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Tutorial outline

= Part 1: Structure and models for networks

* What are properties of large graphs?
* How do we model them?

= Part 2: Dynamics of networks
= Diffusion and cascading behavior
* How do viruses and information propagate?

= Part 3: Case studies
= 240 million MSN instant messenger network
= Graph projections: how does the web look like
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Part 2: Outline

Diffusion and Cascading Behavior

— Part 1: Basic mathematical models

* Virus propagation and Diffusion (cascading
behavior)

* Finding influential nodes

— Part 2: Empirical studies on large networks
 Viral Marketing and Blogging

— Part 3: More algorithms and consequences
* Detecting cascades effectively

— Conclusion and reflections
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Structure vs. Process

What have we learned about large networks?

We know a lot about the structure: Many
recurring patterns

— Scale-free, small-world, locally clustered, bow-tie,
hubs and authorities, communities, bipartite
cores, network motifs, highly optimized tolerance

We know much less about processes and
dynamics

Leskovec&Faloutsos, ECML/PKDD 2007 Part 2-4



Diffusion in Social Networks

One of the networks is a spread of a disease,
the other one is product recommendations

Which is which? ©

Leskovec&Faloutsos, ECML/PKDD 2007 Part 2-5



Diffusion in Social Networks

A fundamental process in social networks:
Behaviors that cascade from node to node like an
epidemic

— News, opinions, rumors, fads, urban legends, ...

— Word-of-mouth effects in marketing: rise of new websites,
free web based services

— Virus, disease propagation

— Change in social priorities: smoking, recycling

— Saturation news coverage: topic diffusion among bloggers
— Internet-energized political campaigns

— Cascading failures in financial markets

— Localized effects: riots, people walking out of a lecture
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Empirical Studies of Diffusion (1)

Experimental studies of diffusion have long history:

— Spread of new agricultural practices [Ryan-Gross 1943]

* Adoption of a new hybrid-corn between the 259 farmers in lowa
 Classical study of diffusion

* Interpersonal network plays important role in adoption
—> Diffusion is a social process

— Spread of new medical practices [Coleman et al 1966]
* Studied the adoption of a new drug between doctors in lllinois

* Clinical studies and scientific evaluations were not sufficient to
convince the doctors

|t was the social power of peers that led to adoption

Leskovec&Faloutsos, ECML/PKDD 2007 Part 2-7



Empirical Studies of Diffusion (2)

Diffusion has many (very interesting) ©
flavors, e.q.:

— The contagion of obesity [Christakis et al. 2007]

* |f you have an overweight friend your chances of
becoming obese increases by 57%
— Psychological effects of
others’ opinions, e.q.:
Which line is closest in
length to A? [Asch 1958] A B
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Prob. of adoption

Diffusion Curves (1)

Basis for models:

— Probability of adopting new behavior depends on
the number of friends who have adopted [Bass ‘69,

Granovetter 78, Shelling '78]
What’s the dependence?

Prob. of adoption

k = number of friends adopting k = number of friends adopting

Diminishing returns? Critical mass?
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Prob. of adoption

Diffusion Curves (2)

Prob. of adoption

k = number of friends adopting k = number of friends adopting

Diminishing returns? Critical mass?

Key issue: qualitative shape of diffusion curves

— Diminishing returns? Critical mass?
— Distinction has consequences for models of diffusion
at population level
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Part 1: Mathematical Models

Two flavors, two types of questions:

— A) Models of Virus Propagation:
 SIS: Susceptible — Infective — Susceptible (e.g., flu)

 SIR: Susceptible — Infective — Recovered (e.g.,
chicken-pox)

* Question: Will the virus take over the network?

— B) Models of Diffusion:

* Independent contagion model
* Threshold model

* Questions:
— Finding influential nodes
— Detecting cascades
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A) Models of Virus Propagation

How do viruses/rumors propagate?
Will a flu-like virus linger, or will it become extinct?

(Virus) birth rate 8: probability than an infected
neighbor attacks

(Virus) death rate é: probability that an infected
node heals

Healthy

Infected
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The Model

e Susceptible-Infective-Susceptible (SIS)
model

 Cured nodes immediately become
susceptible

* Virus “strength”:s= /0

Infected by neighbor
with prob. B

Susceptible nfective

Cured internally
with prob. 6
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Question: Epidemic Threshold t

of a graph: the value of 1, such that
If strengths=06/06< 1
epidemic can not happen
Thus,
given a graph
compute its epidemic threshold
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Epidemic Threshold t

What should t depend on?
= avg. degree? and/or highest degree?
= and/or variance of degree?

= and/or third moment of degree?

= and/or diameter?

) @ @
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Epidemic Threshold

Theorem [Wang+ 2003]:

We have no epidemic if:
Epidemic threshold

(Virus) Death ——
rate jl
B/6<T=1/A,,
/ t

|
(Virus) Birth réce largest eigenvalue

of adj. matrix A

> A, 4 alone captures the property of the graph!
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Number of Infected Nodes

500

400 ||

300 |

200 -t

100 -

Experiments (AS graph)

10,900 nodes and
31,180 edges

B/o>1
(above threshold)

Time (below threshold)

0: ===0.05 ==0.06 =« 0.07
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B) Models of Diffusion in Networks

Initially some nodes are active

Active nodes spread their influence on the
other nodes, and so on ...
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Threshold Model [Granovetter ‘78]

Initially some nodes are active
Each edge (u,v) has weight w,
Each node has a threshold t
Node u activates if t <2 0 Wy,
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Independent Contagion Model

Initially some nodes are active
Each edge (u,v) has probability (weight) p,,

Node a becomes active: activates node b with prob. p,,
Activations spread through the network
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General Contagion Model

What general language do we need
to describe diffusion?

[Kempe et al. ‘03, Dodds-Watts ‘04]

— When u tries to influence v: success
based on set of nodes S that already
tried and failed

— Success functions p (u,S)

* Independent cascades: p,(u,S)=p,,
e Threshold: if [S/=k: p (u,5)=1 else O
e Diminishing returns: p (u,S) 2 p (u,T)if ST
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Most Influential Subset of Nodes

If S is initial active set, let f(S) denote
expected size of final active set

Most influential set of size k: the set
S of k nodes producing largest
expected cascade size f(S) if activated
[Domingos-Richardson 2001]

e As a discrete optimization problem

max f (5)

S of size k

* NP-hard and highly inapproximable

* Proof relies on critical mass. Is it necessary?
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An Approximation Result Iﬁ

e Diminishing returns: p (u,S)=p (uT)if ST

Hill-climbing: repeatedly select node with
maximum marginal gain

Performance guarantee: hill-climbing
algorithm is within (1-1/e) ~63% of optimal
[Kempe et al. 2003]

Leskovec&Faloutsos, ECML/PKDD 2007 Part 2-27



An Approximation Result Iﬁ

Analysis: diminishing returns at individual
nodes implies diminishing returns at a
“global” level

— Cascade size f(S) grows slower and slower with S.
fis submodular: if S < Tthen

fSUx) =f(S) 2 f(To{x}) = £(T)

— Theorem [Nehmhauser et al. ‘78]:
If fis a function that is monotone and
submodular, then k-step hill-climbing produces
set S for which f(S) is within (1-1/e) of optimal.
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Analysis: Independent Contagion

e Qur function f is clearly monotone; we must
show that it is submodular:

fsuix})=f(S) 2 f(Tuix}) = A(T)

What do we know about submodular functions?

- 1)Iff, f, ..., f, are submodular,and a,, a,, ... a, >0
then }a.f. is also submodular

— 2) Natural example: Te —
*SetsAL A, ..., A: S«

* f(S) = size of union of A,
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Analysis: Alternative View

Alternative view:

— Generate the
randomness ahead
of time

* Flip a coin for each edge to decide whether it will
succeed when (if ever) it attempts to transmit

 Edges on which activation will succeed are live
* f(S) = size of the set reachable by live-edge paths
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Analysis: Alternative View

Fix outcome i of coin
flips

Let f,(S) be size of
cascade from S given
these coin flips

e Let R(v) = set of nodes reachable from v on
live-edge paths

* f(S) = size of union R(v) = f;is submodular

e f=) Probli] f,— fis submodular
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Part 2: Empirical Analysis

What do diffusion curves look like?
How do cascades look like?

Challenge:
— Large dataset where diffusion can be observed
— Need social network links and behaviors that spread

We use:
— Blogs: How information propagates? [Leskovec et al. 2007]

— Product recommendations: How recommendations and
purchases propagate? [Leskovec-Adamic-Huberman 2006]

— Communities: How community membership propagates?
[Backstrom et al. 2006]
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Diffusion in Blogs

Posts

Information
_—~ cascade

Time =~ e
/ I_"/' )

ordered
hyperlinks

Data — Blogs:
— We crawled 45,000 blogs for 1 year
— 10 million posts and 350,000 cascades
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Diffusion in Viral Marketing

Senders and followers of recommendations
receive discounts on products %%
2\ )

10% credit 10% off

 Data — Incentivized Viral Marketing program
16 million recommendations
4 million people
500,000 products
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Diffusion of Community Membership

Use social networks where people belong to
explicitly defined groups

Each group defines a behavior that diffuses

Data — Livelournal:

— On-line blogging community with friendship links
and user-defined groups

— Over a million users update content each month
— Over 250,000 groups to join
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How do diffusion curves look like?

Viral marketing — DVD purchases:

il

0.08 ‘\ H .
o6 il
A / N ‘ L |

o
o
o

Probability of Buying
o o
o o
R =
R

0 10 20 30 40 50 60
k (hnumber of in-recommendations)
— Mainly diminishing returns (saturation)

— Turns upward fork=0, 1, 2, ...
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How do diffusion curves look like?

LiveJournal community membership:

0.025

T

[

=]
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T
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N
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How do diffusion curves look like?

Email probability [Kossinets-Watts 2006]:
— Email network of large university
— Prob. of a link as a function of # of common friends

=

10

Prob. of email

0 2 4 6 8 10+

k (hnumber of common friends)
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What are we really measuring?

For viral marketing:

— We see that node v receiving the i-th
recommendation and then purchased the product

For communities:
— At time t we see the behavior of node v’s friends

Questions:

— When did v become aware of recommendations
or friends’ behavior?

— When did it translate into a decision by v to act?
— How long after this decision did v act?
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More subtle features: Communities

Dependence on number of friends

Consider: connectedness of friends
— x and y have three friends in the group
— X’s friends are independent
—V’s friends are all connected

—Who is more likely to join?
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Connectedness of Friends

Competing sociological theories
— Information argument [Granovetter ‘73]
— Social capital argument [Coleman '88]

Information argument:
— Unconnected friends give independent support

Social capital argument:

— Safety/truest advantage in having friends who
know each other
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Connectedness of Friends

In LiveJournal, community joining probability
increases with more connections among
friends in group

Number and connectedness of friends are
most crucial features when formulated as
prediction task
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A Puzzle

If connectedness among friends promotes
joining, do highly “clustered” groups grow
more quickly?

— Define clustering = # triangles / # open triads

— Look at growth from t, to t, as a function of
clustering

— Groups with large clustering
grow slower
— But not just because

clustered groups had fewer
nodes one step away

growth
—l\
—r
\
\

uuuuuuuuu
05 5
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More subtle features: Viral marketing

Does sending more recommendations
influence more purchases?

7,

Number of Purchases
N w N (@) ] (@)}

[EEY

o

20 40 60 80 100 120 140
Outgoing Recommendations
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More subtle features: Viral marketing

What is the effectiveness of subsequent
recommendations?

0.07¢

o o o
o o o
s o1 »

Probability of buying

o
o
@

0.02 5 10 15 20 25 30 35 40
Exchanged recommendations
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More subtle features: Viral marketing

What role does the product category play?
[Leskovec-Adamic-Huberman 2006]

- buy + get
products customers recommenda edges .y J bgy+no
tions discount discount
Book 103,161 2,863,977 5,741,611 2,097,809 65,344 17,769
DVD 19,829 805,285 8,180,393 962,341 17,232 58,189
Music 393,598 794,148 1,443,847 585,738 7,837 2,739
Video 26,131 239,583 280,270 160,683 909 467
Full 542,719 3,943,084 15,646,121 3,153,676 91,322 79,164
people
~~ recommendations
high —
low
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Cascading of Recommendations

Some products are easier to recommend than

others

number of buy

forward

product category bits recommendations percent
Book 65,391 15,769 24.2
DVD 16,459 7,336 44.6
Music 7,843 1,824 23.3
Video 909 250 27.6
Total 90,602 25,179 27.8
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Viral Marketing: More subtleties

47,000 customers responsible for the 2.5 out of
16 million recommendations in the system

29% success rate per recommender of an anime
DVD

Giant component covers 19% of the nodes
Overall, recommendations for DVDs are more

likely to result in a purchase (7%), but the anime
community stands out
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Predicting recommendation success

Variable transformation Coefficient
const -0.940Q ***
# recommendations In(r) 0.426 ***
# senders In(n,) 0. 782 **+
# recipients In(n,) -1.307 ***
product price In(p) 0.128 ***
# reviews In(v) _0.011 ***
avg. rating In(t) -0.027 *
R? 0.74

significance at the 0.01 (***), 0.05 (**) and 0.1 (*) levels
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Viral Marketing: Why?

Viral marketing successfully utilizes social networks for
adoption of some services

Hotmail gains 18 million users in 12 months,
spending only $50,000 on traditional advertising

GMail rapidly gains users although referrals are the only
way to sigh up
Customers becoming less susceptible to mass marketing

Mass marketing impractical for unprecedented variety
of products online

Google AdSense helps sellers reach buyers with targeted
advertising

But how do buyers get good recommendations?
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How do people get recommendations?

> 50% of people do research online before
purchasing electronics

Personalized recommendations based on prior
purchase patterns and ratings

Amazon, “people who bought x also bought y”
Movielens, “based on ratings of users like

’)

you...

Is there still room for viral marketing?
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Is there still room for Viral Marketing?

We are more influenced by our friends than
strangers

68% of consumers consult
friends and family before

purchasing home electronics
(Burke 2003)
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Viral Marketing: Not spreading virally

94% of users make first recommendation without
having received one previously

Size of giant connected component increases from 1%
to 2.5% of the network (100,420 users) — small!
Some sub-communities are better connected

— 24% out of 18,000 users for westerns on DVD

— 26% of 25,000 for classics on DVD

— 19% of 47,000 for anime (Japanese animated film) on DVD
Others are just as disconnected

— 3% of 180,000 home and gardening

— 2-7% for children’s and fitness DVDs
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Viral Marketing: Consequences

Products suited for Viral Marketing
small and tightly knit community
— few reviews, senders, and recipients
— but sending more recommendations helps
pricey products
rating doesn’t play as much of a role

Observations for future diffusion models
purchase decision more complex than threshold or simple infection
influence saturates as the number of contacts expands
links user effectiveness if they are overused

Conditions for successful recommendations
professional and organizational contexts
discounts on expensive items
small, tightly knit communities

Leskovec&Faloutsos, ECML/PKDD 2007 Part 2-54



How Do Cascades Look Like?

How big are cascades?

What are the building
blocks of cascades?

DVD
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Cascades as Graphs

Given a (social) network

A process by spreading over the network
creates a graph (a tree)

Cascade
(propagation graph)

Social network

Let’s count cascades
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Viral Marketing: Frequent Cascades

e -e is the most common cascade subgraph

It accounts for ~75% cascades in books, CD and
VHS, only 12% of DVD cascades

r’::is 6 (1.2 for DVD) times more frequent than:_‘_‘:.:o

For DVDs \I/' is more frequent than l/I\.'

Chains (e—e—e) are more frequent than ""Tn

oo +® is more frequent than a collision ( ® o
(but collision has less edges)

Late split (H ) is more frequent than .u' .

57
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Viral Marketing Cascades

Stars (“no propagation”)

Bipartite cores (“common friends”)

o’%\ AHo N

Nodes having same friends .
e A complicated cascade
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Information Cascades in Blogs

Cascade shapes (ordered by frequency)

Ia’sd\id\*.ﬁmkm/f }

(2 C3 (q ;10 G

,-.r, *6 C_ 1]. 1

/’k ,/I\. f Y 1
/1\ J

® 4

®
G1g Gis  Gig Gig Giag Gi3q G's3 G100 C107 Grir  Giog

Cascades are mainly stars (trees)

Interesting relation between the cascade
frequency and structure

Leskovec&Faloutsos, ECML/PKDD 2007 Part 2-59



Cascades: Shape and Frequency

How do the

— social context
— the cascade shape and
— frequency

relate?

What are characteristics that determine cascade
frequency?

Why is it the case that

. @-
— o4 is more frequent than ¢>®

— 3" is more frequent than /]
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Cascade Size: Viral Marketing — Books

steep drop-off books
/

P ——

— = 1.806 %98/

Count

very few large cascades

10°

10° 10 10°

[}

L = =
1

x = Cascade size (humber of nodes)
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Cascade Size: Viral Marketing — DVDs

DVD cascades can grow large

Possibly as a result of websites where people sign
up to exchange recommendations

_——shallow drop off —fat tail

a number of large cascades

10° 10" 10° 10°
x = Cascade size (humber of nodes) Part 2-62



Cascade Size: Blogs

10° p—rrrrrm

10° 10’ 102  10°  10%
X = Cascade size (humber of nodes)

The probability of observing a cascade on x
nodes follows a Zipf distribution: p(x) ~ x~*
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Cascade Size: Consequences

Cascade sizes follow a heavy-tailed distribution

— Viral marketing:
* Books: steep drop-off: power-law exponent -5
* DVDs: larger cascades: exponent -1.5

— Blogs:
* Zipf’'s law: power-law exponent -2
However, it is not a branching process

— A simple branching process (a on k-ary tree):
* Every node infects each of k of its neighbors with prob. p

gives exponential cascade size distribution

Questions:
— What role does the underlying social network play?

— Can make a step towards more realistic cascade generation
(propagation) model?
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Towards a Better Cascade Model

1) Randomly pick blog to 2) Infect each in-linked
infect, add to cascade. neighbor with probability £.

v
1D
3) Add infected neighbors 4) Set node infected in (i) to
to cascade. uninfected.
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Cascade Model: Results

10’ 10 g
A T 5 T T
1 6%  Model e ] 4|5
Generative model 10 K Model === =0t 1
10° [ ] i
. ° F ’\ 4 103 -
produces realistic AR 1 89
o 10°- N 4 g0
cascades S b e NI
10" 10 ¢
— 10° S l 100 Lo
ﬁ 0 025 10° 10" 102 10*  10° 10°
Cascade size Cascade node in-degree
4
107 v e 10° ———
F Y Model - : ] \oata ©
¢ 10% | kY | 100 E N ol
* % e Ly |
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/ﬁ ol | :
N\ / 10" = - I a |
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Part 3: Detecting Cascades, Outbreaks

[Leskovec, Krause, Guestrin, Faloutsos, Glance,
VanBriesen 2007]:

Given
— a hetwork
— and a set of cascades

Which nodes shall we monitor to detect
cascades (outbreaks) effectively?
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Scenario 1: Water Network

Given a real city water

distriby on which nodes should we
place sensors to efficiently
detect the all possible

Proble contaminations?

Environmenta
Protection Agency
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Scenario 2: Cascades in Blogs

Posts

Which blogs should one read to
detect cascades as effectively
as possible?

ordered
hyperlinks \
Information
cascade
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Cascade Detection: General Problem

Given a dynamic process spreading over the
network

We want to select a set of nodes to detect the
process effectively

Note:

— The problem is different from selecting “influential
nodes”

— We aim to select nodes that are most easily influenced,
i.e., cascades (outbreaks) hit them soon

Many other applications:
— Epidemics
— Network security
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Two Parts to the Problem

Reward, e.g.:

— 1) Minimize time to detection

— 2) Maximize number of detected propagations
— 3) Minimize number of infected people

Cost (location dependent):

— Reading big blogs is more time consuming
— Placing a sensor in a remote location is expensive
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Problem Setting

Given a graph G(VE)
and a budget B for sensors

and data on how contaminations spread over
the network:

— for each contamination i we know the time 7(i, u)
when it contaminated node u

Select a subset of nodes 4 that maximize the
expected reward

max R(A) = Z P(’&)\R?,(TS% A)),

ACY

Reward for detecting

subject to COSt(A) <B contamination i
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Structure of the Problem

Solving the problem exactly is NP-hard
— Set cover (or vertex cover)

Observation:

— Objective (reward) functions are submodular, i.e.
diminishing returns

New sensor:
® _?‘L a

Adding S’ helps
very little

e

Placement A={S,, S,} Placement A={S,, S,, S5, S,}
Leskovec&Faloutsos, ECML/PKDD 2007 Part 2-73

Adding S’ helps a lot




Reward Functions: Submodularity

For all placement A C B CV it holds
R(AU{s}) — R(A) > R(BU {s}) — R(B)
Benefit of addng a sensor to a Benefit of addigg a sensor to a
small placement large placement

Similar argument as in influence maximization:

— Linear combinations of submodular functions are
submodular: max R(A) = ZP('?J)R»@(T(?J,A))

— Individual functions B« —
R; are submodular: A

Size of the union of sets
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Reward Functions are Submodular

Objective functions from Battle of Water
Sensor Networks competition [Ostfeld et al]:

— 1) Time to detection (DT)
* How long does it take to detect a contamination?

— 2) Detection likelihood (DL)

* How many contaminations do we detect?

— 3) Population affected (PA)

* How many people drank contaminated water?

are all submodular
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Background: Submodular functions

What do we know about optimizing

Hill-climbing submodular functions?

reward

q A hill-climbing (i.e., greedy) is near
optimal (/-1/e (~¥63%) of optimal)

But

€
c — 1) this only works for unit cost case
d (each sensor/location costs the same)

e — 2) Hill-climbing algorithm is slow

* At each iteration we need to re-evaluate
marginal gains

Add sensor with highest
marginal gain * It scalesas O(/V/B)
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Towards a New Algorithm

Possible algorithm: hill-climbing ignoring the cost
— Repeatedly select sensor with highest marginal gain
— Ignore sensor cost

It always prefers more expensive sensor with

reward r to a cheaper sensor with reward r-¢
— For variable cost it can fail arbitrarily badly

dea:

— What if we optimize benefit-cost ratio?
oo BAR—1 U{s}) — R(Ak—1)
Sj. = argmax
seEVNAL_4 C(S)
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More Problems with Benefit-Cost

Bad news: Optimizing benefit-cost ratio can
fail arbitrarily badly

Example: Given a budget B, consider:

— 2 locations s, and s,:
* Costs: ¢(s,)=¢, c(s,)=B
* Only 1 cascade with reward: R(s,)=2¢, R(s,)=B
— Then benefit-cost ratio is
* bc(s,)=2 and bc(s,)=1
— So, we first select s, and then can not afford s,
—>We get reward 2¢ instead of B

Now send € to 0 and we get arbitrarily bad
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Solution: CELF Algorithm

CELF (cost-effective lazy forward-selection)
algorithm

— A two pass greedy algorithm:
* Set (solution) A: use benefit-cost greedy
* Set (solution) B: use unit cost greedy

— Final solution: argmax(R(A), R(B))
How far is CELF from (unknown) optimal solution?

Theorem: CELF is near optimal
— CELF achieves 7(1-1/e) factor approximation

CELF is much faster than standard hill-climbing
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Tighter Algorithmic Bound

Traditional bound (1-1/e) tells us:

How far from optimal are we even before
seeing the data and running the algorithm

Can we do better? Yes!

We develop a new tighter bound. Intuition:

— Marginal gains are decreasing with the solution
Size
— We use this to get tighter bound on the solution
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Scaling up CELF algorithm

Observation:

Submodularity guarantees that marginal
benefits decrease with the solution size

reward

a1

ldea: exploit submodularity, doing lazy
evaluations!

(considered by Robertazzi et al. for unit cost case)
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Scaling up CELF

CELF algorithm — hill-climbing:

— Keep an ordered list of marginal
benefits b, from previous
iteration b

=
_
— Re-evaluate b, only for top -
_
I

sensor d
— Re-sort and prune .
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Scaling up CELF

CELF algorithm — hill-climbing:

— Keep an ordered list of marginal
benefits b, from previous
iteration b

=
_
— Re-evaluate b, only for top -
_
I

sensor d
— Re-sort and prune .
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Scaling up CELF

CELF algorithm — hill-climbing:

— Keep an ordered list of marginal
a
benefits b, from previous |
iteration d

il

— Re-evaluate b, only for top b r .
I
i

SEeNSsor e

— Re-sort and prune c
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Experiments: 2 Case Studies

We have real propagation data

— Blog network:
* We crawled blogs for 1 year

* We identified cascades —temporal propagation of
information

— Water distribution network:
* Real city water distribution networks

 Realistic simulator of water consumption provided
by US Environmental Protection Agency
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Case study 1: Cascades in Blogs

(Same data as in part 2 of the talk)

— We crawled 45,000 blogs for 1 year
— We obtained 10 million posts
— And identified 350,000 cascades

1 (Pusl 5 | B2 (P »

/p .H:/,.- »\\.... . -.\\"_—__/ ‘f "‘\

12/ p2g / ’\pza,
k.. . \» e

p41,_.\ p ?‘1.'___.«-___*3.\_\‘)6? ] F{m/ ‘-\Pﬁf?’

/' . B,

/p 553 Bﬁ
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Q1: Blogs: Solution Quality

Our bound is much tighter
— 13% instead of 37%

g Offline bound

0 ine boun

O 1491 Old bound
o 1. \

s

c 1 Online _

2 bound

m s

5 081 + Our bound
®)

206 CELF

" — i ".\

S 0.4 / CELF -

O | solution

3 0.2 /

o |

i | |

| |
20 40 60 30 100

Number of blogs
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Q2: Blogs: Cost of a Blog

Unit cost:

— algorithm picks large
popular blogs:

instapundit.com,
michel lemalkin.com

Variable cost:

— proportional to the
number of posts

We can do much
better when

=
o0

Optin'{izing | _ |
benefit/cost ratio Variable cost

y Unit cost

' “Pﬂ__,,ﬂt‘"“ﬁ’
lgnoring cost

=
»
|

Reduction in population affected
o
B

considering costs 0-7 in optimization )
Om I I | |

0 1 2 3 4 5

Cost (number of posts) X 104
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Q2: Blogs: Cost of a Blog

But then algorithm

picks lots of small 500

blogs that participate 250}

in few cascades % 200! Score R=0.4

We pick best solution 5, R7°°t /

that interpolates 2 e

between the costs 2 1%

We can get good 0/t | R=02

solutions with few 0, — o 5000
blogs and few posts Number of posts

Each curve represents solutions with
same final reward
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Q4: Blogs: Heuristic Selection

0.8

Reduction in population affected
o
o

4
0

CELF

Blog out-links

In—Ijnks /

-_—

All ou\kltlinks e @B

—# Posts .
_~-Random

20 40 60 80 100
Number of blogs

Heuristics perform much worse

One really needs to perform optimization
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o
N

o
—
(6

0.05

Reduction in population affected
o

Blogs: Generalization to Future

o
N

Optimizing on future,
Result on future

o
-
ol
\
\

Optimizing on future,
Result on future
\

Optimizing on historic,_

Result on future 5‘

0.05

\
\

Optimizing on historic,

Reduction in population affected
o
\

Resullt on futu‘re

200 400 600 800 1000 '
Cost 0 200 400 600 800 1000

Cost

We want to generalize well to future (unknown)
cascades

Limiting selection to bigger blogs improves
generalization
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Q5: Blogs: Scalability

400

Running time (seconds)
N
O
o

/
7/

L___Exhaustive search . CELF runs 700

[ Wiswees 1 times faster than

: Nai - STEPRT :
g - SImpI.e hill-climbing
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Case study 2: Water Network

Real metropolitan area
water network

—V =21,000 nodes
— E = 25,000 pipes

/= Use a cluster of 50 machines for a month
Simulate 3.6 million epidemic scenarios
(152 GB of epidemic data)

By exploiting sparsity we fit it into main

\_ memory (16GB) Y,
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Water: Solution Quality

1.4
12} offline bound A Old bound
n online bound |
Y Our bound
0.8t

CELF

=
(o)

CELF
solution

©
~

=
N

Reduction of population affected

0 5 10 15 20
Number of sensors selected

The new bound gives much better estimate of
solution quality

Leskovec&Faloutsos, ECML/PKDD 2007 Part 2-94



Water: Heuristic Placement

0.8

Reduction in population affected

0 5 10 15 20
Number of sensors

Heuristics placements perform much worse

One really needs to consider the spread of
epidemics
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Water: Placement Visualization

Different reward functions give different
sensor placements

Population affected Detection likelihood
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Water: Algorithm Scalability

- |
2 3001 ! A
5 . Exhaustive search /{'
= '~ (All subsets)
-é I ,

' -
;; 2001 : Naive e 7
g : greedy ’/f’
b 1

’ CELF

@) L _ , |
= 100 ! ™ CELF + Bounds
c ; \
C 1
3 |
o oL

2 4 6 8 10
Number of sensors selected

CELF is an order of magnitude faster than
hill-climbing
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Conclusion and Connections

Diffusion of Topics
— How news cascade through on-line networks
— Do we need new notions of rank?

Incentives and Diffusion
— Using diffusion in the design of on-line systems
— Connections to game theory

When will one product overtake the other?
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Further Connections

Diffusion of topics [Gruhl et al ‘04, Adar et al ‘04]:

— News stories cascade through networks of bloggers
— How do we track stories and rank news sources?
Recommendation incentive networks
[Leskovec-Adamic-Huberman ‘07]:

— How much reward is needed to make the product “work-
of-mouth” success?

Query incentive networks [Kleinberg-Raghavan ‘05]:
— Pose a request to neighbors; offer reward for answer

— Neighbors can pass on request by offering (smaller)
reward

— How much reward is needed to produce an answer?
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Topic Diffusion

obscure
technology

y
story tech
blog

high-profile

@

@@

News and discussion spreads via diffusion:
— Political cascades are different than technological cascades

Suggests new ranking measures for blogs
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Reflections

Starting to see some basic social network processes

Diffusion is a model that captures many different processes:
— In the on-line world: communities, topics, popularity, commerce

Only recently have basic properties been observed on a
large scale:

— Confirms some social science intuitions; calls others into
guestion

— Interplay between theoretical consequences of diffusion
properties and empirical studies

A number of novel opportunities:
— Predictive modeling of the spread of new ideas and behaviors

— Opportunity to design systems that make use of diffusion
process

Leskovec&Faloutsos, ECML/PKDD 2007 Part 2-101



References

D. Kempe, J. Kleinberg, E. Tardos. Maximizing the Spread of
Influence through a Social Network. ACM KDD, 2003.

Jure Leskovec, Lada Adamic, Bernardo Huberman. The Dynamics
of Viral Marketing. ACM TWEB 2007.

Jure Leskovec, Mary McGlohon, Christos Faloutsos, Natalie
Glance, Matthew Hurst. Cascading Behavior in Large Blog
Graphs. SIAM Data Mining 2007.

Jure Leskovec, Ajit Singh, Jon Kleinberg. Patterns of Influence in
a Recommendation Network. PAKDD 2006.

Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos
Faloutsos, Jeanne VanBriesen, Natalie Glance. Cost-effective
Outbreak Detection in Networks. ACM KDD, 2007.

Acknowledgement

Some slides and drawings borrowed from Jon Kleinberg

Leskovec&Faloutsos, ECML/PKDD 2007 Part 2-102



Coming up next...

Case studies

" Microsoft Instant Messenger communication
network

* How does the whole world communicate?
" How to find fraudsters on eBay?
" Graph projections

* How do we predict the quality of search results
without looking at the content?
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