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Abstract

Accurate and efficient video classification demands the
fusion of multimodal information and the use of in-
termediate representations. Combining the two ideas
into the same framework, we propose a probabilistic
approach for video classification using intermediate se-
mantic representations derived from the multi-modal
features. Based on a class of bipartite undirected graph-
ical models named harmonium, our approach represents
video data as latent semantic topics derived by jointly
modeling the transcript keywords and color-histogram
features, and perform classification using these latent
topics under a unified framework. We show satisfactory
classification performance of our approach on a bench-
mark dataset, and some interesting insights of the data
provided by this approach.

1 Introduction

Classifying video data into semantic categories, some-
times known as semantic video concept detection, is an
important research topic. Video data contain multifari-
ous data types including image frames, transcript text,
speech, audio signal, each bearing correlated and com-
plementary information essential to the analysis and re-
trieval of video data. The fusion of such multimodal
information is regarded as a key research problem [10],
and has been a widely used technique in video clas-
sification and retrieval methods. Many fusion strate-
gies have been proposed, varying from early fusion [12],
which merges the feature vectors extracted from dif-
ferent modalities, to late fusion, which combines the
outputs of the classifiers or “retrieval experts” built on
each single modality [12, 6, 18, 15]. Empirical results
show that methods based on the fusion of multimodal
information outperforms those based on any single type
of information in both video classification and retrieval
tasks.

Another trend in video classification is the seek of
low-dimensional, intermediate representations of video

data. The primary reason is to make sophisticated clas-
sifiers (e.g, SVM) affordable, which otherwise would be
computationally expensive on the high-dimensional raw
features. Moreover, using intermediate representations
holds the promise of better interpretation of the data se-
mantics, and may lead to superior classification perfor-
mance. Work along this direction includes the conven-
tional dimension-reduction methods such as principal
component analysis (PCA) and Fisher linear discrimi-
nant (FLD) [4], as well as probabilistic methods such as
probabilistic latent semantic indexing (pLSI) [5], latent
Dirichlet allocation (LDA) [2], exponential-family har-
monium (EFH) [14]. While many of the models are for
single-modal data such as textual documents, there are
also extensions for modeling multi-modal data such as
captioned images and video [1, 17].

The key insights for video classification from previ-
ous works appear to be combining multimodal informa-
tion and using intermediate representations. The goal
of this paper is to take advantage of both insights us-
ing an integrated and principled approach. Based on
a class of bipartite undirected graphical models (i.e.,
random fields) called harmonium [14, 17], our approach
extracts intermediate representation as latent seman-
tic topics of video data by jointly modeling the corre-
lated information in image regions and transcript key-
words. Moreover, this approach explicitly introduces
category label(s) into the model, which allows the clas-
sification and representation to be accomplished in a
unified framework.

The proposed approach is significantly different
from previous models for text/multimedia data, mainly
in that it incorporates category labels as (hidden) model
variables, in addition to the variables representing data
(features) and latent semantic topics. This allows the
classification to be done by inferencing the distribution
of these label variables conditioned on the observed data
variables. In contrast, existing models [2, 1, 5, 14, 17]
are mainly for deriving the intermediate data repre-



sentation in the form of latent semantic topics. The
classification, if needed, is performed using a separate
classifier built on top of the derived intermediate rep-
resentations. Therefore, one advantage of our approach
is the unified model for both representation and clas-
sification, which avoids the need of building separate
classifiers. More importantly, by modeling the interac-
tions between latent semantic topics and category la-
bels, this approach tailors the intermediate representa-
tion to reflect category information of the data. Such
“supervised” intermediate representations are expected
to provide more discriminative power and insights of the
data than the “unsupervised” representations generated
by existing methods [2, 1, 5, 14, 17].

Our proposal includes two related models, each
bearing different implications to the representation and
classification of the video data. Family-of-harmonium
(FoH) builds a family of category-specific harmonium
models, with each one modeling the video data from a
specific category. The label of a video shot is predicted
by comparing its likelihood in each harmonium model.
Hierarchical harmonium (HH) incorporates all the cate-
gory labels as an additional layer of hidden variables into
a single harmonium model, and performs classification
through the inference of these label variables. Due to
the model structure, the FoH model reveals the internal
structure of each category, and can be easily extended
to include new categories without retraining the whole
model. In contrast, the HH model reveals the relation-
ships between multiple categories, and takes advantage
of such relationships in classification.

In Section 2 we review the related work on the fusion
of multimodal video features as well as representation
models for video data. We describe the two proposed
models in Section 3. In Section 5, we show that the
proposed models achieve satisfactory classification per-
formance and interesting data interpretation through
experiments on TRECVID video collection. The con-
clusions and future work are discussed in Section 6.

2 Related Works

As pointed out in [10], the processing, indexing, and
fusion of data in multiple modalities is a core problem
of multimedia research. For video classification and
retrieval, the fusion of features from multiple data types
(e.g., key-frames, audio, transcript) allows them to
complement each other to achieve better performance
than using any single type of feature, and has been
widely used in many existing methods. The fusion
strategies vary from early fusion [12], which merges the
feature vectors extracted from different data modalities,
to late fusion, which combines the output of classifiers or
“retrieval experts” built on each single modality [12, 6,

18, 15]. It remains an open question as to which fusion
strategy is more appropriate for a certain task, and a
comparison of the two strategies in video classification
is presented in [12]. The approach to be presented
here uses neither of these two fusion strategies; instead,
it derives the latent semantic representation of the
video data by jointly modeling the multimodal low-level
features, so the fusion takes place somewhere between
early fusion and late fusion.

There are many approaches to obtain low-
dimensional intermediate representations of video data.
Principal component analysis (PCA) has been the most
popular method, which projects the raw features into
a lower-dimensional feature space where the data vari-
ances are well preserved. Independent component
analysis (ICA) and Fisher linear discriminant (FLD)
are the other popular dimension reduction methods.
Recently, there are also many proposals on modeling
the latent semantic topics of the text and multimedia
data. For example, latent semantic indexing (LSI) by
Deerwester et al. [3] transforms term counts linearly
into a low-dimensional semantic eigenspace, and the
idea was later extended by Hofmann to probabilistic
LSI (pLSI) [5]. The latent Dirichlet allocation (LDA)
by Blei et al. [2] is a directed graphical model that
provides generative semantics of text documents, where
each document is associated with a topic-mixing vector
and each word is independently sampled according to a
topic drawn from this topic-mixing. LDA has been ex-
tended to Gaussian-Mixture LDA (GM-LDA) and Cor-
respondence LDA (Corr-LDA) [1], both of which are
used to model annotated data such as captioned im-
ages or video with transcript text. Exponential-family
harmonium (EFH) proposed by Welling et al. [14] is bi-
partite undirected graphical model consisting a layer of
latent nodes representing semantic aspects and a layer
of observed nodes representing raw data (features). To
model multi-modal data, Eric et al. [17] has extended
it to the multi-wing harmonium model where the data
layer consists of two or more “wings” of nodes repre-
senting textual, imagery, and other types of data, re-
spectively.

In practice, the methods mentioned above are
mainly used for transforming the high-dimensional raw
data into a low-dimensional representation which pre-
sumably capture the latent semantics of the data. Clas-
sification task is usually performed by building a sepa-
rate discriminative classifier (e.g., SVM) based on such
latent semantic representations. In this paper, we seek
for a more unified approach where the representation
and classification can be integrated into the same frame-
work. This approach not only achieves satisfactory clas-
sification performance, but also provides interesting in-
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Figure 1: A sketch of our approach

sights into the data semantics, such as the internal struc-
ture of each category and the relationships between dif-
ferent categories. Fei-Fei et al. [8] used a unified model
for representing and classifying natural scene images
by introducing category variables into the LDA model,
which is similar to our approach except that our models
are undirected.

3 Our Approach

A sketch of our approach is illustrated in Figure 1. The
basic data unit to be classified is called video shots,
namely video segments with length varying from a few
seconds to half minute or even longer. We represent
each video shot by a bag of keywords extracted from
the video transcript, which is obtained from the video’s
closed-captions or speech recognition, as well as the
a set of fixed-sized image regions extracted from the
keyframe of the video shot. Each region is described by
its color histogram feature. We learn the model that
best describes the joint distribution of the keywords
and color features of the video shots in each category.
In classification, we extract the keywords and color
features from an unlabeled video shot, from which we
derive the most likely category this shot belongs to.
The two proposed models, family-of-harmonium and
hierarchical harmonium, differ in the way the data are
modeled and classified.

Both of our models are based on a class of bipar-

tite undirected model (i.e., random fields) called har-
monium, which has been used by Welling et al. [14]
and Eric et al. [17] to model text and multimedia data.
Our models use their models as the basic building block,
but differ from theirs by explicitly incorporating the cat-
egory labels into the model. This allows our models to
represent and classify video data in a unified framework,
while the previous harmonium models are only for data
representation.

3.1 Notations and definitions The notations used
in the paper follow the convention of probabilistic mod-
els. Uppercase characters represent random variables,
while lowercase characters represent the instances (val-
ues) of the random variables. Bold font is used to indi-
cate a vector of random variables or their values. In the
illustrations, shaded circles represent observed nodes
while unfilled circles represent hidden (latent) nodes.
Each node in a graphical model is associated with a
random variable, and we use the term node and vari-
able interchangeably in this paper.

The semantics of the model variables are described
as follows:

• A video shot s is represented by a tuple as
(x, z,h,y), which respectively denote the key-
words, region-based color features, latent semantic
topics, and category labels of the shot.

• The vector x = (x1, ..., xN ) denotes the keyword
feature extracted from the transcript associated
with the shot. Here N is the size of the word
vocabulary, and xi ∈ {0, 1} is a binary variable
that indicates the absence or presence of the ith

keyword (of the vocabulary) in the shot.

• The vector z = (z1, ..., zM ) denotes color-histogram
features of the keyframe of the shot. Each keyframe
is evenly divided into a grid of totally M fixed-
sized rectangular regions, and zj ∈ RC is a C-
dimensional vector that represents the color his-
togram of the jth region. So z is a stacked vector
of length equal to CM .

• The vector h = (h1, ..., hK) represents the latent
semantic topics of the shot, where K is the total
number of the latent topics. Each component
hk ∈ R denotes how strongly this shot is associated
with the kth latent topic.

• The category labels of a shot are modeled differ-
ently in the two models. In family-of-harmonium,
a single variable y ∈ {1, ..., T} indicates the cate-
gory this shot belongs to, where T is the total num-
ber of categories. In hierarchical harmonium, the
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Figure 2: The family-of-harmonium model

labels are represented by a vector y = (y1, ..., yT ),
with each yt ∈ {0, 1} denoting whether the shot is
in the tth category. Here a video shot belongs to
only one category, so we have

∑
t yt = 1.

• The two proposed models have different sets of pa-
rameters. The family-of-harmonium has a specific
harmonium model for each category y, with para-
meters as θy = (πy, αy, βy,W y, Uy). The hierar-
chical harmonium has a single set of parameters as
θ = (α, β, τ,W,U, V ).

3.2 Family-of-harmonium (FoH) The FoH model
is illustrated in Figure 2. It contains a set of T
category-specific harmoniums, with each harmonium
modeling the video data from a specific category. Each
harmonium is a bipartite undirected graphical model
that consists of two layers of nodes. Nodes in the top
layer represent the latent semantic topics H = {Hk}
of the data. To represent the bi-modal features of
video data, the bottom layer contains two “wings” of
observed nodes that represent the keyword features
X = {Xi} and region-based color features Z = {Zj},
respectively. Each node is linked with all the nodes
in the opposite layer, but not with any node in the
same layer. This topology ensures that the nodes
in one layer are conditionally independent given the
nodes in the opposite layer, a property important to
the construction and inference of the model. All the
component harmoniums in FoH share exactly the same
structure, but have unique set of parameters θy =
(πy, αy, βy,W y, Uy) indexed by the category label y.

We now describe the distributions of these variables.
The category label Y follows a prior distribution as a
multinomial:

(3.1) p(y) = Multi (π1, ..., πT ),

where
∑T

t=1 πt = 1. In FoH, Y is not actually linked
with any nodes in the component harmoniums; instead,
it serves as an indicator variable that selects a specific
harmonium from the whole family of harmoniums to
model the video data of a particular category. In
the distribution function of each harmonium, Y only
appears as the subscript of the model parameters.

Given its category label y, we see the raw features of
a shot as well as its latent semantic topics as two layers
of representations mutually influencing each other in the
specific harmonium associated with this category. We
can either conceive keyword and color features as being
generated by the latent semantic topics, or conceive
the semantic topics as being summarized from the
keyword and image features. This mutual influence is
reflected in the conditional distributions of the variables
representing the features and the semantic topics.

For the keyword feature, the variable xi indicating
the presence/absence of term i ∈ {1, ..., N} in the
vocabulary is distributed as:

P (Xi = 1|h, y) =
1

1 + exp(−αy
i −

∑
k W y

ikhk)
(3.2)

P (Xi = 0|h, y) = 1− P (Xi = 1|h, y)

This shows that the each keyword in a video shot is
sampled from a Bernoulli distribution dependent on the
latent semantic topics h. That is, the probability that a
keyword appears is affected by a weighted combination
of semantic topics h. Parameter αy

i and W y
ik are both

scalars, so αy = (αy
1 , ..., αy

N ) is a N -dimensional vector,
and W y = [W y

ik] is a matrix of size N ×K. Due to the
conditional independence between xi given h, we have
p(x|h, y) =

∏
i p(xi|h, y).

The color-histogram feature zj of the jth region in
the keyframe of the shot admits a conditional multivari-



ate Gaussian distribution as:

(3.3) p(zj |h, y) = N (zj |Σy
j (βy

j +
∑

k

Uy
jkhk),Σy

j )

where zj is sampled from a distribution parameterized
by the latent semantic topics h. Here, both βy

j and
Uy

jk are C-dimensional vectors, and therefore βy =
(βy

1 , ..., βy
M ) is a stacked vector of dimension CM and

Uy = [Uy
jk] is a matrix of size CM × K. Note that

Σy
j is a C × C covariance matrix, which, for simplicity,

is set to identity matrix I in our model. Again,
we have p(z|h, y) =

∏
j p(zj |h, y) due to conditional

independence.
Finally, each latent topic variable hj follows a

conditional univariance Gaussian distribution whose
mean is determined by a weighted combination of the
keyword feature x and the color feature z:

(3.4) p(hk|x, z, c) = N (hk|
∑

i

W y
ikxi +

∑

j

Uy
jkzj , 1)

where W y
ik and Uy

jk are the same parameters used
in Eq.(3.2) and (3.3). Similarly, p(h|x, z, y) =∏

k p(hk|x, z, y) holds.
So far we have presented the conditional distribu-

tions of all the variables in the model. These local con-
ditionals can be mapped to the following harmonium
random fields as:

p(x, z,h|y) ∝ exp
{ ∑

i αy
i xi +

∑
j βy

j zj −
∑

j

z2
j

2(3.5)

−∑
k

h2
k

2 +
∑

ik W y
ikxihk +

∑
jk Uy

jkzjhk

}

We present the details of the derivation of this random
field in the Appendix. Note that the partition function
(global normalization term) of this distribution is not
explicitly shown, so we use proportional sign instead of
equal sign. This hidden partition function increases the
difficulty of learning the model.

By integrating out the hidden variables h in
Eq.(3.5), we obtain the category-conditional distribu-
tion over the observed keyword and color features of a
video shot:

p(x, z|y) ∝ exp
{ ∑

i αy
i xi +

∑
j βy

j zj −
∑

j

z2
j

2(3.6)

+ 1
2

∑
k(

∑
i W y

ikxi +
∑

j Uy
jkzj)2

}
.

There is also a hidden partition function in this
distribution. The marginal distribution (likelihood) of a
labeled video shot can be decomposed into a category-
specific marginal and a prior over the categories, i.e.,
p(x, z, y) = p(x, z|y)p(y).
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Figure 3: Hierarchical harmonium model

The learning of FoH involves learning T compo-
nent harmoniums, with each harmonium learned inde-
pendently using the (labeled) video shots from the cor-
responding category. To learn the harmonium model
for a category y, we estimate its model parameters
θy = (αy, βy, W y, Uy) by maximizing the likelihood of
the video shots in category y, where the likelihood func-
tion is defined by Eq.(3.6). Due to the existence of par-
tition function, the learning requires approximate in-
ference methods. We will further discuss the learning
methods in Section 4.

The category of an unlabeled shot is predicted by
finding the component harmonium that best describes
the features of the shot. Given the keyword feature x
and color feature z of a shot, we compute the posterior
probability of each category label as:

(3.7) p(y|x, z) ∝ p(x, z|y)p(y) ∝ p(x, z|y)

The second step in the derivation assumes that the
category prior is a uniform distribution as p(y) = 1/T .
Eq.(3.7) indicates that we can predict the category of
a shot by comparing its likelihood p(x, z|y) in each
of the category-specific harmonium models computed
by Eq.3.6. The harmonium that best fits the shot
determines its category.

3.3 Hierarchical harmonium (HH) The second
proposed model, hierarchical harmonium, adopts a dif-
ferent way of incorporating category labels into the basic
harmonium model. Instead of building a separate har-
monium for each category, it introduces the category
labels as another layer of nodes Y = {Y1, ..., YT } into a
single harmonium, with Yt ∈ {0, 1} indicating a shot’s
membership with category t. As illustrated in Figure 3,
these label variables Y form a bipartite subgraph with
the latent topic nodes H. There is a link between any Yt

and Hj but not between two Yt, which are conditionally
independent given H. Unlike FoH, there is only a single
hierarchical harmonium in this model.



In the HH model, the conditional distribution of
x and z stay the same as those in the FoH model,
which are defined by Eq.(3.2) and Eq.(3.3), respectively.
The only difference is that the model parameters θ =
(α, β, τ, W,U, V ) no longer depend on category labels.
The introduced label variable Yi follows a Bernoulli
distribution as:

P (Yt = 1|h) =
1

1 + exp(−τt −
∑

k Vtkhk)
(3.8)

P (Yt = 0|h) = 1− P (Yt = 1|h)

where V = [Vtk] is a matrix of size T × K. Note that
if we treat h as input, Vtk and τ as parameters, this
distribution has exactly the same form as the posterior
distribution of the class label in logistic regression [4],
i.e., P (Y = 1|x) = 1/(1 + exp(−β0 − βT x)). This
implies that the model is actually performing logistic
regression to compute each category label Yt using the
latent semantic topics h as input.

The distribution of each latent topic variable hk

needs to be modified to incorporate the interactions
between label variables y and the topic variables h:

p(hk|x, z,y) =(3.9)

N (hk|
∑

i

Wikxi +
∑

j

Ujkzj +
∑

t

Vtkyt, 1)

Therefore, the distribution of the latent semantic topics
are not only affected by the data features x and z, but
also by their labels y. This is a significant difference
from existing harmonium models [14, 17] where the
distribution of latent topics only depend on the data.

With the incorporation of label variables, the ran-
dom field of hierarchical harmonium becomes:

p(x, z,h,y) ∝ exp

�X
i

αixi +
X

j

βjzj −
X

j

z2
j

2
+
X

t

τtyt

(3.10)

−
X

k

h2
k

2
+
X

ik

Wikxihk +
X

jk

Ujkzjhk +
X

tk

Vtkythk

�

After integrating out the hidden variable H, the
marginal distribution of a labeled video shot (x, z,y)
is:

p(x, z,y) ∝ exp

�X
i

αixi +
X

j

βjzj −
X

k

z2
k

2
+
X

t

τtyt

(3.11)

+
1

2

X

k

(
X

i

Wikxi +
X

j

Ujkzj +
X

t

ytVtk)2
�

.

The parameters of the HH model, θ =
(α, β, τ, W,U, V ), are estimated under the maximum
likelihood principle using the likelihood function defined

by Eq.(3.11). The classification is performed in a very
different way in HH. To predict the category of an un-
labeled video shot, we need to infer the unknown label
variables Y of the shot, from its keyword and color fea-
tures. This is done by computing the conditional prob-
ability p(Yt = 1|x, z) for each label variable Yt. The
category that gives the highest conditional probability
is predicted as the category of the shot:

(3.12) t∗ = argmaxtp(Yt = 1|x, z)

There is, however, no analytical solution to this condi-
tional probability. Various approximate inference meth-
ods are available to solve this probability, as further dis-
cussed in Section 4.

3.4 Model comparison We compare our models
with the existing models for text and multimedia data,
including pLSI [5], LDA [2] and its variants GM-
LDA and Corr-LDA [1], exponential-family harmonium
[14, 17]. First of all, our models not only derive the
latent semantic representation of the data but also per-
form classification within the same framework, while all
the above models are only for data representation and
require separate classifiers for the classification task.
This is not necessarily an advantage of our models.
But in terms of classification, ours is a more integrated
approach, which presumably leads to superior perfor-
mance and better data interpretation. A model similar
(in spirit) to our FoH model is the Bayesian hierarchical
model for scene classification proposed by Fei-fei et al.
[8], except that it is based on the directed LDA model.
Second, in our models the category labels “supervise”
the derivation of latent semantic representation. As a
result, the derived representation reflects not only the
characteristics of the underlying data but also the cat-
egory information. This is to be contrasted to the “un-
supervised” derivation of latent semantic representation
in all the other models. The third issue is the choice be-
tween directed or undirected models. The harmonium
models [14, 17], including ours, are all undirected mod-
els, while the rest are directed ones. Using undirected
models makes the inference easier due to conditional
independence of hidden variables, but the learning is
usually harder due to the global normalization term.

There are also interest contrasts between the pro-
posed models. They first differ in terms of the semantics
of the latent semantic topics derived. In FoH, each har-
monium model is for a specific category, and the latent
topics learned in each harmonium capture the internal
structure of the data in that category, i.e., they repre-
sent the themes or data sub-clusters in that particular
category. There are no correspondences between the
semantic topics across different harmoniums: the first



topic in one harmonium is unrelated to the first topic
in another. In contrast, HH has a single set of latent
semantic topics derived from the data in various cate-
gories. These semantic topics are however different from
those learned by other representation models, as they
are “supervised” by the category labels and presumably
contain more discriminative information. Sharing a sin-
gle semantic representation also help reveals the connec-
tions and differences between multiple categories. The
two models also differ in terms of scalability. FoH can
easily accommodate a new category by adding another
harmonium trained from the data of this new category.
The existing harmoniums do not need to be changed.
However, introducing a new category into HH means
adding another (label) node into the model, which re-
quires re-training of the whole model since its structure
is changed.

4 Learning and inference

The parameters of our models, namely (αy, βy,W y, Uy)
in the FoH model and (α, β, τ, W,U, V ) in the HH model,
can be estimated by maximizing the data likelihood.
However, there is no closed-form solution to the para-
meters in complex models like ours, and therefore itera-
tive searching algorithm has to be used. As an example,
we discuss the learning and inference algorithms for the
HH model. The learning and inference of each compo-
nent harmonium in the FoH model can be easily derived
from that.

As described in the previous section, the log-
likelihood of the data under the HH model is defined
by Eq.(3.11). By taking derivatives of the log-likelihood
function w.r.t the parameters, we have the following gra-
dient learning rules:

δαi = 〈xi〉p̃ − 〈xi〉p
δβj = 〈zj〉p̃ − 〈zj〉p
δτt = 〈yt〉p̃ − 〈yt〉p

δWik =
〈
xih

′
k

〉
p̃
− 〈

xih
′
k

〉
p

δUjk =
〈
zjh

′
k

〉
p̃
− 〈

zjh
′
k

〉
p

δVtk =
〈
yth

′
k

〉
p̃
− 〈

yth
′
k

〉
p

(4.13)

where h′k =
∑

i Wikxi +
∑

j Ujkzj +
∑

t Vtkyt, and 〈·〉p̃
and 〈·〉p denotes expectation under empirical distrib-
ution (i.e., data average) or model distribution of the
harmonium, respectively. Like most undirected graph-
ical models, there is a global normalizer term in the
likelihood function of harmonium, which makes directly
computing 〈·〉p intractable. Therefore, we need approx-
imate inference methods to approximate these model
expectations 〈·〉p. We explored four methods which are

briefly discussed below. The conditional distribution of
the label nodes p(Yt = 1|x, z) is also computed using
these approximate inference methods.

4.1 Mean field approximation Mean field (MF)
is a variational method that approximates the model
distribution p through a factorized form as a product
of marginals over clusters of variables [16]. We use the
naive version of mean field, where the joint probability
p is approximated by an surrogate distribution q as a
product of singleton marginals over the variables:

q(x, z,y,h) =
∏

i

q(xi|νi)
∏

j

q(zj |µj , I)
∏

t

q(yt|λt)
∏

k

q(hk|γk)

where the singleton marginals are defined as q(xi) ∼
Bernoulli (νi), q(zj) ∼ N(µj , I), q(yt) ∼ Bernoulli (λt),
and q(hk) ∼ N(γk, 1), and {νi, µj , λt, γk} are variational
parameters. The variation parameters can be computed
by minimizing the KL-divergence between p and q,
which results in the following fixed-point updating
equations i.e.

νi = σ(αi +
∑

k

Wikγk)

µj = βj +
∑

k

Ujkγk

λt = σ(τt +
∑

k

Vtkγk)

γk =
∑

i

Wikvi +
∑

j

Ujkµj +
∑

t

Vtkλt

where σ(x) = 1/(1 + exp(−x)) is the sigmoid funciton.
After the fixed-point equations converge, the surrogate
distribution q is fully specified by the converged varia-
tional parameters. We replace the intractable 〈·〉p with
〈·〉q in Eq.(4.13), which is easy to compute from the fully
factorized q. Note that after each iterative searching
step in Eq.(4.13), we need to recompute the variational
parameters in q since the model parameters of p have
been updated.

4.2 Gibbs sampling Gibbs sampling, as a spe-
cial form of the Markov chain Monte Carlo (MCMC)
method, has been used widely for approximate infer-
ence in complex graphical models [7]. This method re-
peatedly samples variables in a particular order, with
one variable at a time and conditioned on the current
values of the other variables. For example in our hierar-
chical harmonium model, we define the sampling order
as y1, . . . , yT , h1, . . . , hK , and then sample each yt from
the conditional distribution defined in Eq.(3.8) using the



current values of hj , finally sample each hj according to
Eq.(3.9). After a large number of iterations (“burn-in”
period), this procedure guarantees to reach an equilib-
rium distribution that in theory is equal to the model
distribution p. Therefore, we use the empirical expecta-
tion computed using the Gibbs samples collected after
the burn-in period to approximate the true expectation
〈·〉p.

4.3 Contrastive divergence Instead of doing an
exact gradient ascent search using the learning rules in
Eq.(4.13), we can use the contrastive divergence (CD)
[13] proposed by Hinton and Welling to approximate
the gradient learning rules. In each step of the gradi-
ent update, instead of computing the model expectation
〈·〉p, CD runs the Gibbs sampling for up to only a few
iterations and uses the resulting distribution q to ap-
proximate the model distribution p. It has been proved
that the final values of the parameters by this kind of
updating will converge to the maximum likelihood es-
timation [13]. In our implementation, we compute 〈·〉q
from a large number of samples obtained by running
only one step of Gibbs sampling with different initial-
izations. Straightforwardly, CD is significantly more ef-
ficient than the Gibbs sampling method since the “burn-
in” process is skipped.

4.4 The uncorrected Langevin method The un-
corrected Langevin method [9] is originated from the
Langevin Monte Carlo method by accepting all the pro-
posal moves. It makes use of gradient information and
resembles noisy steepest ascent to avoid local optimal.
Similar to the gradient ascent, the uncorrected Langevin
algorithm has the following update rule:

(4.14) λnew
ij = λij +

ε2

2
∂

∂λij
log p(X, λ) + εnij

where nij ∼ N(0, 1) and ε is the parameter to control
the step size. Like the contrastive divergence algorithm,
we use only a few iterations of Gibbs sampling to
approximate the model distribution p.

5 Experiments

We evaluate the proposed models using video data from
the TRECVID 2003 development set [11]. Based on
the manual annotations on this set, we choose 2468
shots that belong to 15 semantic categories, which
are airplane, animal, baseball, basketball, beach, desert,
fire, football, hockey, mountain, office, road traffic,
skating, studio, and weather news. Each shot belongs
to only one category. The size of a category varies
from 46 to 373 shots. The keywords of each shot are
extracted from the video closed-captions associated with
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Figure 4: The representative images and keywords of 5
latent topics derived from the data in category “Fire”

that shot. By removing non-informative words such
as stop words and rare words, we reduce the total
number of distinct keywords (vocabulary size) to 3000.
Meanwhile, we evenly divide the key-frame of each shot
into a grid of 5x5 regions, and extract a 15-dimensional
color histogram on HVC color space from each region.
Therefore, each video shot can be represented by a 3000-
d keyword feature and a 375-d color histogram feature.
For simplicity, the keyword features are made binary,
meaning that they only capture the presence/absence
information of each keyword, because it is rare to see a
keyword appears multiple times in the short duration of
a shot.

The experiment results are presented in two parts.
In the first part, we will show some illustrative examples
of the latent semantic topics derived by the proposed
models and discuss the insights they provide into the
structure and relationships of video categories. In the
next part, we will evaluate the performance of our
models in video classification in comparison with some
of the existing approaches.

5.1 Interpretation of latent semantic topics
Both the family-of-harmonium (FoH) and the hierarchi-
cal harmonium (HH) model derive latent semantic top-
ics as intermediate representation of video data. Since
each harmonium in FoH is learned independently from
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Figure 5: The representative images and keywords of 5
latent topics derived from the whole data set

the data of a specific category, its latent topics cap-
ture the structure of that particular category. To show
these topics are meaningful, in Figure 4 we illustrate the
5 latent topics learned from the video category “Fire”
by showing the keywords and images associated with 5
video shots that have the highest conditional probabil-
ity given each latent topic. As we can see, the 5 topics
roughly correspond to 5 sub-categories under the cate-
gory “fire”, which can be described as “forest fire in the
night”, “explosion in outer space”, “launch of missile or
space shuttle”, “smoke of fire”, and “close-up scene of
fire”. Since these latent topics are derived by jointly
modeling the textual and image features of the video
data, they are more than simply clusters in color or
keyword feature space, but sort of “co-clusters” in both
feature spaces. For example, the shots of Topic 1 are
very similar to each other visually; the shots of Topic
2 are not so similar visually, but it is clear that they
have very close semantic meanings and share common
keywords such as “flight” and “radar”. The keywords
associated with Topic 5 seem to be irrelevant at the
first glance, but later we find that these shots contain
the scenes from a movie, which explains the occurrence
of keywords like “love”, “freedom”, and “beautiful”.

We also illustrate the 5 latent topics out of a set of
20 topics learned in the HH model in Figure 5. Note that
these topics are learned from the whole data set instead
of the data from one category, so they are expected

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.fire

2.football

3.moutain

4.studio

5.airplane

6.animal

7.baseball

8.basketball

9.beach

10.desert

11.hockey

12.skating

13.office

14.traffic

15.weather

Figure 6: The color-coded matrix showing the pairwise
similarity between categories. Best viewed with color.

to represent some high-level semantic topics. We can
see that these 5 topics are about “studio”, “baseball
or football”, “weather news”, “airplane or skating”,
“animal”, which can be roughly mapped to some of the
15 categories in the data set. These results clearly show
that the latent semantic topics learned by our models
capture the semantics of the video data.

Another advantage of hierarchical harmonium, as
we discussed in Section 3.4, is that it reveals of the
relationships between different categories through the
hidden topics. We can tell the how much a category t
is associated with a latent topic j from the conditional
probability p(yt|hj). Therefore, we are able to compute
the similarity between any two categories by examining
the hidden topics they are associated with. We show the
pairwise similarity between the 15 categories using the
color-coded confusion matrix in Figure 6, where red(er)
color denotes higher similarity and blue(er) color de-
notes lower similarity. We can see many meaningful
pairs of related categories, e.g., “mountain” is strongly
related to “animal”, “baseball” is related to “hockey”,
while “studio” is not related to any category. These re-
lationships are basically consistent with common sense.

5.2 Performance on video classification To eval-
uate the performance of the FoH and HH model in video
classification, we evenly divide our data set into a train-
ing set and a test set. The model parameters are es-
timated from the training set. Specifically, we imple-
mented the learning methods based on the four inference
algorithms described in Section 4, in order to examine
their efficiency and accuracy. We also explore the issue
of model selection, namely the impact of the number of
latent semantic topics to the classification performance.

Several other methods have been implemented for
comparison, all of which produce intermediate repre-
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Figure 7: Classification performance of different models

sentation of some kind for the video data. First, we
implemented the approach used in [17], which learns a
dual-wing harmonium (DWH) from the data and then
builds a SVM classifier based on the latent semantic rep-
resentations generated by DWH. This method is differ-
ent from our approach in that it uses harmonium model
only for data representation and leaves the classification
task to a discriminative classifier, while our approach in-
tegrates the representation and classification. We also
implemented three directed graphical models for rep-
resenting video data, which are Gaussian multinomial
mixture model (GM-Mixture), Gaussian multinomial
latent Dirichlet allocation (GM-LDA), and correspon-
dence latent Dirichlet allocation (Corr-LDA). The de-
tails of these models can be found in [1]. Similar to
DWH, all the three directed models are used only for
data representation, and each of them requires a SVM
classifier for classification. To make the experiments
with various models, learning algorithms, and numbers
of latent topics tractable, we restrict this part of ex-
periments to the 5 largest categories containing totally
1078 shots as airplane, basketball, baseball, hockey, and
weather news.

Figure 7 shows the classification accuracies of the
proposed FoH and HH models as well as the comparison
methods including DWH, GM-Mixture, GM-LDA, and
Corr-LDA. To be fair, all the models are implemented
using the mean field variational method (MF) for learn-
ing and inference, except GM-Mixture which is imple-
mented using expectation-maximization (EM) method.
All the approaches are evaluated with the number of la-
tent semantic topics set to 5, 10, 20, and 50, in order to
study the relationship between performance and model
complexity.

Several interesting observations can be drawn from
Figure 7. First, the three undirected models as FoH,
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Figure 8: Classification performance of different approx-
imate inference methods in hierarchical harmonium

HH, and DWH achieve significantly higher performance
than the directed models as GM-Mixture, GM-LDA,
and Corr-LDA, showing that the harmonium model is
an effective tool for video representation and classifica-
tion. Among them, FoH is the best performer at 5 and
10 latent semantic nodes, while DWH is the best per-
former at 20 and 50 latent nodes with HH as the close
runner-up. Second, we find that the performance of FoH
and HH is overall at the same level of DWH. Given that
DWH uses a SVM classifier, this result is encouraging as
it shows that our approach is comparable to the perfor-
mance of a state-of-the-art discriminative classifier. On
the other hand, our approach enjoys many advantages
that SVM does not have. For example, FoH can be eas-
ily extended to accommodate a new category without
re-training the whole model. Third, the performance of
DWH and HH improves as the number of latent topics
increases, which is intuitive because using more latent
topics leads to better representation of the data. How-
ever, this trend is reversed in the case of FoH, which
performs much better when using smaller number of la-
tent topics. While a theoretical explanation of this is
still unclear, in practice this is a good property of FoH
since it achieves high performance with simpler models.
Fourth, 20 seems to be a reasonable number of latent
semantic topics for this data set, since further increasing
the number of topics does not result in a considerable
improvement of the performance.

Figure 8 shows the classification accuracies of HH
model implemented using different approximate infer-
ence methods. From the graph, we can see that
the Langevin and contrastive divergence (CD) meth-
ods have about the same performance, which is slightly
higher than the performance of mean-filed (MF) and
Gibbs sampling. We also study the efficiency of these
inference methods by examining the time they need to



reach convergence in training. The result shows that
mean field is the most efficient (approx. 2 min), fol-
lowed by CD and Langevin (approx. 9 min), and the
slowest one is Gibbs sampling (approx. 49min). There-
fore, Langevin and CD are good choices for the learning
and inference of our models in terms of both efficiency
and classification performance.

6 Conclusion

We have described two bipartite undirected models for
semantic representation and classification of video data.
The two models derive latent semantic representation
of video data by jointly modeling the textual and image
features of the data, and perform classification based on
such latent representations. Experiments on TRECVID
data have demonstrated that our models achieve satis-
factory performance on video classification and provide
insights to the internal structure and relationships of
video categories. Approximate inference methods for
the learning and application of our models have been
discussed and compared.

Our hierarchical harmonium by nature does not
restrict the number of categories an instance (shot)
belongs to, since P (Yt = 1|x, z) can be high for multiple
Yt. Therefore, an interesting future work is to evaluate
the model with a multi-label data set, where each
instance can belong to any number of categories. In
this case, our method is actually a multi-task learning
(MTL) method, and should be compared with other
MTL approaches. Our models can also be improved
using better low-level features as input. The region-
based color histogram features are quite sensitive to
scale and illumination variations. Features such as local
keypoint features are more robust and can be easily
integrated into our models. It is interesting to compare
the latent semantic interpretations and classification
performance using different features.
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APPENDIX
This is to show the derivation of the harmonium random
fields (joint distribution) in the family-of-harmonium
model. We start by introducing the general form of
exponential-family harmonium [14] that has H as the
latent topic variables and X and Z as two types of
observed data variables. This harmonium random field
has the exponential form as:

p(x, z,h) ∝ exp

�X
ia

θiafia(xi) +
X

jb

ηjbgjb(zj) +
X

kc

λkcekc(hk)

+
X

ikac

W kc
ia fia(xi)ekc(hk) +

X

jkbc

Ukc
jb gjb(zj)ekc(hk)

�
.

where {fia(·)}, {gjb(·)}, and {ekc(·)} denote the suf-
ficient statistics (features) of variables xi, zj , and hk,
respectively.

The marginal distributions, say, p(x, z), is then
obtained by integrating out variables h:

p(x, z) =

Z

h

p(x, z,h)dh

∝ exp

�X
ia

θiafia(xi) +
X

jb

ηjbgjb(zj)

�Y
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hk

exp
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λkc +
X
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dhk

= exp
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θiafia(xi) +
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ηjbgjb(zj) +
X

k

Ck({λ̂kc})
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and similarly we can derive:

p(x,h) ∝ exp

�X
ia

θiafia(xi)+
X

kc

λkcgkc(hk)+
X

j

Bj({η̂jb})
�

p(z,h) ∝ exp

�X

jb

ηjbgjb(zj)+
X

kc

λkcekc(hk)+
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i

Ai({θ̂ia})
�

where the shifted parameters θ̂ia, η̂jb and λ̂kc are defined
as:

θ̂ia = θia +
X

kc

W kc
ia ekc(hk), η̂jb = ηjb +

X

kc

Ukc
jb ekc(hk)

λ̂kc = λkc +
X
ia

W kc
ia fia(xi) +

X

jb

Ukc
jb gjb(zj)

The functions Ai(·), Bj(·), and Ck(·) are defined as:

Ai({θ̂ia}) =

Z

xi

exp{
X

a

θ̂iafia(xi)}dxi

Bj({η̂jb})
Z

zj

exp{
X

b

η̂jbgjb(zj)}dzj

Ck({λ̂kc}) =

Z

hk

exp{
X

c

λ̂kcekc(hk)}dhk

Further integrating out variables from these distri-
bution give the marginal distribution of x, z, and h.

p(x) ∝ exp

�X
ia

θiafia(xi)+
X

j
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�

p(z) ∝ exp
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p(h) ∝ exp
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We all the above marginal distributions, we are
ready to derive the conditional distributions as:

p(x|h) =
p(x,h)

p(h)
∝
Y

i

exp

�X
a

θ̂iafia(xi)−Ai({θ̂ia})
�

p(z|h) =
p(z,h)

p(h)
∝
Y

j

exp

�X

b
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�

p(h|x, z) =
p(x, z,h)

p(x, z)
∝
Y

k

exp

�X
c

λ̂kcekc(hk)−Ck({λ̂kc})
�

The specific conditional distribution of x, z, and h
defined in Eq.(3.2), (3.3), and (3.4) are all exponential
distributions. They can be mapped to the general forms
above if we make the following definitions:

fi1(xi) = xi

θi1 = αi, θ̂i1 = αi +
X

k

Wikhk

gj1(zj) = zj , gj2(zj) = z2
j

ηj1 = βj , ηj2 = −1/2, η̂j1 = βj +
X

k

Ujkhk

ek1 = hk, ek2 = h2
k

λk1 = 0, λk2 = −1/2, λ̂k1 =
X

i

Wikhk +
X

j

Ujkhk

Therefore, by plugging these definitions into general
form of harmonium random field at the beginning of
this appendix, we have the specific random field as:

p(x, z,h) ∝ exp

�P
i αixi +

P
j βjzj −

P
j

z2
j

2

−Pk

h2
k
2

+
P

ik Wikxihk +
P

jk Ujkzjhk

�

which is exactly the same as Eq.(3.5) except the latter
one is defined for a specific category.


