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Networks — Social and Technological

Social network analysis: sociologists and
computer scientists — influence goes both ways

= |arge-scale network data in “traditional” sociological
domains
* Friendship and informal contacts among people
= Collaboration/influence in companies, organizations,
professional communities, political movements, markets, ...
= Emerge of rich social structure in computing
applications

= Content creation, on-line communication, blogging, social
networks, social media, electronic markets, ...

= People seeking information from other people vs. more
formal channels: MySpace, del.icio.us, Flickr, LinkedIn,
Yahoo Answers, Facebook, ...
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Examples of Networks
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Internet (a)
Citation network (b)
World Wide Web (c)

Sexual network (d)
Dating network(e)
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Networks of the Real-world (1)

Information networks:
= World Wide Web: hyperlinks T
= Citation networks /
= Blog networks

Social networks: people + ]
Interactions Florence families  k5rate club network
Organizational networks
Communication networks
Collaboration networks \ e L7
Sexual networks
Collaboration networks

Technological networks:

= Power grid __ s
Airline, road, river networks " By et
Telephone networks |
Internet Friendship network Collaboration network

Autonomous systems
Leskovec&Faloutsos ECML/PKDD 2007 Part 1-4




'% CMU SCS

Networks of the Real-world (2)

Biological networks
= metabolic networks
= food web
" neural networks

= gene regulatory
networks

Language networks

= Semantic networks

Software networks

increase
every
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tenfcld
whole number
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quake
Serious
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Yeast protein
interactions
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Language network
Software network
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Networks as Phenomena

The emergence of ‘cyberspace’ and the
World Wide Web is like the discovery of a
nhew continent.

= Jim Gray, 1998 Turing Award address

Complex networks as phenomena, not just
designed artifacts

What are the common patterns that emerge?
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Models and Laws of Networks

We want Kepler’s Laws of Motion for the Web.
= Mike Steuerwalt, NSF KDl workshop, 1998

Need statistical methods and tools to quantify
large networks

What do we hope to achieve from models of
networks?

= Patterns and statistical properties of network data
= Design principles and models

= Understand why networks are organized the way
they are (predict behavior of networked systems)
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Mining Social Network Data
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Mining social networks has a long history in social sciences:

= Wayne Zachary’s PhD work (1970-72): observe social ties and
rivalries in a university karate club

= During his observation, conflicts led the group to split
= Split could be explained by a minimum cut in the social network
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Networks: Rich Data

Traditional obstacle: e .
Canonly choose 2 of 3: ==l
= |Large-scale | o
= Realistic

= Completely mapped

Now: large on-line systems Ieave detalled records
of social activity

" On-line communities: MyScace, Facebook, LiveJournal
= Email, blogging, electronic markets, instant messaging
= On-line publications repositories, arXiv, MedLine

-:'i_ L
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Networks: A Matter of Scale

Network data spans many orders of magnitude:

= 436-node network of email exchange over 3-months
at corporate research lab [Adamic-Adar 2003]

= 43,553-node network of email exchange over 2
years at a large university [Kossinets-Watts 2006]

= 4.4-million-node network of declared friendships on
a blogging community [Liben-Nowell et al. 2005,
Backstrom et at. 2006]

= 240-million-node network of all IM communication
over a month on Microsoft Instant Messenger
[Leskovec-Horvitz 2007]
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Networks: Scale Matters

How does massive network data compare to
small-scale studies?

Massive network datasets give you both more
and less:

= More: can observe global phenomena that are
genuine, but literally invisible at smaller scales

= Less: don’t really know what any node or link means.
Easy to measure things, hard to pose right questions

= Goal: Find the point where the lines of research
converge
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Structure vs. Process

What have we learned about large networks?

We know about the structure: Many recurring
patterns

= Scale-free, small-world, locally clustered, bow-tie,
hubs and authorities, communities, bipartite
cores, network motifs, highly optimized tolerance

We know about the processes and dynamics

= Cascades, epidemic threshold, viral marketing,
virus propagation, threshold model

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-12



CMU SCS

Structure of Networks

eytoplasmic
franspart

* What is the structure of a large network?

* Why and how did it became to have such
structure?
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Diffusion in Networks

One of the networks is a spread of a disease,
the other one is product recommendations

Which is which? ©
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Tutorial outline

Part 1: Structure and models for networks

* What are properties of large graphs?
" How do we model them?

Part 2: Dynamics of networks
= Diffusion and cascading behavior
* How do viruses and information propagate?

Part 3: Case studies
= 240 million MSN instant messenger network
= Graph projections: how does the web look like
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Mining Large Graphs

Part 1: Structure and models of networks

Jure Leskovec and Christos Faloutsos

Machine Learning Department

% Carnegie Mellon

Joint work with: Lada Adamic, Deepay Chakrabarti, Natalie Glance, Carlos
Guestrin, Bernardo Huberman, Jon Kleinberg, Andreas Krause, Mary McGlohon,
Ajit Singh, and Jeanne VanBriesen.
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Part 1: Outline

1.1: Structural properties

= What are the statistical properties of static and
time evolving networks?

1.2: Models

* How do we build models of network generations
of evolution?

1.3: Fitting the models
* How do we fit models?
= How do we generate realistic looking graphs?
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Part 1.1: Structural properties

What are statistical properties of
networks across various domains?
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Traditional approach

Sociologists were first to study networks:

= Study of patterns of connections between people
to understand functioning of the society

= People are nodes, interactions are edges

= Questionares are used to collect link data (hard to
obtain, inaccurate, subjective)

= Typical questions: Centrality and connectivity

Limited to small graphs (~100 nodes) and
properties of individual nodes and edges
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Motivation: New approach (1)

Large networks (e.g., web, internet, on-line
social networks) with millions of nodes

Many traditional questions not useful
anymore:

" Traditional: What happens if a node u is removed?

= Now: What percentage of nodes needs to be
removed to affect network connectivity?

Focus moves from a single node to study of
statistical properties of the network as a
whole
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Motivation: New approach (2)

How the network “looks like” even if | can’t look
at it?

Need statistical methods and tools to quantify
large networks

3 parts/goals:
= Statistical properties of large networks
= Models that help understand these properties

= Predict behavior of networked systems based on
measured structural properties and local rules
governing individual nodes
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Graphs and networks

What is the simplest way to generate a graph?

Random graph model (Erdos-Renyi model,
Poisson random graph model):

= Given n vertices connect each pair i.i.d. with
probability p

How good (“realistic”) is this graph generator?
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Small-world effect (1)

Six degrees of separation [Milgram 60s]

Random people in Nebraska were asked to send letters to
stockbrokes in Boston

Letters can only be passed to first-name acquantices
Only 25% letters reached the goal
But they reached it in about 6 steps

Measuring path lengths:

Diameter (longest shortest path): max d;;

Effective diameter: distance at which 90% of all connected pairs
of nodes can be reached

Mean geodesic (shortest) distance /

1 1
b= - d; = - d-1
gn(n +1) Z b in(n+1) Z N

12 2 i>
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Small-world effect (2)

[Leskovec&Horvitz,07]
C L. . 10°; . . .
Distribution of shortest
10 .
path Iengths Pick a random
i node, count
Microsoft Messenger ¢ how many
S 0} nodes are at
network g, distance
- o 1% 1,2,3...h
= 180 million people B 459+ NOPS
= 1.3 billion edges E
Z 10,
= Edge if two people
101
exchanged at least one
message in one month o 5 10 5 2 >

period Distance (Hops)

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-24



% CMU SCS
Small-world effect (3)

If number of vertices within distance r grows exponentially
with 7, then mean shortest path length Zincreases as log n

Implications:
= |Information (viruses) spread quickly
= Erdos numbers are small
= Peer to peer networks (for navigation purposes)

Shortest paths exists

Humans are able to find the paths:
= People only know their friends
= People do not have the global knowledge of the network
This suggests something special about the structure of the

network

= Onarandom graph short paths exists but no one would be able to
find them

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-25
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Degree distributions (1)

Let p, denote a fraction of nodes with degree k
We can plot a histogram of p, vs. k

In a (Erdos-Renyi) random graph degree distribution
follows Poisson distribution

Degrees in real networks are heavily skewed to the
right

Distribution has a long tail of values that are far above
the mean

Power-law [Faloutsos et al], Zipf's law, Pareto’s law,

Long tail, Heavy-tail

Many things follow Power-law: —
= Amazon sales, Pk ~ k
= word length distribution, '
= Wealth, Earthquakes, ...

Leskovec&Faloutsos ECML/PKDD 2007
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Degree distributions (2)

Degree distribution in a blog network

I\/Iany real world (plot the same data using different scales)
networks contain QZ.Z lin-lin Qf«ﬁ log-lin
hubs: highly QS | e
connected nodes b S
We can easily L T
distinguish between k k
exponential and Power-law:
power-law tail by :
plotting on log-lin and < P ~ k™%
log-log aX|s. | o0
Power-law is a line on =

For statistical tests and estimation “i" 1 & e

see Clauset-Shalizi-Newman 2007 Leskovec&Faloutsos ECML/PKDD 2007 Og Part 1-27
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Poisson vs. Scale-free network

Poisson network
(Erdos-Renyi random graph)

A

Degree distribution is Poisson

Scale-free (power-law) network

Degree
distribution is Function is

~ Power-law scale free if:

flax) = c f(x)
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Network resilience (1)

We observe how the
connectivity (length of the
paths) of the network
changes as the vertices get
removed [Albert et al. 00;
Palmer et al. 01]

Vertices can be removed:

= Uniformly at random

= |n order of decreasing degree
It is important for
epidemiology

= Removal of vertices
corresponds to vaccination

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-29
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Mean path length

Network resilience (2)

Real-world networks are resilient to random attacks

= One has to remove all web-pages of degree > 5 to disconnect the web
= But this is a very small percentage of web pages

Random network has better resilience to targeted attacks

Internet (Autonomous systems)
— 1 r T + T ' 1

20 + Preferential

@ removal
10 @ Random
removal
Pe

40

20

0 1 | ! [ ! | ! | .
0.0 02 04 06 08

Fraction of removed nodes

Random network

0 L L 1 1 1
10 00 02 04 06 08 1.0

Fraction of removed nodes
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Community structure

Most social networks show
community structure

= groups have higher density of edges
within than across groups

= People naturally divide into groups based
on interests, age, occupation, ...
How to find communities:

= Spectral clustering (embedding into a
low-dim space)

= Hierarchical clustering based on
connection strength

= Combinatorial algorithms (min cut style
formulations)

= Block models
= Diffusion methods

Friendship network of
children in a school
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Spectral properties

Eigenvalues of graph - Eigenvalue distribution in
adjacency matrix o online social network

follow a power law

Network values
(components of
principal
eigenvector) also
follow a power-law
[Chakrabarti et al]

log Eigenvalue

10° 10" 10°

log Rank
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What about evolving graphs?

Conventional wisdom/intuition:

= Constant average degree: the number of edges
grows linearly with the number of nodes

= Slowly growing diameter: as the network grows
the distances between nodes grow
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Networks over time: Densification

A simple question: What is the relation between
the number of nodes and the number of edges in
a network over time?

Let:

" N(t) ... nodes at time ¢
" F(?) .. edges attimet

Suppose that:
N(t+1) =2 *N(1)
Q: what is your guess for
E(t+1) =73 E(1)
A: over-doubled!
= But obeying the Densification Power Law [KDDO5]
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Networks over time: Densification

Internet

Networks are denser over time

The number of edges grows faster &
than the number of nodes — LSD
average degree is increasing o

+ Edges
—=087x"""R%*=1.00

iog N(t)

E(t) oc N(t)*

1 DS.E

103.2

a ... densification exponent

<a<2: L B
I=as 2 Citations  rerz00
= g=]:linear growth — constant out- ol
degree (assumed in the literature so &
far) SN
= g=2:quadratic growth —clique %0
— 10° e
Jan 1993
+ Edges
, —=00113x""R*=10
107 ; '

10°
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Densification & degree distribution

Case (a): Degree exponent

How does densification affect degree ¥ !s constantover time. The
distribution? network densifies, a=1.2

. . . 18 - ememepsanracansse
Densification: FE(t) o< N(t)¢ "
L "t
Degree distribution: p, =k
Given densification exponent a, the L e
degree exponent is [TKDDO7]: time ¢
= (a) For y=const over time, we obtain Case (b): Degree exponent
densification only for /<y<2, and then it y evolves over time. The
holds: y=a/2 network densifies, a=1.6
" (b) For y<2 degree distribution evolves " T Theorems.2
according to: A
| qpe—1 1 y(Y)
fn — 9 n_a__l 1 22

Given: densification ¢, number of nodes n 2705 1 t'1'5 tz 25 3
1mec
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Shrinking diameters

L ] Internet
ition and prior work sa i
5
O 46
=
S .
©
é%UD 3500 40b0 45b0 50b0 55b0 GUbU 65hD
size of the graph
d ~ O(log log N)

. _ o o Citations_____
Diameter Shrinks/Stabilizes o
over time -

o,
= as the network grows the =
distances between nodes slowly °
decrease [KDD 05]
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Properties hold in many graphs

These patterns can be observed in many real

world networks:

= World wide web [Barabasi]

® On-line communities [Holme, Edling, Liljeros]

= Who call whom telephone networks [Cortes]

= |nternet backbone — routers [Faloutsos, Faloutsos, Faloutsos]
= Movies to actors network [Barabasi]

= Science citations [Leskovec, Kleinberg, Faloutsos]

= (Click-streams [Chakrabarti]

= Autonomous systems [Faloutsos, Faloutsos, Faloutsos]

= Co-authorship [Leskovec, Kleinberg, Faloutsos]

= Sexual relationships [Liljeros]

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-38
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Part 1.2: Models

We saw properties
How do we find models?
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1.2 Models: Outline

The timeline of graph models:
= (Erdos-Renyi) Random graphs (1960s)
= Exponential random graphs
= Small-world model
" Preferential attachment
= Edge copying model
= Community guided attachment
" Forest fire
= Kronecker graphs (today)

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-40
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(Erdos-Renyi) Random graph

Also known as Poisson random graphs or
Bernoulli graphs [Erdos&Renyi, 60s]

" Given n vertices connect each pairi.i.d. with
probability p

Two variants:

" G, ,: graph with m edges appears with probability
m(l -p)Mm where M=0.5n(n-1) is the max number of
edges

" G, ,: graphs with n nodes, m edges
Does not mimic reality

Very rich mathematical theory: many properties
are exactly solvable

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-41
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Properties of random graphs

Degree distribution is Poisson since the presen
and absence of edges is independent

ny n—k ‘e
Pe=(, )P (I-p)" " =

Z e

k!

Giant component: average degree k=2m/n:
" k=1I-¢:all components are of size Q(log n)

" k=I]+¢e: thereis 1 component of size Q2(n)

= All others are of size Q(log n)
= They are a tree plus an edge, i.e., cycles

Diameter: logn /log k

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-42
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X

Evolution of a random graph
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Subgraphs in random graphs

Expected number of subgraphs
H(v,e)inG, ,is

n\vl , np°
. E(X)= [ j—p ~
' V)a a
e s a... # of isomorphic graphs
D=0.1 p=0.15 n;‘,.l\lz
IJ 19
3 4 5 1
z| ™ 2 2 3 a4 -1 3 -3
¢ e A /\ AN X \@T
iv b ¢ 1140 ¥ &N
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Random graphs: conclusion

Configuration model

Pros:

= Simple and tractable model % \/Q/

= Phase transitions

= @Giant component \/O\/ O—
Cons:

= Degree distribution

= No community structure

= No degree correlations
Extensions:

= Configuration model

O o0 O O oo
O O O o

= Random graphs with arbitrary degree sequence

= Excess degree: Degree of a vertex of the end of random
edge: q, = kp,

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-45
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Exponential random graphs
(p*™ models)

Social sciences thoroughly analyze Examples of ¢,
rather small networks Desiy r e @)

Let ¢, set of properties of a graph:

Two-star (T0,)

= E.g., number of edges, number of nodes
of a given degree, number of triangles, ...

O—0O
~O
O
Exponential random graph model et ) &g
defines a probability distribution over
graphs: C@

Triangle (1)

i

1
P(G) = - exp(—z 3565)

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-46
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Exponential random graphs

Includes Erdos-Renyi as a special case

Assume parameters f; are specified
= No analytical solutions for the model

= But can use simulation to sample the graphs:

= Define local moves on a graph:
= Addition/removal of edges
* Movement of edges
= Edge swaps

Example of parameter estimates:

Parameter Configuration Estimate (standard error)

Parameter estimation:
= maximum likelihood

Problem:
= Can’t solve for transitivity (produces
= Used to analyze small networks

6 427 (1.13)

(o5
1.09 (0.65)

SE -0.67 (0.41)

1.32 (0.65)

Ly L8 L
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Small-world model

[Watts & Strogatz 1998]
Used for modeling network transitivity

Many networks assume some kind of
geographical proximity
Small-world model:

= Start with a low-dimensional regular lattice

= Rewire:

= Add/remove edges to create shortcuts to join remote parts
of the lattice

= For each edge with prob p move the other end to a random
vertex
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Small-world model

REGULAR HETUOREK SMALL LWORLD HETLIORE RAHDOM HETLORK

F=0 IHCREASIHG RAMDOMHESS F=1

Rewiring allows to interpolate between
regular lattice and random graph

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-49
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Small-world model

'_1_] T T T

Regular lattice (p=0): e e
. « o _\
= Clustering coefficient \
C=(3k-3)/(4k-2)=3/4

= Mean distance L/4k | \

0.001 0.01 0.1

Almost random graph (p=1): Rewiring probability p

" Clustering coefficient C=2k/L P(K)

o p=0.1
o p=0.2
< p=0.4
4 p=0.6
+ p=0.9
* p:1

* Mean distance log L /log k

But, real graphs have power- o Lt

Y | \\
. . . i d;f i &\‘ VA
law degree distribution e AN
10° é : ‘\_:‘ \ .
(K2 K 1"-\ .
10° :/ v ﬁ VL
0 10’ 10’ 10’ 10
k

Degree distribution
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Preferential attachment

But, random graphs have Poisson degree distribution
Let’s find a better model

Preferential attachment [Price 1965, Albert & Barabasi 1999]:

= Add a new node, create m out-links

k.
= Probability of linking a node k; is M(k;)=—
proportional to its degree E e

;'

Based on Herbert Simon’s result
= Power-laws arise from “Rich get richer” (cumulative advantage)

Examples (Price 1965 for modeling citations):

= Citations: new citations of a paper are proportional to the number it
already has

J

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-51
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Preferential attachment

Leads to power-law degree
distributions 10" B

Pr oc k™

But:

= all nodes have equal (constant) out-degree

= one needs a complete knowledge of the
network

There are many generalizations and 107 |
variants, but the preferential selection ’
is the key ingredient that leads to K
power-laws

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-52
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Edge copying model

But, preferential attachment does not have
communities
Copying model [Kleinberg et al, 99]:

* Add a node and choose £ the number of edges to add

= With prob. f select k random vertices and link to them

" Prob. /-f edges are copied from a randomly chosen node

Generates power-law degree distributions with
exponent 1/(1-5)

/
Generates communities rk* /*’

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-53
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Community guided attachment

But, we want to model
densification in networks

E(t) oc N(t)*

Assume community
structure

One expects many within-
group friendships and
fewer cross-group ones

Community guided Self-similar university
attachment [KDDO5] community structure

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-54
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Community guided attachment

Assuming cross-community linking probability

f(h) =c"

The Community Guided Attachment leads to Densification
Power Law with exponent

a =2 —log,(c)
= g ..densification exponent

= /.. community tree branching factor
= ¢ .. difficulty constant, ] <c<b

If c = I: easy to cross communities
= Then: a=2, quadratic growth of edges — near clique

If c = b: hard to cross communities
= Then: a=1, linear growth of edges — constant out-degree

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-55
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Forest Fire Model

But, we do not want to have explicit
communities

Want to model graphs that density and have
shrinking diameters

Intuition:
* How do we meet friends at a party?
= How do we identify references when writing papers?

/'

» .

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-56
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Forest Fire Model

The Forest Fire model [KDDO5] has 2 parameters:

" p .. forward burning probability
= r... backward burning probability

The model:
= Each turn a new node v arrives
= Uniformly at random chooses an “ambassador” w

= Flip two geometric coins to determine the number in- and
out-links of w to follow (burn)

= Fire spreads recursively until it dies
= Node v links to all burned nodes

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-57
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Forest Fire Model

Forest Fire generates graphs that densify
and have shrinking diameter

E(t)

® L | ] | ] 6.1— ™
; densification diameter
5| 6
107k
z 5.9t
8
E 10 E 5.8t
g ! QO 5.7t
€ 10° E
A 3 e
[ oy
1ol O 5.5,
E + Edges ) 5 AH
1 —=52e-1x"* R*=1.00 "
10 1 ) e I 5 ' ' R ' :
10 10 10 10 0 2000 4000 8000 10000

. |
Number of nodes (t) Number ¢ N(t)
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107

10

Forest Fire Model

Forest Fire also generates graphs with
Power-Law degree distribution

iIn-degree

) out-degree

10"}

- , - i 10"
log count vs. log in-degree

log count vs. log out-degree |
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Forest Fire: Phase transitions

Fix backward probability | r ', |
‘. DPL
r and vary forward P Ve
. o S P [ I Sl o S
burning probability p 2 P 2
I . .
We observe a sharp : Clique-like
g _ o raph
transition between Increasing P g
sparse and clique-like diameter X
graphs : Constant
: : diameter
Sweet spot is very | Sparse | i) TEEN
narrow graph ' - 0
e Decreasing
lfm======" diameter

0 02 04 06 08 1
Forward burning probability
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Kronecker graphs

But, want to have a model that can generate a
realistic graph with realistic growth:
= Static Patterns
* Power Law Degree Distribution

= Small Diameter
= Power Law Eigenvalue and Eigenvector Distribution

"= Temporal Patterns
= Densification Power Law
= Shrinking/Constant Diameter

For Kronecker graphs [PKDDO5] all these
properties can actually be proven
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ldea: Recursive graph generation

Starting with our intuitions from densification

Try to mimic recursive graph/community growth because
self similarity leads to power-laws

There are many obvious (but wrong) ways:

. AR B
R R ) S € e R
X; <:9§"6§;@®)

Initial graph Reotl;éiQée;p;ﬁéion

= Does not densify, has increasing diameter

Kronecker Product is a way of generating self-similar
matrices
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Kronecker product: Graph

)
5

Intermediate stage

O 1 (3x3)
G

Adjacency matrix

11| (ox9)
Go = G1 ® Gy

Adjacency matrix
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Kronecker product: Graph

Continuing multypling with G, we
obtain G,and so on ...

1]1]0
L1[1] =)
0[1]1
G\

G, adjacency matrix
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Kronecker product: Definition

The Kronecker product of matrices 4 and B is given
by

/a-'l._lB GlzB ... a‘l._;mB\

. (I.Q‘_lB GQQB ce {I..Qﬁ_mB
C=AoB-=
NxM KxL

\a’n,lB a'-n,.}QB S a'n._;:rnB/
N*K x M*L

We define a Kronecker product of two graphs as a
Kronecker product of their adjacency matrices
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Kronecker graphs

We propose a growing sequence of graphs
by iterating the Kronecker product

Gp,=GLoG ®...G
| —
k times

Each Kronecker multiplication exponentially
increases the size of the graph

G, has N, nodes and E * edges, so we get
densification

Leskovec&Faloutsos ECML/PKDD 2007
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Stochastic Kronecker graphs

But, want a randomized version of Kronecker
graphs
Possible strategies:

= Randomly add/delete some edges

" Threshold the matrix, e.g. use only the strongest
edges

Wrong, will destroy the structure of the
graph, e.g. diameter, clustering
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Stochastic Kronecker graphs

Create N,xN, probability matrix P,

Compute the £ Kronecker power P,

For each entry p, of P, include an edge (u,v) with

probability p,,

Kronecker

0.5

multiplication

0.2

0.1

0.3

0.25

0.10

0.10

0.04 |

0.05

0.15

0.02

0.06

0.05

0.02

0.15

0.06

Probability
of edge p,

0.01

0.03

0.03

0.09

=)

Instance
matrix K,

flip biased
coins
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Kronecker graphs: Intuition (1)

Intuition:
= Recursive growth of graph communities
= Nodes get expanded to micro communities

= Nodes in sub-community link among themselves and to
nodes from different communities

Xl
B
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Kronecker graphs: Intuition (2)

Node attribute representation

= Nodes are described by (binary) features [likes ice
cream, likes chocolate]

= F.g.,,u=[1,0], v=[1, 1]
= Parameter matrix gives linking probability:
p(u,v)=0.1*0.5=0.15

Leskovec&Faloutsos ECML/PKDD 2007

11 10 01 00

L0 110.25/0.10/0.10]0.04
110.5]0.2| | ioication 70.05/0.15/0.02|0.06
0(0.1]0.3 0110.05]0.02{0.15|0.06
0010.01]0.03{0.03|0.09
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Properties of Kronecker graphs

We can show [PKDDO5] that Kronecker
multiplication generates graphs that have:

" Properties of static networks
v’ Power Law Degree Distribution
v~ Power Law eigenvalue and eigenvector distribution
v~ Small Diameter

" Properties of dynamic networks
v’ Densification Power Law
v" Shrinking/Stabilizing Diameter

Mahdian and Xu ‘07 show that these properties
also hold for Stochastic Kronecker Graphs
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1.3: Fitting the models to real
graphs

We saw the models.
Want to fit a model to a large real graph?
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The problem

We want to generate realistic networks

104

e Asg e
10° %5 Kronecker — m
h |
102 S
10' e
100 | &
-1 u
10 .
1072 s
107 | t

Given a Generate a cor T

real network synthetic network Some statistical property,
e.g., degree distribution

= P1) What are the relevant properties?
= P2) What is a good analytically tractable model?
= P3) How can we fit the model (find parameters)?
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Model estimation: approach

Maximum likelihood estimation
= Given real graph G :
= Estimate Kronecker initiator graph ® (e.g.,tll1111) which

argmax P(G | ©)
®
We need to (efficiently) calculate

P(G|®)

And maximize over @ (e.g., using gradient descent)

Leskovec&Faloutsos ECML/PKDD Part 1-74
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Fitting Kronecker graphs

G

Given a graph G and Kronecker matrix ® we
calculate probability that & generated G P(G|®)

0.25(0.10|0.10|0.04 110[1]1
05(0.2 w 0.05/0.15(0.02|0.06 0|1]0|1
01l03 0.05/0.02(0.15|0.06 110[1]1
0.01]0.03/0.03|0.09 111711
6 N4
0O, G

R

P(GlO)

P(G|®)= 11 O, |u,v] II (1-O [u,v])

(u,v)eG

(u,v)eG
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Challenges

Challenge 1: Node correspondence problem

* How the map the nodes of the real graph to the
nodes of the synthetic graph?

Challenge 2: Scalability

= For large graphs O(N?) is too slow

= Scaling to large graphs — performing the
calculations quickly
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Challenge 1: Node correspondence

O,
< 0.25 | 0.10 | 0.10 | 0.04
0.5(0.2 :> 0.05 | 0.15 | 0.02 | 0.06
0.1]0.3 0.05 | 0.02 | 0.15 | 0.06
0.01 | 0.03 | 0.03 | 0.09
o o\ X7
1 17101110
3 I ERERE
2 :> 101111
4 0[0]1]1
G
2 110(1]1
4 :> 0o[1]0]1
1 11011
3 111]1]1
P(G’|®) =P(G”|O)

Nodes are unlabeled

Graphs G’ and G " should
have the same probability

P(G’|®) =P(G”|O)
One needs to consider all

node correspondences o

P(G|®)=) P(G|0,0)P(c)

All correspondences are a
priori equally likely

There are O(N!)
correspondences
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Challenge 2: calculating P(G|©,0)

Assume we solved the correspondence problem
Calculating

P(G|O®)= 11 0/0,,0,] Il (1-0,]0,,0,])

(u,v)eG

Takes O(N?) time
Infeasible for large graphs (N ~ 10°)

(u,v)eG

P(G|O, o)

0.25 (1010 | 0.10 | 0.04 110 (1|1
0.05 | 0.15| 0.02 | 0.06 0|10 11
0.05 | 0.02 | 0.15 | 0.06 o 110 (1|1
0.01 | 0.03 | 0.03 | 0.09 ,—\ i OO0 (11
@kc G

0... node labeling
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Model estimation: solution

Naively estimating the Kronecker initiator
takes O(N!IN?) time:
= N! for graph isomorphism
= Metropolis sampling: N! = const

= N2 for traversing the graph adjacency matrix

" Properties of Kronecker product and sparsity
(E << N?):N?2E

We can estimate the parameters of
Kronecker graph in linear time O(E)

For details see [Leskovec-Faloutsos 2007]
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Solution 1: Node correspondence
Log-likelihood

l(@) — log Z P(G|©,0)P(0)

Gradient of log-likelihood

: Olog P(G|o, ©)
200) =Y 25 P(o|G. ©)

o

Sample the permutations from
P(0|G,0) and average the gradients
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AW N =

Sampling node correspondences

Metropolis sampling:
= Start with a random permutation
= Do local moves on the permutation

= Accept the new permutation
= |f new permutation is better (gives higher likelihood)

= |f new is worse accept with probability proportional to the
ratio of likelihoods

1 5  Swap node 4 3
. labels 1 and 4 ii
2
4 | > 1

™~ Can compute efficiently:
Only need to account for
changes in 2 rows /
columns

OO |-~
= a2 O
[ G O N
= a2 O
AW N~
Ol |
O |l = =| =
LU [ N L U (LN
A laflo|o
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Solution 2: Calculating P(G|O,0)

Calculating naively P(G|®,0) takes O(N?)

ldea:

= First calculate likelihood of empty graph, a graph
with O edges

= Correct the likelihood for edges that we observe in
the graph

By exploiting the structure of Kronecker product
we obtain closed form for likelihood of an

empty graph
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Solution 2: Calculating P(G|O,0)

We approximate the likelihood:

O
O Ei
O
O
(©) = 1.(0)+ »  —log(l — 0oy, 0.]) + log(Okloy, 0,])

N

Y J(u-,*U)EG' ~ ~ — ~ ~ ~

Empty graph No-edge likelihood Edge likelihood

The sum goes only over the edges
Evaluating P(G|0,0) takes O(E) time
Real graphs are sparse, £ << N?

Leskovec&Faloutsos ECML/PKDD 2007 Part 1-83



% CMU SCS

Experiments: Synthetic data

Can gradient descent recover true
parameters?

Optimization problem is not convex

How nice (without local minima) is
optimization space?
" Generate a graph from random parameters
= Start at random point and use gradient descent
" We recover true parameters 98% of the times
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Convergence of properties

How does algorithm converge to true parameters
with gradient descent iterations?

18t eigenvalue

Gradient descent iterations

14

e ]

Diameter

Gradient descent iterations

-3.2¢4 0.18
7
'8 -34ded = ,6 0.16 —\;q —
0.14 (| -
O -36e4 = NE
L 0.12 — —
< { (<5} !
6 -3.8e4 |— N 01 _
= -4.0ed - .8 0.08 _
oy -42e4 |- o % 7
o) | S’ 004 - -
o 4ded |- < o002 L |
| TFU$ L‘/B/J T - ) | l "’T‘“mwnw
-4 6ed 0
30 40 20 30 40

5.5

True diahneter -L—-
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Experiments: real networks

Experimental setup:

= Given real graph

= Stochastic gradient descent from random initial
point

= Obtain estimated parameters

= Generate synthetic graphs

= Compare properties of both graphs
We do not fit the properties themselves

We fit the likelihood and then compare the
graph properties
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AS graph (N=6500, E=26500)

Autonomous systems (internet)
We search the space of ~10°%%%0 permutations

Fitting takes 20 minutes

AS graph is undirected and estimated parameter

matrix Is symmetric:

0.98

0.58

0.58

0.06

Leskovec&Faloutsos ECML/PKDD
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log count

AS: comparing graph properties

Generate synthetic graph using estimated
parameters

Compare the properties of two graphs

Degree distribution Hop plot

4 8

10 AL AL B SRSt | R 107 ¢ | | |
AS graph —e— Q 3

10° &= Kronecker -——m-— — S - o B —
10% ‘ = @107 - T =
10" |- = <
10° - = < 06 L diameter=4

1 b N
102 f . N
10° = — &5105 L —

3 ++ Lo
1077 ¢ E o0 AS graph —o :
10'4 L \I\IH‘ L \IHI\| L |\|\|\| L1 o 4 | | KI’OPECker _I"".""'

10° 10" 10° 10° 104 — 107 5 3 4 5 5

log degree number of hops
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AS: comparing graph properties

Spectral properties of graph adjacency

matrices
Scree plot
102 ¢ ———
u AS graph —&— 1
b Kronecker @
o > ]
< =
3
-~
S 10" -
20
N
en
=
0 i
10
10° 10’
log rank

Network value

—
o
o

1 ASgraph —— -
Kronecker - ]

log value

—
S
N

10°
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log count

Epinions graph (N=76k, E=510k)

We search the space of ~10%090.000 permutations

Fitting takes 2 hours

The structure of the estimated parameter gives insight

into the structure of the graph | 099 | 0.54
0.49 | 0.13
Degree distribution 010 Hop plot
I L Epiniond —e— ©n L | I ’
10° — ~ - g
S 10°F 5
10° |- - REPRS;
S 10 —
~ ]
102 - — &Q\ 10° . |
H i KEpmm:(ns =
4 T T T o)) 105 [ | ronegker —m— 7
T 10" 10° 10° 10 = 1 2 3 4 5 8

log degree

number of hops

2
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Epinions graph (N=76k, E=510k)

Scree plot

log eigenvalue

| Epinions —s—
Kronecker

Network value

0

10 | Epinions —
Kronecker ———

107 —\\\_ S E
1072

-3 Lol i
10

10° 10 102 10°
log rank
Part 1-91
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Scalability

Fitting scales linearly with the number of
edges

1200
1000F S

oo
o
o
|
1

Time (seconds)
= (8]
- o
o o
| [
] |

)
o
o
\-"l
{ % 1
t{.
‘\.
I

@v ---Linear fit

0 5 10
Size of the graph x 10°
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Conclusion

Kronecker Graph model has
" provable properties
= small number of parameters

Scalable algorithms for fitting Kronecker Graphs

Efficiently search large space (~10%000.000) of
permutations

Kronecker graphs fit well real networks using few
parameters

Kronecker graphs match graph properties without a
priori deciding on which ones to fit
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Conclusion

Statistical properties of networks across
various domains

= Key to understanding the behavior of many
“independent” nodes

Models of network structure and growth

= Help explain, think and reason about properties

Prediction, understanding of the structure
= Fitting the models
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Why should we care?

Gives insight into the graph formation process:
= Anomaly detection — abnormal behavior, evolution
" Predictions — predicting future from the past

= Simulations of new algorithms where real graphs are
hard/impossible to collect

" Graph sampling — many real world graphs are too large to
deal with

" “What if’ scenarios
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Reflections

How to systematically characterize the
network structure?

How do properties relate to one another?
Is there something else we should measure?
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Reflections

Design systems (networks) that will

= Be robust to node failures

= Support local search (navigation): P2P networks

Why are networks the way they are?

Predict the future of the network?

How should one be taking care of the network
for it to grow organically?
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Coming up next...

Diffusion and cascading behavior in networks

Viral Marketing: How do people make
recommendations?

How does information and viruses propagate
in networks?

How to detect cascades and find influential
nodes?
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