistical methods and tools to quantify large networks
- What do we hope to achieve from models of networks?
 - Patterns and statistical properties of network data
 - Design principles and models
 - Understand why networks are organized the way they are (predict behavior of networked systems)

Mining Social Network Data

- Mining social networks has a long history in social sciences:
 - Wayne Zachary's PhD work (1970-72): observe social ties and rivalries in a university karate club
 - During his observation, conflicts led the group to split
 - Split could be explained by a minimum cut in the social network

Networks: Rich Data

- Traditional obstacle:Can only choose 2 of 3:
 - Large-scale
 - Realistic
 - Completely mapped
- Now: large on-line systems leave detailed records of social activity
 - On-line communities: MyScace, Facebook, LiveJournal
 - Email, blogging, electronic markets, instant messaging
 - On-line publications repositories, arXiv, MedLine

Networks: A Matter of Scale

- Network data spans many orders of magnitude:
 - 436-node network of email exchange over 3-months at corporate research lab [Adamic-Adar 2003]
 - 43,553-node network of email exchange over 2 years at a large university [Kossinets-Watts 2006]
 - 4.4-million-node network of declared friendships on a blogging community [Liben-Nowell et al. 2005, Backstrom et at. 2006]
 - 240-million-node network of all IM communication over a month on Microsoft Instant Messenger [Leskovec-Horvitz 2008]

Networks: Scale Matters

- How does massive network data compare to small-scale studies?
- Massive network datasets give you both more and less:
 - More: can observe global phenomena that are genuine, but literally invisible at smaller scales
 - Less: don't really know what any node or link means.
 Easy to measure things, hard to pose right questions
 - Goal: Find the point where the lines of research converge

Structure vs. Process

- What have we learned about large networks?
- We know about the structure: Many recurring patterns
 - Scale-free, small-world, locally clustered, bow-tie, hubs and authorities, communities, bipartite cores, network motifs, highly optimized tolerance
- We know about the processes and dynamics
 - Cascades, epidemic threshold, viral marketing, virus propagation, threshold model

Structure of Networks

- What is the structure of a large network?
- Why and how did it became to have such structure?

Diffusion in Networks

- One of the networks is a spread of a disease,
 the other one is product recommendations
- Which is which?

Tutorial outline

- Part 1: Structure and models for networks
 - What are properties of large graphs?
 - How do we model them?
- Part 2: Dynamics of networks
 - Diffusion and cascading behavior
 - How do viruses and information propagate?
- Part 3: Matrix tools for mining graphs
 - Singular value decomposition (SVD)
 - Random walks
- Part 4: Case studies
 - 240 million MSN instant messenger network
 - Graph projections: how does the web look like

Tools for large graph mining

Part 1: Structure and models of networks

Jure Leskovec and Christos Faloutsos Machine Learning Department

Joint work with: Lada Adamic, Deepay Chakrabarti, Natalie Glance, Carlos Guestrin, Bernardo Huberman, Jon Kleinberg, Andreas Krause, Mary McGlohon, Ajit Singh, and Jeanne VanBriesen.

Part 1: Outline

- 1.1: Structural properties
 - What are the statistical properties of static and time evolving networks?
- 1.2: Models
 - How do we build models of network generations of evolution?
- 1.3: Fitting the models
 - How do we fit models?
 - How do we generate realistic looking graphs?

Part 1.1: Structural properties

What are statistical properties of networks across various domains?

Traditional approach

- Sociologists were first to study networks:
 - Study of patterns of connections between people to understand functioning of the society
 - People are nodes, interactions are edges
 - Questionares are used to collect link data (hard to obtain, inaccurate, subjective)
 - Typical questions: Centrality and connectivity
- Limited to small graphs (~100 nodes) and properties of individual nodes and edges

Motivation: New approach (1)

- Large networks (e.g., web, internet, on-line social networks) with millions of nodes
- Many traditional questions not useful anymore:
 - Traditional: What happens if a node u is removed?
 - Now: What percentage of nodes needs to be removed to affect network connectivity?
- Focus moves from a single node to study of statistical properties of the network as a whole

Motivation: New approach (2)

- How the network "looks like" even if I can't look at it?
- Need statistical methods and tools to quantify large networks
- 3 parts/goals:
 - Statistical properties of large networks
 - Models that help understand these properties
 - Predict behavior of networked systems based on measured structural properties and local rules governing individual nodes

Graphs and networks

- What is the simplest way to generate a graph?
- Random graph model (Erdos-Renyi model, Poisson random graph model):
 - Given n vertices connect each pair i.i.d. with probability p
- How good ("realistic") is this graph generator?

Small-world effect (1)

- Six degrees of separation [Milgram 60s]
 - Random people in Nebraska were asked to send letters to stock brokes in Boston
 - Letters can only be passed to first-name acquaintances
 - Only 25% letters reached the goal
 - But they reached it in about 6 steps
- Measuring path lengths:
 - Diameter (longest shortest path): $max d_{ij}$
 - Effective diameter: distance at which 90% of all connected pairs of nodes can be reached
 - Mean geodesic (shortest) distance l

$$\ell = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i \ge j} d_{ij} \quad \text{or} \quad \ell^{-1} = \frac{1}{\frac{1}{2}n(n+1)} \sum_{i \ge j} d_{ij}^{-1}$$

Small-world effect (2)

- Distribution of shortest path lengths
- Microsoft Messenger network
 - 180 million people
 - 1.3 billion edges
 - Edge if two people exchanged at least one message in one month period

Small-world effect (3)

- If number of vertices within distance r grows exponentially with r, then mean shortest path length ℓ increases as log n
- Implications:
 - Information (viruses) spread quickly
 - Erdos numbers are small
 - Peer to peer networks (for navigation purposes)
- Shortest paths exists
- Humans are able to find the paths:
 - People only know their friends
 - People do not have the global knowledge of the network
- This suggests something special about the structure of the network
 - On a random graph short paths exists but no one would be able to find them

Degree distributions (1)

- Let p_k denote a fraction of nodes with degree k
- We can plot a histogram of p_k vs. k
- In a (Erdos-Renyi) random graph degree distribution follows Poisson distribution

- Degrees in real networks are heavily skewed to the right
- Distribution has a long tail of values that are far above the mean
- Power-law [Faloutsos et al], Zipf's law, Pareto's law, Long tail, Heavy-tail
- Many things follow Power-law:
 - Amazon sales,
 - word length distribution,
 - Wealth, Earthquakes, ...

Degree distributions (2)

- Many real world networks contain hubs: highly connected nodes
- We can easily distinguish between exponential and power-law tail by plotting on log-lin and log-log axis
- Power-law is a line on log-log plot

For statistical tests and estimation see Clauset-Shalizi-Newman 2007

Degree distribution in a blog network (plot the same data using different scales)

Poisson vs. Scale-free network

Poisson network

(Erdos-Renyi random graph)

Scale-free (power-law) network

Degree distribution is Power-law

Function is scale free if: f(ax) = c f(x)

Network resilience (1)

- We observe how the connectivity (length of the paths) of the network changes as the vertices get removed [Albert et al. 00; Palmer et al. 01]
- Vertices can be removed:
 - Uniformly at random
 - In order of decreasing degree
- It is important for epidemiology
 - Removal of vertices corresponds to vaccination

Network resilience (2)

- Real-world networks are resilient to random attacks
 - One has to remove all web-pages of degree > 5 to disconnect the web
 - But this is a very small percentage of web pages
- Random network has better resilience to targeted attacks

Community structure

- Most social networks show community structure
 - groups have higher density of edges within than across groups
 - People naturally divide into groups based on interests, age, occupation, ...
- How to find communities:
 - Spectral clustering (embedding into a low-dim space)
 - Hierarchical clustering based on connection strength
 - Combinatorial algorithms (min cut style formulations)
 - Block models
 - Diffusion methods

Friendship network of children in a school

Spectral properties

- Eigenvalues of graph adjacency matrix follow a power law
- Network values
 (components of principal eigenvector) also follow a power-law [Chakrabarti et al.]

What about evolving graphs?

- Conventional wisdom/intuition:
 - Constant average degree: the number of edges grows linearly with the number of nodes
 - Slowly growing diameter: as the network grows the distances between nodes grow

Networks over time: Densification

- A simple question: What is the relation between the number of nodes and the number of edges in a network over time?
- Let:
 - N(t) ... nodes at time t
 - E(t) ... edges at time t
- Suppose that:

$$N(t+1) = 2 * N(t)$$

Q: what is your guess for

$$E(t+1) = ? * E(t)$$

- A: over-doubled!
 - But obeying the Densification Power Law [KDD05]

Networks over time: Densification

- Networks are denser over time
- The number of edges grows faster than the number of nodes – average degree is increasing

$$E(t) \propto N(t)^a$$

a ... densification exponent

- $1 \le a \le 2$:
 - a=1: linear growth constant outdegree (assumed in the literature so far)
 - a=2: quadratic growth clique

Densification & degree distribution

- How does densification affect degree distribution?
- Densification: $E(t) \propto N(t)^a$
- Degree distribution: $p_k = k^{\gamma}$
- Given densification exponent a, the degree exponent is [TKDD '07]:
 - (a) For $\gamma = const$ over time, we obtain densification only for $1 < \gamma < 2$, and then it holds: $\gamma = a/2$
 - (b) For γ <2 degree distribution evolves according to:

$$\gamma_n = \frac{4n^{a-1} - 1}{2n^{a-1} - 1}$$

Given: densification *a*, number of nodes *n*Leskovec&Faloutsos, WWW 2008

Case (a): Degree exponent γ is constant over time. The network densifies, a=1.2

Case (b): Degree exponent γ evolves over time. The network densifies, a=1.6

Shrinking diameters

- Intuition and prior work say that distances between the nodes slowly grow as the network grows (like log n):
 - $d \sim O(\log N)$
 - $d \sim O(\log \log N)$
- Diameter Shrinks/Stabilizes over time
 - as the network grows the distances between nodes slowly decrease [KDD 05]

Properties hold in many graphs

- These patterns can be observed in many real world networks:
 - World wide web [Barabasi]
 - On-line communities [Holme, Edling, Liljeros]
 - Who call whom telephone networks [Cortes]
 - Internet backbone routers [Faloutsos, Faloutsos, Faloutsos]
 - Movies to actors network [Barabasi]
 - Science citations [Leskovec, Kleinberg, Faloutsos]
 - Click-streams [Chakrabarti]
 - Autonomous systems [Faloutsos, Faloutsos]
 - Co-authorship [Leskovec, Kleinberg, Faloutsos]
 - Sexual relationships [Liljeros]

Part 1.2: Models

We saw properties
How do we find models?

1.2 Models: Outline

- The timeline of graph models:
 - (Erdos-Renyi) Random graphs (1960s)
 - Exponential random graphs
 - Small-world model
 - Preferential attachment
 - Edge copying model
 - Community guided attachment
 - Forest Fire
 - Kronecker graphs (today)

(Erdos-Renyi) Random graph

- Also known as Poisson random graphs or Bernoulli graphs [Erdos&Renyi, 60s]
 - Given n vertices connect each pair i.i.d. with probability p
- Two variants:
 - $G_{n,p}$: graph with m edges appears with probability $p^m(1-p)^{M-m}$, where M=0.5n(n-1) is the max number of edges
 - $G_{n,m}$: graphs with n nodes, m edges
- Does not mimic reality
- Very rich mathematical theory: many properties are exactly solvable

Properties of random graphs

 Degree distribution is Poisson since the presen and absence of edges is independent

$$p_k = \binom{n}{k} p^k (1-p)^{n-k} \approx \frac{z^k e^{-z}}{k!}$$

- Giant component: average degree k=2m/n:
 - $k=1-\varepsilon$: all components are of size $\Omega(\log n)$
 - $k=1+\varepsilon$: there is 1 component of size $\Omega(n)$
 - All others are of size $\Omega(\log n)$
 - They are a tree plus an edge, i.e., cycles
- Diameter: log n / log k

Evolution of a random graph

Subgraphs in random graphs

Expected number of subgraphs

$$H(v,e)$$
 in $G_{n,p}$ is

$$E(X) = \binom{n}{v} \frac{v!}{a} p^e \approx \frac{n^v p^e}{a}$$

a... # of isomorphic graphs

p~N^z

Random graphs: conclusion

Pros:

- Simple and tractable model
- Phase transitions
- Giant component

Cons:

- Degree distribution
- No community structure
- No degree correlations

Extensions:

- Configuration model
 - Random graphs with arbitrary degree sequence
 - Excess degree: Degree of a vertex of the end of random edge: $q_k = k p_k$

Configuration model

Exponential random graphs (p* models)

- Social sciences thoroughly analyze rather small networks
- Let ε_i set of properties of a graph:
 - E.g., number of edges, number of nodes of a given degree, number of triangles, ...
- Exponential random graph model defines a probability distribution over graphs:

$$P(G) = \frac{1}{Z} \exp\left(-\sum_{i} \beta_{i} \epsilon_{i}\right)$$

Exponential random graphs

- Includes Erdos-Renyi as a special case
- Assume parameters β_i are specified
 - No analytical solutions for the model
 - But can use simulation to sample the graphs:
 - Define local moves on a graph:
 - Addition/removal of edges
 - Movement of edges
 - Edge swaps
- Parameter estimation:
 - maximum likelihood
- Problems:
 - Can't solve for transitivity (produces cliques)
 - Used to analyze small networks

Example of parameter estimates:

<u>Parameter</u>	<u>Configuration</u>	Estimate (standard error)
θ	0—0	-4.27 (1.13)
σ_2	ǰ	1.09 (0.65)
σ_3	80	-0.67 (0.41)
τ		1.32 (0.65)

Small-world model

- [Watts & Strogatz 1998]
- Used for modeling network transitivity
- Many networks assume some kind of geographical proximity
- Small-world model:
 - Start with a low-dimensional regular lattice
 - Rewire:
 - Add/remove edges to create shortcuts to join remote parts of the lattice
 - For each edge with prob p move the other end to a random vertex

Small-world model

 Rewiring allows to interpolate between regular lattice and random graph

Small-world model

- Regular lattice (p=0):
 - Clustering coefficient C=(3k-3)/(4k-2)=3/4
 - Mean distance L/4k
- Almost random graph (p=1):
 - Clustering coefficient C=2k/L
 - Mean distance log L / log k
- But, real graphs have powerlaw degree distribution

Preferential attachment

- But, random graphs have Poisson degree distribution
- Let's find a better model
- Preferential attachment [Price 1965, Albert & Barabasi 1999]:
 - Add a new node, create m out-links
 - Probability of linking a node k_i is proportional to its degree

$$\Pi(k_i) = \frac{k_i}{\sum_j k_j}$$

- Based on Herbert Simon's result
 - Power-laws arise from "Rich get richer" (cumulative advantage)
- Examples (Price 1965 for modeling citations):
 - Citations: new citations of a paper are proportional to the number it already has

Preferential attachment

Leads to power-law degree distributions

$$p_k \propto k^{-3}$$

- But:
 - all nodes have equal (constant) out-degree
 - one needs a complete knowledge of the network
- There are many generalizations and variants, but the preferential selection is the key ingredient that leads to power-laws

Edge copying model

- But, preferential attachment does not have communities
- Copying model [Kleinberg et al, 99]:
 - Add a node and choose k the number of edges to add
 - With prob. β select k random vertices and link to them
 - Prob. $1-\beta$ edges are copied from a randomly chosen node
- Generates power-law degree distributions with exponent $1/(1-\beta)$
- Generates communities

Community guided attachment

 But, we want to model densification in networks

$$E(t) \propto N(t)^a$$

- Assume community structure
- One expects many withingroup friendships and fewer cross-group ones
- Community guided attachment [KDD05]

Self-similar university community structure

Community guided attachment

Assuming cross-community linking probability

$$f(h) = c^{-h}$$

 The Community Guided Attachment leads to Densification Power Law with exponent

$$a = 2 - \log_b(c)$$

- a ... densification exponent
- b ... community tree branching factor
- c ... difficulty constant, $1 \le c \le b$
- If c = 1: easy to cross communities
 - Then: a=2, quadratic growth of edges near clique
- If c = b: hard to cross communities
 - Then: a=1, linear growth of edges constant out-degree

- But, we do not want to have explicit communities
- Want to model graphs that density and have shrinking diameters
- Intuition:
 - How do we meet friends at a party?
 - How do we identify references when writing papers?

- The Forest Fire model [KDD05] has 2 parameters:
 - p ... forward burning probability
 - r ... backward burning probability
- The model:
 - Each turn a new node v arrives
 - Uniformly at random chooses an "ambassador" w
 - Flip two geometric coins to determine the number in- and out-links of w to follow (burn)
 - Fire spreads recursively until it dies
 - Node v links to all burned nodes

 Forest Fire generates graphs that densify and have shrinking diameter

 Forest Fire also generates graphs with Power-Law degree distribution

Forest Fire: Phase transitions

- Fix backward probability r and vary forward burning probability p
- We observe a sharp transition between sparse and clique-like graphs
- Sweet spot is very narrow

Kronecker graphs

- But, want to have a model that can generate a realistic graph with realistic growth:
 - Static Patterns
 - Power Law Degree Distribution
 - Small Diameter
 - Power Law Eigenvalue and Eigenvector Distribution
 - Temporal Patterns
 - Densification Power Law
 - Shrinking/Constant Diameter
- For Kronecker graphs [PKDD05] all these properties can actually be proven

Idea: Recursive graph generation

- Starting with our intuitions from densification
- Try to mimic recursive graph/community growth because self similarity leads to power-laws
- There are many obvious (but wrong) ways:

- Does not densify, has increasing diameter
- Kronecker Product is a way of generating self-similar matrices

Kronecker product: Graph

Intermediate stage

1	1	0
1	1	1
0	1	1

(3x3)

 G_1

(9x9)

$$G_2 = G_1 \otimes G_1$$

Adjacency matrix

Leskovec&Faloutsos, WWW 2008

Adjacency matrix 1-64

Kronecker product: Graph

• Continuing multypling with G_I we obtain G_4 and so on ...

 G_4 adjacency matrix

Kronecker product: Definition

 The Kronecker product of matrices A and B is given by

$$\mathbf{C} = \mathbf{A} \otimes \mathbf{B} \doteq \begin{pmatrix} a_{1,1}\mathbf{B} & a_{1,2}\mathbf{B} & \dots & a_{1,m}\mathbf{B} \\ a_{2,1}\mathbf{B} & a_{2,2}\mathbf{B} & \dots & a_{2,m}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1}\mathbf{B} & a_{n,2}\mathbf{B} & \dots & a_{n,m}\mathbf{B} \end{pmatrix}$$

$$N*K \times M*L$$

 We define a Kronecker product of two graphs as a Kronecker product of their adjacency matrices

Kronecker graphs

 We propose a growing sequence of graphs by iterating the Kronecker product

$$G_k = \underbrace{G_1 \otimes G_1 \otimes \dots G_1}_{k \ times}$$

- Each Kronecker multiplication exponentially increases the size of the graph
- G_k has N_I^k nodes and E_I^k edges, so we get densification

Stochastic Kronecker graphs

- But, want a randomized version of Kronecker graphs
- Possible strategies:
 - Randomly add/delete some edges
 - Threshold the matrix, e.g. use only the strongest edges
- Wrong, will destroy the structure of the graph, e.g. diameter, clustering

Stochastic Kronecker graphs

- Create $N_I \times N_I$ probability matrix P_I
- Compute the k^{th} Kronecker power P_k
- For each entry p_{uv} of P_k include an edge (u,v) with probability p_{uv}

Kronecker graphs: Intuition (1)

Intuition:

- Recursive growth of graph communities
- Nodes get expanded to micro communities
- Nodes in sub-community link among themselves and to nodes from different communities

Kronecker graphs: Intuition (2)

- Node attribute representation
 - Nodes are described by (binary) features [likes ice cream, likes chocolate]
 - *E.g.*, u=[1,0], v=[1, 1]
 - Parameter matrix gives linking probability: p(u,v) = 0.1 * 0.5 = 0.15

Properties of Kronecker graphs

- We can show [PKDD05] that Kronecker multiplication generates graphs that have:
 - Properties of static networks
 - ✓ Power Law Degree Distribution
 - ✓ Power Law eigenvalue and eigenvector distribution
 - ✓ Small Diameter
 - Properties of dynamic networks
 - ✓ Densification Power Law
 - ✓ Shrinking/Stabilizing Diameter

Mahdian and Xu '07 show that these properties also hold for Stochastic Kronecker Graphs

1.3: Fitting the models to real graphs

We saw the models.

Want to fit a model to a large real graph?

The problem

We want to generate realistic networks:

- P1) What are the relevant properties?
- P2) What is a good analytically tractable model?
- P3) How can we fit the model (find parameters)?

Model estimation: approach

- Maximum likelihood estimation
 - Given real graph G
 - Estimate Kronecker initiator graph Θ (e.g., $\frac{1}{0}$ (e.g., $\frac{1}{0}$) which

$$\arg\max_{\Theta} P(G \mid \Theta)$$

We need to (efficiently) calculate

$$P(G \mid \Theta)$$

- And maximize over Θ (e.g., using gradient descent)

Fitting Kronecker graphs

• Given a graph G and Kronecker matrix Θ we calculate probability that Θ generated G $P(G|\Theta)$

1	0	1	1	
0	1	0	1	
1	0	1	1	
1	1	1	1	

G

$$P(G \mid \Theta) = \prod_{(u,v) \in G} \Theta_k[u,v] \prod_{(u,v) \notin G} (1 - \Theta_k[u,v])$$

Leskovec&Faloutsos, WWW 2008

Challenges

- Challenge 1: Node correspondence problem
 - How the map the nodes of the real graph to the nodes of the synthetic graph?
- Challenge 2: Scalability
 - For large graphs $O(N^2)$ is too slow
 - Scaling to large graphs performing the calculations quickly

Challenge 1: Node correspondence

$$P(G'|\Theta) = P(G''|\Theta)$$

- Nodes are unlabeled
- Graphs G' and G'' should have the same probability

$$P(G'|\Theta) = P(G''|\Theta)$$

- One needs to consider all node correspondences $\,\sigma\,$

$$P(G \mid \Theta) = \sum_{\sigma} P(G \mid \Theta, \sigma) P(\sigma)$$

- All correspondences are a priori equally likely
- There are O(N!)
 correspondences

Part 1-78

Challenge 2: calculating $P(G|\Theta,\sigma)$

- Assume we solved the correspondence problem
- Calculating

$$P(G \mid \Theta) = \prod_{(u,v) \in G} \Theta_k [\sigma_u, \sigma_v] \prod_{(u,v) \notin G} (1 - \Theta_k [\sigma_u, \sigma_v])$$

σ... node labeling

• Takes $O(N^2)$ time

Leskovec&Faloutsos, WWW 2008

Infeasible for large graphs (N ~ 10⁵)

Θ_{kc}			$P(G \Theta,\sigma)$			G		
0.01	0.03	0.03	0.09		0	0	1	1
0.05	0.02	0.15	0.06	$-\sigma$	1	0	1	1
0.05	0.15	0.02	0.06		0	1	0	1
0.25	0.10	0.10	0.04		1	0	1	1

Part 1-79

Model estimation: solution

- Naïvely estimating the Kronecker initiator takes O(N!N²) time:
 - N! for graph isomorphism
 - Metropolis sampling: $N! \rightarrow const$
 - N^2 for traversing the graph adjacency matrix
 - Properties of Kronecker product and sparsity $(E << N^2)$: $\mathbb{N}^2 \rightarrow E$
- We can estimate the parameters of Kronecker graph in linear time O(E)
- For details see [Leskovec-Faloutsos 2007]

Solution 1: Node correspondence

Log-likelihood

$$l(\Theta) = \log \sum_{\sigma} P(G|\Theta, \sigma) P(\sigma)$$

Gradient of log-likelihood

$$\frac{\partial}{\partial \Theta} l(\Theta) = \sum_{\sigma} \frac{\partial \log P(G|\sigma, \Theta)}{\partial \Theta} P(\sigma|G, \Theta)$$

• Sample the permutations from $P(\sigma|G,\Theta)$ and average the gradients

Sampling node correspondences

- Metropolis sampling:
 - Start with a random permutation
 - Do local moves on the permutation
 - Accept the new permutation
 - If new permutation is better (gives higher likelihood)
 - If new is worse accept with probability proportional to the ratio of likelihoods

Can compute efficiently:

Only need to account for changes in 2 rows / columns

Solution 2: Calculating $P(G|\Theta,\sigma)$

- Calculating naively $P(G|\Theta,\sigma)$ takes $O(N^2)$
- Idea:
 - First calculate likelihood of empty graph, a graph with 0 edges
 - Correct the likelihood for edges that we observe in the graph
- By exploiting the structure of Kronecker product we obtain closed form for likelihood of an empty graph

Solution 2: Calculating $P(G|\Theta,\sigma)$

We approximate the likelihood:

- The sum goes only over the edges
- Evaluating $P(G|\Theta,\sigma)$ takes O(E) time
- Real graphs are sparse, $E << N^2$

Experiments: Synthetic data

- Can gradient descent recover true parameters?
- Optimization problem is not convex
- How nice (without local minima) is optimization space?
 - Generate a graph from random parameters
 - Start at random point and use gradient descent
 - We recover true parameters 98% of the times

Convergence of properties

How does algorithm converge to true parameters with gradient descent iterations?

Experiments: real networks

- Experimental setup:
 - Given real graph
 - Stochastic gradient descent from random initial point
 - Obtain estimated parameters
 - Generate synthetic graphs
 - Compare properties of both graphs
- We do not fit the properties themselves
- We fit the likelihood and then compare the graph properties

AS graph (N=6500, E=26500)

- Autonomous systems (internet)
- We search the space of ~10^{50,000} permutations
- Fitting takes 20 minutes
- AS graph is undirected and estimated parameter matrix is symmetric:

0.98	0.58
0.58	0.06

AS: comparing graph properties

- Generate synthetic graph using estimated parameters
- Compare the properties of two graphs

AS: comparing graph properties

 Spectral properties of graph adjacency matrices

Epinions graph (N=76k, E=510k)

- We search the space of ~10^{1,000,000} permutations
- Fitting takes 2 hours
- The structure of the estimated parameter gives insight

into the structure of the graph

0.99

0.54

Epinions graph (N=76k, E=510k)

Scalability

 Fitting scales linearly with the number of edges

Conclusion

- Kronecker Graph model has
 - provable properties
 - small number of parameters
- Scalable algorithms for fitting Kronecker Graphs
- Efficiently search large space (~10^{1,000,000}) of permutations
- Kronecker graphs fit well real networks using few parameters
- Kronecker graphs match graph properties without a priori deciding on which ones to fit

Conclusion

- Statistical properties of networks across various domains
 - Key to understanding the behavior of many "independent" nodes
- Models of network structure and growth
 - Help explain, think and reason about properties
- Prediction, understanding of the structure
 - Fitting the models

Why should we care?

- Gives insight into the graph formation process:
 - Anomaly detection abnormal behavior, evolution
 - Predictions predicting future from the past
 - Simulations of new algorithms where real graphs are hard/impossible to collect
 - Graph sampling many real world graphs are too large to deal with
 - "What if" scenarios

Reflections

- How to systematically characterize the network structure?
- How do properties relate to one another?
- Is there something else we should measure?

Reflections

- Design systems (networks) that will
 - Be robust to node failures
 - Support local search (navigation): P2P networks
- Why are networks the way they are?
- Predict the future of the network?
- How should one be taking care of the network for it to grow organically?

References

- Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, by J. Leskovec, J. Kleinberg, C. Faloutsos, ACM KDD 2005
- Graph Evolution: Densification and Shrinking Diameters, by J. Leskovec, J. Kleinberg and C. Faloutsos, ACM TKDD 2007
- Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication, by J. Leskovec, D. Chakrabarti, J. Kleinberg and C. Faloutsos, PKDD 2005
- Scalable Modeling of Real Graphs using Kronecker Multiplication, by J. Leskovec and C. Faloutsos, ICML 2007
- The Dynamics of Viral Marketing, by J. Leskovec, L. Adamic, B. Huberman, ACM Electronic Commerce 2006
- Collective dynamics of 'small-world' networks, by D. J. Watts and S. H. Strogatz, Nature 1998
- Emergence of scaling in random networks, by R. Albert and A.-L. Barabasi, Science 1999
- On the evolution of random graphs, by P. Erdos and A. Renyi, Publication of the Mathematical Institute of the Hungarian Acadamy of Science, 1960
- Power-law distributions in empirical data, by A. Clauset, C. Shalizi, M. Newman, 2007

References

- The structure and function of complex networks, M. Newman, SIAM Review 2003
- Hierarchical Organization in Complex Networks, Ravasz and Barabasi, Physical Review E 2003
- A random graph model for massive graphs, W. Aiello, F. Chung and L. Lu, STOC 2000
- Community structure in social and biological networks, by Girvan and Newman, PNAS 2002
- On Power-law Relationships of the Internet Topology, by Faloutsos, Faloutsos, and Faloutsos, SIGCOM 1999
- Power laws, Pareto distributions and Zipf's law, by M. Newman, Contemporary Physics 2005
- Social Network Analysis: Methods and Applications, by Wasserman, Cambridge University Press 1994
- The web as a graph: Measurements, models and methods, by J. Kleinberg and S. R. Kumar, P. Raghavan, S. Rajagopalan and A. Tomkins, COCOON 1998
- Stochastic Kronecker Graphs, by M. Mahdian and Y. Xu, Workshop on Algorithms and Models for the Web-Graph (WAW) 2007

Some slides and plots borrowed from L. Adamic, M. Newman, M. Joseph, A. Barabasi, J. Kleinberg, D. Lieben-Nowell, S. Valverde, and R. Sole

Coming up next...

Diffusion and cascading behavior in networks

- Viral Marketing: How do people make recommendations?
- How does information and viruses propagate in networks?
- How to detect cascades and find influential nodes?