Dynamics of Real-world Networks

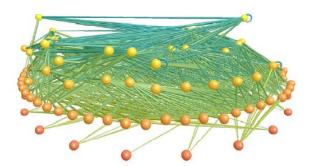
Jure Leskovec Machine Learning Department Carnegie Mellon University jure@cs.cmu.edu http://www.cs.cmu.edu/~jure

Committee members

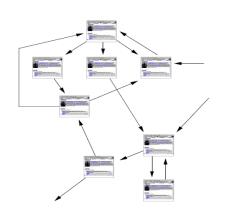
- Christos Faloutsos
- Avrim Blum
- Jon Kleinberg
- John Lafferty

Network dynamics

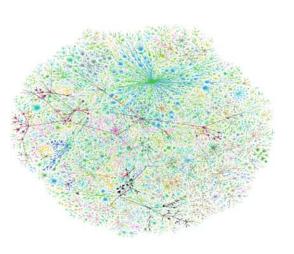
Friendship network



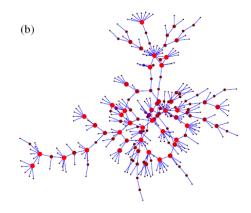
Food-web (who-eats-whom)



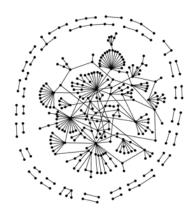
Web & citations



Internet



Sexual network



Yeast protein interactions ³

Large real world networks

- Instant messenger network
 - N = 180 <u>million</u> nodes
 - □ E = 1.3 <u>billion</u> edges
- Blog network
 - N = 2.5 <u>million</u> nodes
 - E = 5 million edges
- Autonomous systems
 - N = 6,500 nodes
 - □ E = 26,500 edges

- Citation network of physics papers
 - N = 31,000 nodes
 - □ E = 350,000 edges
- Recommendation network
 - N = 3 <u>million</u> nodes
 - E = 16 million edges

Questions we ask

- Do networks follow patterns as they grow?
- How to generate realistic graphs?
- How does influence spread over the network (chains, stars)?
- How to find/select nodes to detect cascades?

Our work: Network dynamics

- Our research focuses on analyzing and modeling the structure, evolution and dynamics of large real-world networks
 - Evolution
 - Growth and evolution of networks
 - Cascades
 - Processes taking place on networks

Our work: Goals

3 parts / goals

- G1: What are interesting statistical properties of network structure?
 - e.g., 6-degrees
- □ G2: What is a good tractable model?
 - e.g., preferential attachment
- G3: Use models and findings to predict future behavior
 - e.g., node immunization

Our work: Overview

	S1: Dynamics of network evolution	S2: Dynamics of processes on networks
G1: Patterns		
G2: Models		
G3: Predictions		

Our work: Overview

	S1: Dynamics of network evolution	S2: Dynamics of processes on networks
G1: Patterns	KDD '05 TKDD '07	PKDD '06 ACM EC '06
G2: Models	KDD '05 PAKDD '05	SDM '07 TWEB '07
G3: Predictions	KDD '06 ICML '07	WWW '07 submission to KDD

Our work: Impact and applications

- Structural properties
 - Abnormality detection
- Graph models
 - Graph generation
 - Graph sampling and extrapolations
 - Anonymization

Cascades

- Node selection and targeting
- Outbreak detection

Outline

Introduction

- Completed work
 - S1: Network structure and evolution
 - S2: Network cascades
- Proposed work
 - Kronecker time evolving graphs
 - Large online communication networks
 - Links and information cascades
- Conclusion

Completed work: Overview

	S1: Dynamics of network evolution	S2: Dynamics of processes on networks
G1: Patterns	Densification Shrinking diameters	Cascade shape and size
G2: Models	Forest Fire Kronecker graphs	Cascade generation model
G3: Predictions	Estimating Kronecker parameters	Selecting nodes for detecting cascades

Completed work: Overview

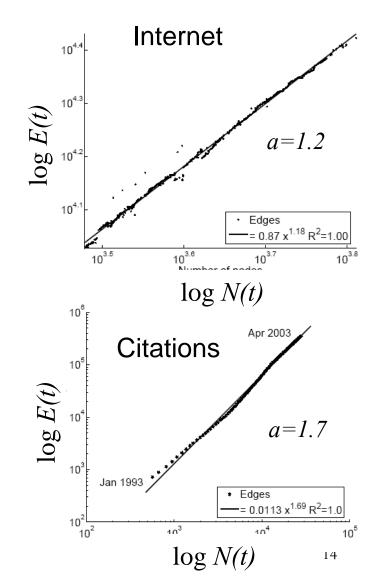
	S1: Dynamics of network evolution	S2: Dynamics of processes on networks
G1: Patterns	Densification Shrinking diameters	Cascade shape and size
G2: Models	Forest Fire Kronecker graphs	Cascade generation model
G3: Predictions	Estimating Kronecker parameters	Selecting nodes for detecting cascades

G1 - Patterns: Densification

- What is the relation between the number of nodes and the edges over time?
- Networks are denser over time
- Densification Power Law

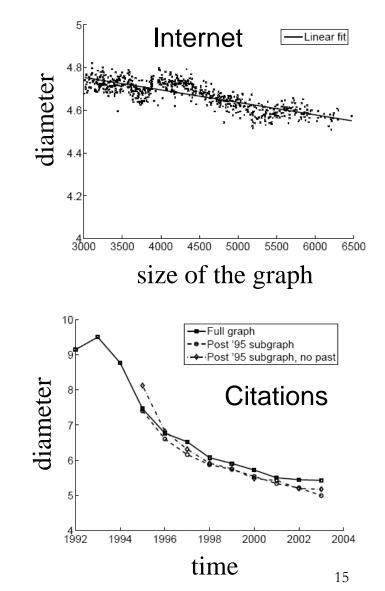
 $E(t) \propto N(t)^a$

- a ... densification exponent:
- $1 \le a \le 2$:
- *a*=1: linear growth constant degree
- *a=2*: quadratic growth clique



G1 - Patterns: Shrinking diameters

- Intuition and prior work say that distances between the nodes slewly grow as the network grows (like log N).
- Diameter Shrinks or Stabilizes over time
 - as the network grows the distances between nodes slowly decrease

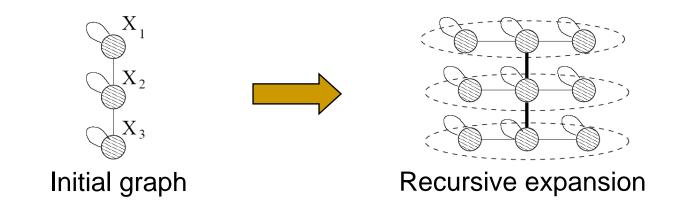


G2 - Models: Kronecker graphs

- Want to have a model that can generate a realistic graph with realistic growth
 - Patterns for static networks
 - Patterns for evolving networks
- The model should be
 - analytically tractable
 - We can prove properties of graphs the model generates
 - computationally tractable
 - We can estimate parameters

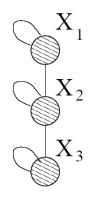
Idea: Recursive graph generation

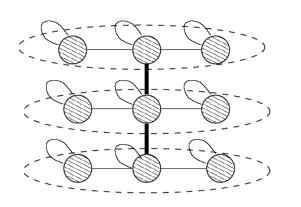
- Try to mimic recursive graph/community growth because self-similarity leads to power-laws
- There are many obvious (but wrong) ways:



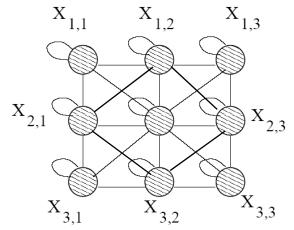
 Does not densify, has increasing diameter
 Kronecker Product is a way of generating selfsimilar matrices

Kronecker product: Graph





Intermediate stage



(3x3)

 G_1

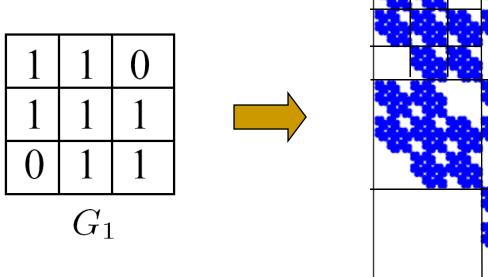
Adjacency matrix

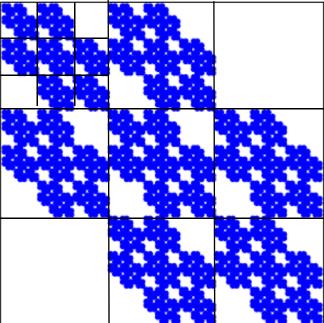
 $G_2 = G_1 \otimes G_1$

Adjacency matrix

Kronecker product: Graph

• Continuing multiplying with G_1 we obtain G_4 and so on ...





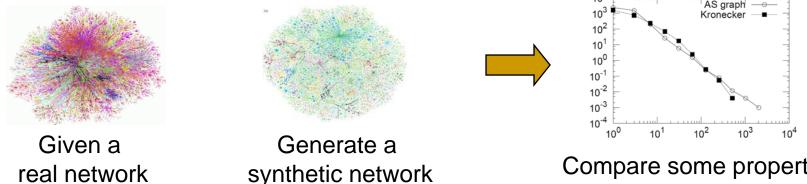
 G_4 adjacency matrix

Properties of Kronecker graphs

- We show that Kronecker multiplication generates graphs that have:
 - Properties of static networks
 - ✓Power Law Degree Distribution
 - Power Law eigenvalue and eigenvector distribution
 - ✓Small Diameter
 - Properties of dynamic networks
 - Densification Power Law
 - ✓ Shrinking / Stabilizing Diameter
- This means "shapes" of the distributions match but the properties are not independent
- How do we set the initiator to match the real graph?

G3 - Predictions: The problem

We want to generate realistic networks:



Compare some property, e.g., degree distribution

- G1) What are the relevant properties? \checkmark
- G2) What is a good tractable model? ✓
- G3) How can we fit the model (find parameters)?

Model estimation: approach

- Maximum likelihood estimation
 - \Box Given real graph G
 - Estimate the Kronecker initiator graph Θ (e.g., $\frac{1}{0}$ which $\arg\max_{\Theta} P(G \,|\, \Theta)$

We need to (efficiently) calculate

 $P(G | \Theta)$

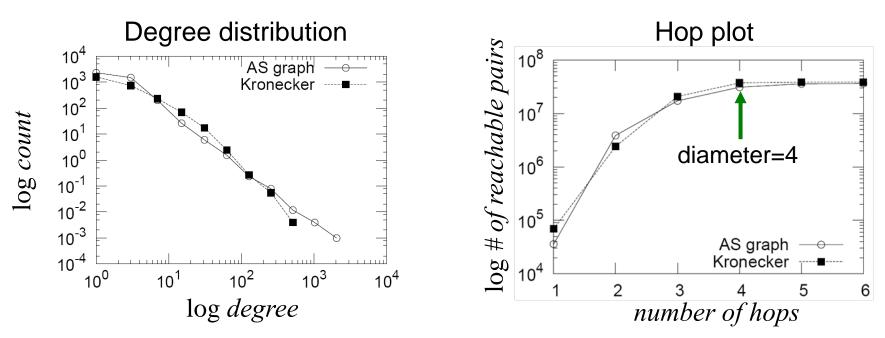
And maximize over Θ

Model estimation: solution

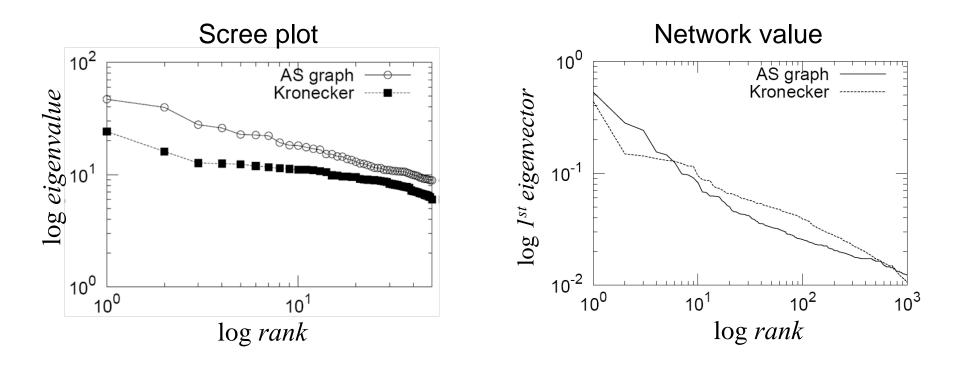
- Naïvely estimating the Kronecker initiator takes O(N!N²) time:
 - N! for graph isomorphism
 - Metropolis sampling: $N! \rightarrow (big) const$
 - \square N² for traversing the graph adjacency matrix
 - Properties of Kronecker product and sparsity $(E \le N^2)$: $N^2 \rightarrow E$
- We can estimate the parameters in linear time O(E)

Model estimation: experiments

- Autonomous systems (internet): N=6500, E=26500
- Fitting takes 20 minutes
- AS graph is undirected and estimated parameters correspond to that



Model estimation: experiments

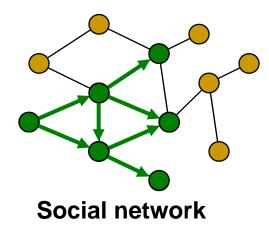


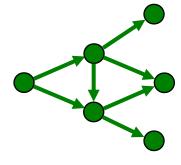
Completed work: Overview

	S1: Dynamics of network evolution	S2: Dynamics of processes on networks
G1: Patterns	Densification Shrinking diameters	Cascade shape and size
G2: Models	Forest Fire Kronecker graphs	Cascade generation model
G3: Predictions	Estimating Kronecker parameters	Selecting nodes for detecting cascades

Information cascades

Cascades are phenomena in which an idea becomes adopted due to influence by others





Cascade (propagation graph)

- We investigate cascade formation in
 - Viral marketing (Word of mouth)
 - Blogs

Cascades: Questions

- What kinds of cascades arise frequently in real life? Are they like trees, stars, or something else?
- What is the distribution of cascade sizes (exponential tail / heavy-tailed)?
- When is a person going to follow a recommendation?

Cascades in viral marketing

 Senders and followers of recommendations receive discounts on products

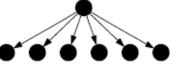


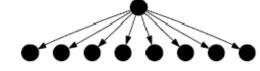
- Recommendations are made at time of purchase
- Data: 3 million people, 16 million recommendations, 500k products (books, DVDs, videos, music)

- purchase following a recommendation
- customer recommending a product
- customer not buying a recommended product

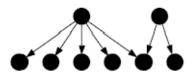
G1- Viral cascade shapes

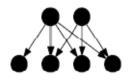
Stars ("no propagation")

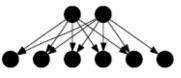




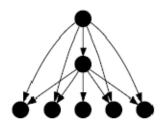
Bipartite cores ("common friends")

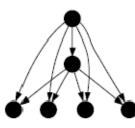






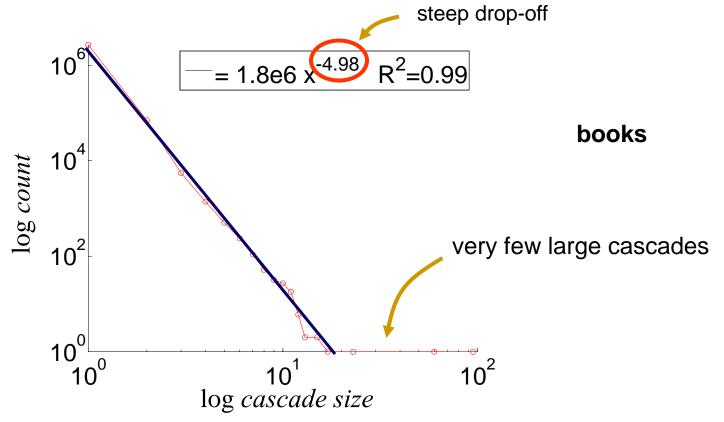
Nodes having same friends



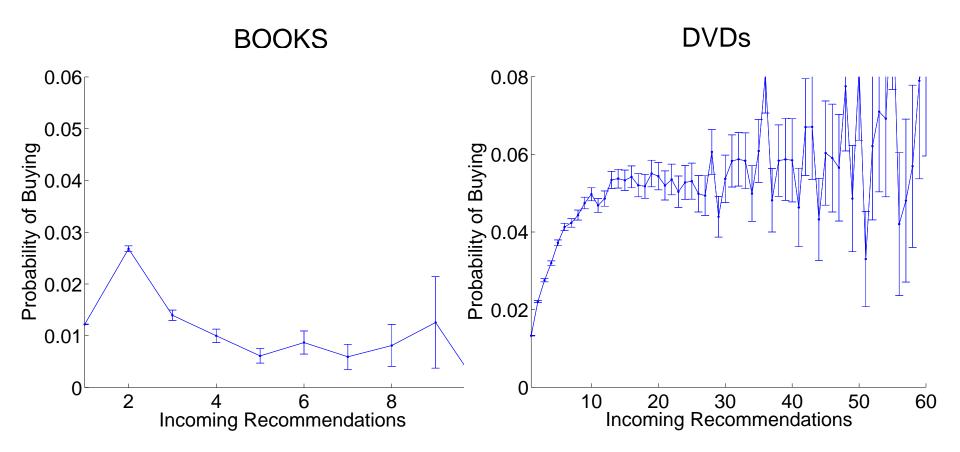


G1- Viral cascade sizes

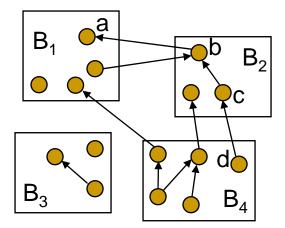
- Count how many people are in a single cascade
- We observe a heavy tailed distribution which can not be explained by a simple branching process

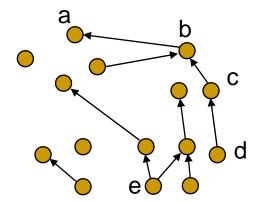


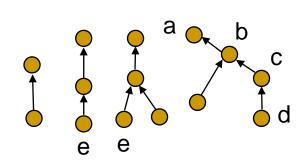
Does receiving more recommendations increase the likelihood of buying?



Cascades in the blogosphere







Blogosphere blogs + posts

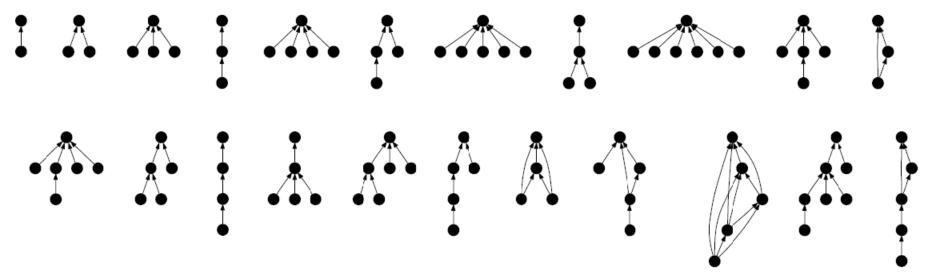
Post network links among posts

Extracted cascades

- Posts are time stamped
- We can identify cascades graphs induced by a time ordered propagation of information

G1-Blog cascade shapes

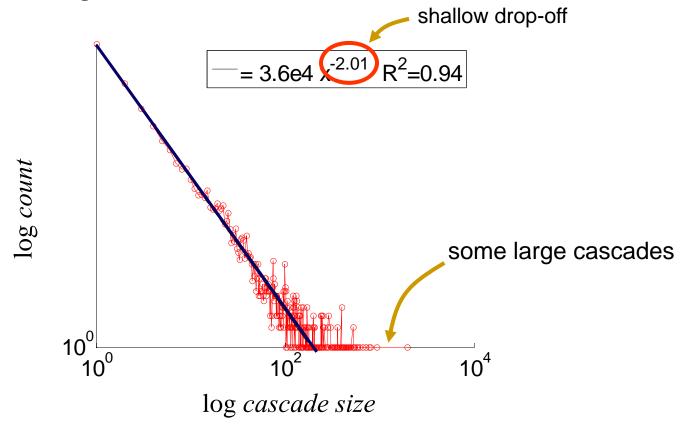
Cascade shapes (ordered by frequency)



- Cascades are mainly stars
- Interesting relation between the cascade frequency and structure

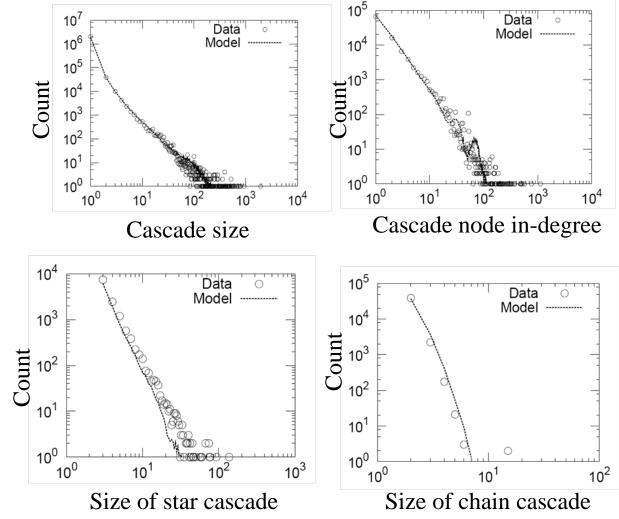
G1-Blog cascade size

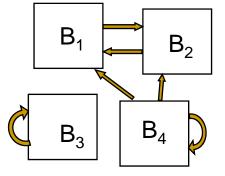
- Count how many posts participate in cascades
- Blog cascades tend to be larger than Viral Marketing cascades



G2- Blog cascades: model

 Simple virus propagation type of model (SIS) generates similar cascades as found in real life



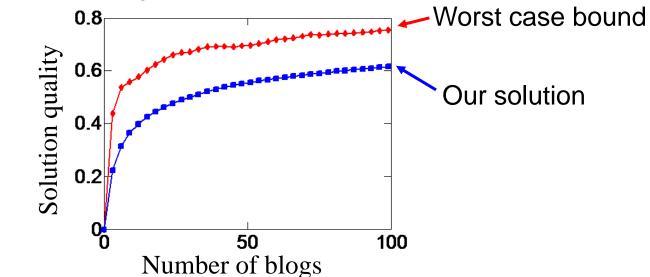


G3- Node selection for cascade detection

- Observing cascades we want to select a set of nodes to quickly detect cascades
- Given a limited budget of attention/sensors
 - Which blogs should one read to be most up to date?
 - Where should we position monitoring stations to quickly detect disease outbreaks?

Node selection: algorithm

- Node selection is NP hard
- We exploit submodularity of objective functions to
 - develop scalable node selection algorithms
 - give performance guarantees



 In practice our solution is at most 5-15% from optimal

Outline

- Introduction
- Completed work
 - Network structure and evolution
 - Network cascades
- Proposed work
 - Large communication networks
 - Links and information cascades
 - Kronecker time evolving graphs
- Conclusion

Proposed work: Overview

	S1: Dynamics of network evolution	S2: Dynamics of processes on networks
G1: Patterns		Dynamics in communication networks
G2: Models		² Models of link and cascade creation
G3: Predictions	Kronecker time evolving graphs	

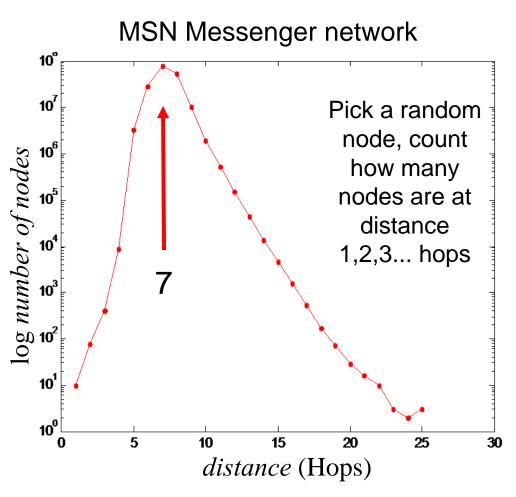
Proposed work:

Communication networks

- Large communication network
 - □ 1 billion conversations per day, 3TB of data!
- How communication and network properties change with user demographics (age, location, sex, distance)
 - Test 6 degrees of separation
 - Examine transitivity in the network

Proposed work: Communication networks

- Preliminary experiment
 - Distribution of shortest path lengths
- Microsoft Messenger network
 - 200 million people
 - 1.3 billion edges
 - Edge if two people exchanged at least one message in one month period

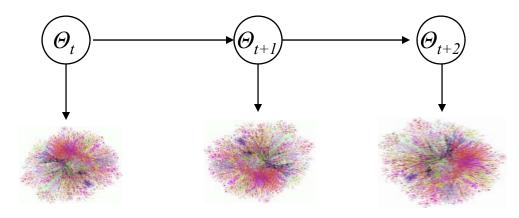


2 Proposed work: Links & cascades

- Given labeled nodes, how do links and cascades form?
- Propagation of information
 - Do blogs have particular cascading properties?
- Propagation of trust
 - Social network of professional acquaintances
 - 7 million people, 50 million edges
 - Rich temporal and network information
 - How do various factors (profession, education, location) influence link creation?
 - How do invitations propagate?

3 Proposed work: Kronecker graphs

- Graphs with weighted edges
 - Move beyond Bernoulli edge generation model
- Algorithms for estimating parameters of time evolving networks
 - Allow parameters to slowly evolve over time



Timeline

- May '07
 - 1 communication network
- Jun Aug '07
 - research on on-line time evolving networks
- Sept– Dec '07
 - 2 Cascade formation and link prediction
- Jan Apr '08
 - 3 Kronecker time evolving graphs
- Apr May '08
 - Write the thesis
- Jun '08
 - Thesis defense

References

- Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations, by Jure Leskovec, Jon Kleinberg, Christos Faloutsos, ACM KDD 2005
- Graph Evolution: Densification and Shrinking Diameters, by Jure Leskovec, Jon Kleinberg and Christos Faloutsos, ACM TKDD 2007
- Realistic, Mathematically Tractable Graph Generation and Evolution, Using Kronecker Multiplication, by Jure Leskovec, Deepay Chakrabarti, Jon Kleinberg and Christos Faloutsos, PKDD 2005
- Scalable Modeling of Real Graphs using Kronecker Multiplication, by Jure Leskovec and Christos Faloutsos, ICML 2007
- The Dynamics of Viral Marketing, by Jure Leskovec, Lada Adamic, Bernado Huberman, ACM EC 2006
- Cost-effective outbreak detection in networks, by Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne VanBriesen, Natalie Glance, in submission to KDD 2007
- Cascading behavior in large blog graphs, by Jure Leskovec, Marry McGlohon, Christos Faloutsos, Natalie Glance, Matthew Hurst, SIAM DM 2007

Acknowledgements: Christos Faloutsos, Mary McGlohon, Jon Kleinberg, Zoubin Gharamani, Pall Melsted, Andreas Krause, Carlos Guestrin, Deepay Chakrabarti, Marko Grobelnik, Dunja Mladenic, Natasa Milic-Frayling, Lada Adamic, Bernardo Huberman, Eric Horvitz, Susan Dumais

Backup slides

1 Proposed work: Kronecker graphs

- Further analysis of Kronecker graphs
 - Prove properties of the diameter of Stochastic Kronecker Graphs
- Extend Kronecker to generate graphs with any number of nodes
 - Currently Kronecker can generate graphs with N^k nodes
 - Idea: expand only one row/column of current adjacency matrix

5 Proposed work: GraphGarden

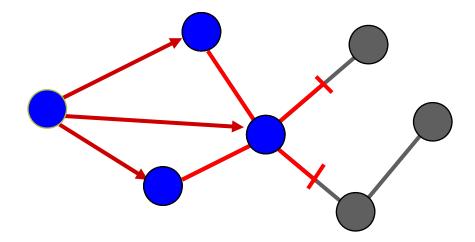
- Publicly release a library for mining large graphs
 - Developed during our research
 - 40,000 lines of C++ code
- Components
 - Properties of static and evolving networks
 - Graph generation and model fitting
 - Graph sampling
 - Analysis of cascades
 - Node placement/selection

Proposed work

	Dynamics of network evolution	Dynamics of processes on networks	
Structural properties		Dynamics in communication networks	
Models	Analysis and extensions of Kronecker graphs	Models of link and cascade creation	
Predictions	Kronecker time evolving graphs		
5 Release the graph mining toolkit			

The model: Forest Fire Model

- Want to model graphs that density and have shrinking diameters
- Intuition:
 - □ How do we meet friends at a party?
 - How do we identify references when writing papers?

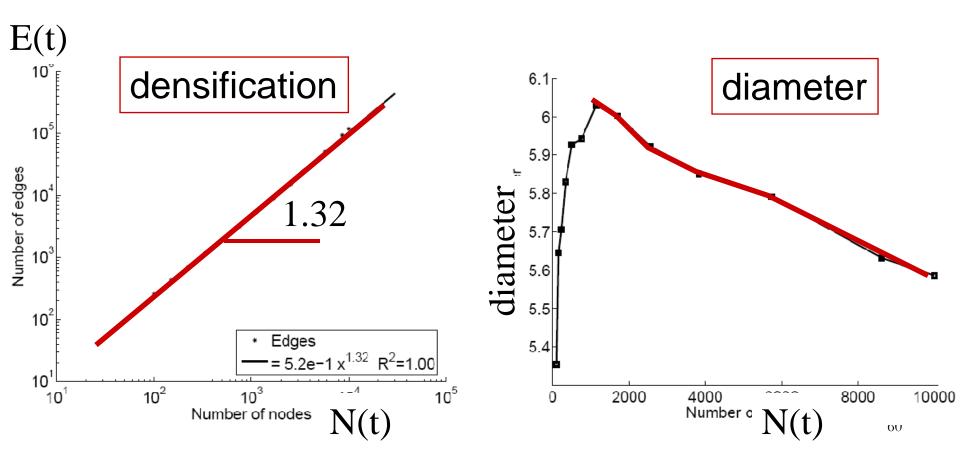


Properties of the Forest Fire

- Heavy-tailed in-degrees: "rich get richer"
 Highly linked nodes can easily be reached
- Communities
 - Newcomer copies several of neighbors' links
- Heavy-tailed out-degrees
 - Recursive nature provides chance for node to burn many edges
- Densification Power Law
 - Like in Community Guided Attachment
- Shrinking diameter
 - Densification helps but is not enough

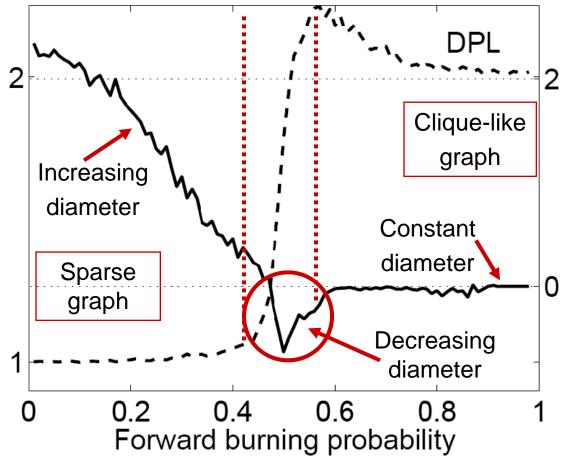
Forest Fire Model

Forest Fire generates graphs that densify and have shrinking diameter



Forest Fire: Parameter Space

- Fix backward probability r and vary forward burning probability p
- We observe a sharp transition between sparse and clique-like graphs
- Sweet spot is very narrow



Kronecker product: Definition

The Kronecker product of matrices A and B is given by

$$\mathbf{C} = \mathbf{A} \otimes \mathbf{B} \doteq \begin{pmatrix} a_{1,1}\mathbf{B} & a_{1,2}\mathbf{B} & \dots & a_{1,m}\mathbf{B} \\ a_{2,1}\mathbf{B} & a_{2,2}\mathbf{B} & \dots & a_{2,m}\mathbf{B} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1}\mathbf{B} & a_{n,2}\mathbf{B} & \dots & a_{n,m}\mathbf{B} \end{pmatrix}$$

$$N^*K \times M^*L$$

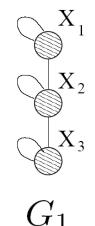
 We define a Kronecker product of two graphs as a Kronecker product of their adjacency matrices

Kronecker graphs

We propose a growing sequence of graphs by iterating the Kronecker product

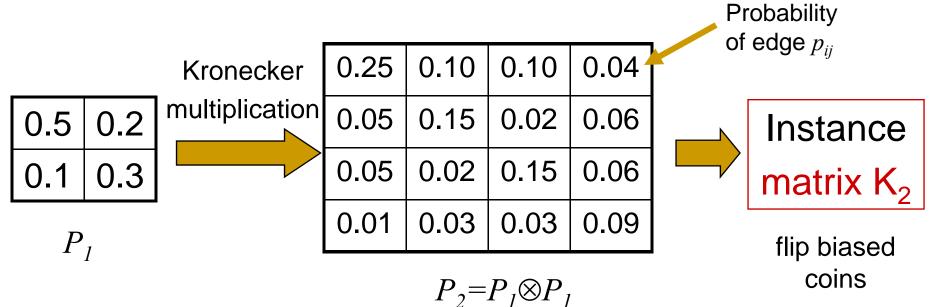
$$G_k = \underbrace{G_1 \otimes G_1 \otimes \ldots G_1}_{k \ times}$$

- Each Kronecker multiplication exponentially increases the size of the graph
- G_k has N_I^k nodes and E_I^k edges, so we get densification



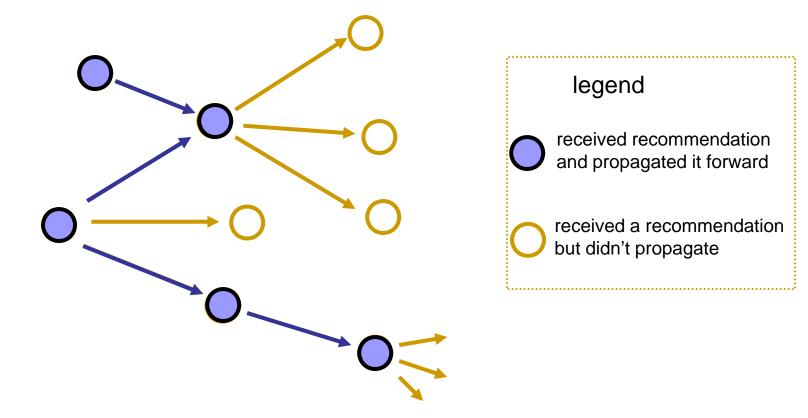
Stochastic Kronecker graphs

- Create $N_I \times N_I$ probability matrix P_I
- Compute the k^{th} Kronecker power P_k
- For each entry p_{uv} of P_k include an edge (u,v) with probability p_{uv}



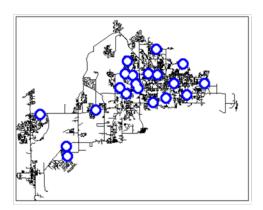
Cascade formation process

- Viral marketing
 - People purchase and send recommendations

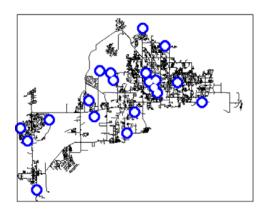


Node selection: example

- Water distribution network:
 - Different objective functions give different placements



Population affected



Detection likelihood