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ABSTRACT

There is often a need to adapt supervised classifiers such as
semantic concept detectors across different domains of data.
This paper describes a generic framework for function-level
classifier adaptation based on regularized loss minimization.
It directly modifies the decision function of an existing clas-
sifier of any type into a classifier for a new domain, based on
limited labeled data in the new domain and no “old data”,
which makes it an efficient and flexible framework. We then
extend this framework to adapt multiple classifiers into one
classifier, with the weights of existing classifiers learned au-
tomatically to reflect their utility. We elaborate on two
concrete adaptation algorithms derived from the framework,
namely adaptive SVM and multi-adaptive SVM, for one-to-
one and many-to-one adaptation respectively. In the exper-
iments of adapting semantic concept detectors across video
channels/types, our adaptation approach is proven to be su-
perior to using original (unadapted) classifiers or building
new ones in terms of accuracy and labeling effort.
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1. INTRODUCTION

It is known that the performance of supervised classifiers
suffers when training and test data follow different distribu-
tions. Nevertheless, we hope classifiers generalize well be-
yond their training data to avoid the cost of building new
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Figure 1: Average performance of 39 CNN-based
concept detectors applied to 6 channels
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Figure 2: Average performance of 36 TVO05dev-
based concept detectors on TV05dev and TVO07dev

classifiers. Such dilemma is frequently seen in the area of
multimedia, as images/videos come from a variety of do-
mains with distinctive characteristics. Here a domain refers
to data of a certain type, from a certain source, or gener-
ated in a certain period of time, etc. A typical example is
seen in semantic concept detection, where binary classifiers
are built to determine whether an image or video shot is
relevant to a given semantic concept. When such concept
detectors are built from one domain (e.g., news video) and
applied to another (e.g., documentary), the performance is
usually very low.

To measure the impact of domain change on semantic con-
cept detection, we perform this experiment on the develop-
ment set of TRECVID 2005 data (TV05Dev), which con-
tains news video from 6 channels, and the development set of
TRECVID 2007 data (TV07Dev), which contains documen-
tary video. We build classifiers for 39 concepts from CNN
data in TV05Dev and evaluate their performance on data
from each of the 6 channels (including CNN) in TV05Dev.
Figure 1 shows that the performance drops as much as 50%
when the training and test data are from different chan-
nels, which is surprising given that all data are news video.
We repeat this experiment between the entire TV05Dev and
TVO07Dev collection, and observe the same trend as shown



in Figure 2. A survey of semantic concept detection perfor-
mance in such cross-domain settings is presented in [17].

While existing classifiers do not generalize, building new
ones for every domain can be impractical given the cost for
labeling training data. From TRECVID 2003 to 2006, every
year news video of 67 to 176 hours from different sources
were labeled w.r.t 10 to 39 concepts as the training data for
concept detection. Based the “rule of thumb” that a person
on average needs one second to label one video shot for one
concept, the labeling effort is measured at 190.7 man-hours
in 2003, 260 in 2006, 807 in 2005, and 1652 in 2006. Clearly,
this does not scale up to most real-world video archives.

To overcome the poor generalizability of classifiers, we
choose to adapt existing classifiers to new domains based
on limited labeled examples. The adapted classifiers are
expected to outperform existing classifiers, and require less
labeled data compared with building new classifiers to reach
the same accuracy. The state-of-the-art model adaptation
techniques, however, are either inefficient as they rely on
the “old data” for training [3, 7, 8, 16, 19], or restricted to
certain classification algorithms (e.g., [13]) or specific appli-
cations ([2, 5, 15]). They are seriously limited in multimedia
area where the data size is typically large and the classifica-
tion algorithms are diversified. Many techniques also require
the knowledge of data distribution change between domains,
while modeling the distribution of image/video features is
more difficult than classifying them. Thus, there is a need
for a more efficient, flexible, and broadly applicable approach
for adaptation problems in multimedia.

In this paper, we propose a generic framework for function-
level classifier adaptation based on regularized loss min-
imization. Different from existing techniques, it directly
modifies the decision function of a source classifier (of any
type) trained from a source domain into a target classifier
for a target domain. The adaptation requires only limited
labeled examples from the target domain, and no raw data
from the source domain, making this framework very effi-
cient and flexible. We then extend this framework to handle
multi-classifier adaptation, namely adapting multiple source
classifiers into a target classifier with the weights of source
classifier learned automatically to reflect their utility. We
describe two concrete adaptation algorithms derived from
the proposed frameworks, namely adaptive SVM (a-SVM)
and multi-adaptive SVM (ma-SVM), for single-classifier and
multi-classifier adaptation. Finally, we apply our approaches
to adapt semantic concept detectors across different data
channels and/or types, and the results show that adaptation
is superior to either using the source classifiers or building
new ones in terms of accuracy and labeling effort.

This paper bears significant improvements over our earlier
work [18] on classifier adaptation. First, while the focus of
the earlier work is on a-SVM as a specific adaptation algo-
rithm, here we put forward a generic framework for adap-
tation based on loss minimization principle. We show that
a-SVM is merely a special case of this framework, and we
can derive many more algorithms from this framework by
plugging in various loss functions. Moreover, we further ex-
tend this framework for multi-classifier adaptation, where
the weights of source classifiers are learned automatically
to reflect their utility, and derive ma-SVM as a novel algo-
rithm from the extended framework. This is fundamentally
different from, and superior to, the many-to-one adaptation
approach in our previous work [18], which was mapped to

one-to-one adaptation by manually setting the weights of
source classifiers.

The rest of the paper is organized as follows. Section 2
reviews the related work on model adaptation. We describe
the function-level adaptation framework and a-SVM algo-
rithm for single-classifier adaptation in Section 3, as well
as their counterparts for multi-classifier adaptation in Sec-
tion 4. Section 5 presents the experiment results on cross-
domain semantic concept detection. The conclusions and
future works are discussed in Section 6.

2. RELATED WORK

Model adaptation has been studied as transfer learning
in the machine learning community and as drifting concept
detection in the data mining community. We review the
existing adaptation techniques of the following types.

Data-level adaptation combines the labeled “old data” in
the source domains with those in the target domain in or-
der to build a better model. This is the idea behind trans-
fer learning method for k-nearest neighbor [16], for support
vector machines by Wu and Dietterich [19], and for logistic
regression by Liao et al. [8]. Some data mining methods for
detecting drifting concepts in streaming data [3, 7] adopt
the same approach. Training is typically expensive for these
methods because the size of old data is very large. Selecting
and weighting the old data is another difficult issue.

Representation-level adaptation learns effective feature rep-
resentations and/or distance metrics from related tasks and
use them for a new task. Thrun [16] suggested to learn both
a feature representation and a distance function from the
labeled data of related tasks. Moreover, Raina [13] used un-
labeled images collected from various sources to learn high-
level feature representations that can make image classifica-
tion tasks easier in general. This approach is general and
efficient because the new representation is learned once and
applicable to other tasks. However, the new representations
may not provide enough leverage to the new task.

Parameter-level adaptation uses the parameters of exist-
ing models as the “prior” for the parameters of the new model
to be learned. Several methods in this category focus on
Bayesian logistic regression with a Gaussian prior on pa-
rameters. Marx et al. [9] computed the mean and variance
of the Gaussian prior from the parameters of the models for
related tasks. Raina et al. [14] constructed a Gaussian prior
with its covariance matrix encoding the word correlations
derived from text classification tasks and applied it to simi-
lar tasks. These methods are restrictive in the sense that the
new models must belong to the same type as the old ones in
order to have correspondence between their parameters.

There are also specialized adaptation techniques for cer-
tain problem domains, such as adapting context-free gram-
mar [15] and language models [2] in NLP, and adapting
acoustic models in speech recognition [5]. These domain-
specific techniques are not generally applicable.

In multimedia, the problem of model adaptation is in gen-
eral overlooked, although there is a great need for adaptation
techniques. The most relevant work has been semantic con-
cept detection based on correlated concepts, which can be
thought as adapting concept detectors between correlated
concepts. For example, Amir et al. [1] concatenated the
prediction scores of various correlated concepts into a long
feature vector called “model vector”, based on which a SVM
classifier was built for each concept. Qi et al. [12] proposed
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Figure 3: The framework for function-level classifier
adaptation.

correlative multi-label (CML) framework to automatically
identify concept correlations and learn concept detectors si-
multaneously. However, there is no prior work on adapting
semantic concept detectors across data domains.

3. SINGLE-CLASSIFIER ADAPTATION

We propose a novel approach called function-level classi-
fier adaptation which overcomes some limitations of exist-
ing methods. The idea is to directly modify a classifier’s
decision function, without (re-)training over the “old data”
or knowing how data distributions changes. It is a generic
framework in that it can adapt classifiers of any type and
accommodate any loss function.

The notations are described as follows. The target domain
has a small set of labeled data and many unlabeled data. We
denote the labeled data as D' = {(x;,v:)}/L,, where N is
the number of instances, x; is the feature vector of the i
instance, and y; € {—1,41} is its binary label. For sim-
plicity, we let each data vector include a constant 1 as its
first element such that x; € ]R‘Hl, where d is the number of
features. The source domain contains a large set of labeled
data D*, whose distribution is related to but different from
the distribution of D’ in an unknown way. A source classifier
has been trained from the source data D* using any clas-
sification algorithm, denoted by its decision function f°(x).
(In this paper, we treat a classifier and its decision function
interchangebly.) Our goal is to adapt f°(x) into a target
classifier f(x) based on the labeled examples D' such that
f(x) works well on the target domain.

3.1 TheBasic Adaptation Framework

The function-level adaptation framework is based on reg-
ularized loss minimization principle. As illustrated in Figure
3, the target classifier f(x) is defined as the sum of the source
classifier f°(x) and a delta function A f(x):

) =17 (x) + Af(x) (1)

This means that f°(x) is adapted to f(x) simply by adding
Af(x) to it. The delta function Af(x) is learned from the
labeled examples D' = {(x;,:)}"; in the target domain
and also the source classifier f°(x), by minimizing the fol-
lowing regularized empirical risk:

N

H&i}lz L(yi, f(x:)) + XQ(|Afll#) (2

i=1

where L(-) is a loss function, Q(-) is some monotonically
increasing regularization function, || - || is the norm of a
function in a reproducing kernel Hilbert space (RKHS) H
as a function space, and ) is a scalar.

In Eq.(2), the first term measures the classification er-
ror (loss) of the target classifier f(x) on the training ex-
amples D*. The second term is a regularizer that controls
the complexity of the hypothesis space. Because ||Af|x =
I/ — f°|l#, this regularizer is equal to the distance between
the source and target classifier in the function space. Hence,
the target classifier f(x) learned under this framework must
achieve two goals simultaneously, namely 1) minimal clas-
sification error on the training eramples, and 2) minimal
deviation from the source classifier f°(-). The two goals are
balanced by .

The goal of minimal deviation from f*() is crucial. If
minimal classification error is the only goal, one may find
a large or infinite number of classifiers achieving the same
classification error (even zero error when the training size
is small), although many of them do not generalize well be-
yond the training examples. The regularizer serves as the
second criterion for choosing candidate classifiers by penal-
izing those far away from the source classifier f°(-). In other
words, this adaptation framework embraces “minimum nec-
essary changes” principle, i.e., it makes minimum changes to
the source classifier that are mecessary to correctly classify
the labeled examples. The source classifier can be conceived
as the “prior model” of the target classifier.

From bias-variance perspective, this framework reduces
the high variance due to the limited training examples by
relying on the source classifier trained from sufficient out-
of-domain data. It represents a middle way between two
extremes, namely using a unbiased, high-variance classifier
trained only from limited examples, or the low-variance but
biased source classifier. We expect the adapted classifier to
achieve better bias-variance tradeoff.

This function-level adaptation framework offers great flex-
ibility and efficiency. Because it directly manipulates the
source classifier as an abstraction of the source domain, it is
more efficient than existing methods that train models over
(a large number of) raw data in source domains [4, 8, 19].
This also makes it applicable even when the raw data are not
accessible due to copyright or privacy issue, such as surveil-
lance video. Last but not the least, this framework treats
source classifiers as functions f°(-), so it can adapt classifiers
of any type (SVM, logistic regression, etc) as long as they are
represented as decision functions that can be evaluated on
the training examples. In other words, it adapts a classifier
as if it is a “black box”.

From this generic framework, one can derive concrete al-
gorithms for classifier adaptation by choosing certain loss
functions L(-), regularization functions (), and the form
of the delta function Af(-). While the choices are virtu-
ally infinite, we focus on a specific algorithm called adaptive
SVM, which is derived by using the loss function of SVM.

3.2 Adaptive SVM (a-SVM)

In adaptive SVM or a-SVM, the delta function takes either
a linear form Af(x) = w”x or a non-linear form Af(x) =
wT $(x), which is essentially a linear function in a trans-
formed feature space with ¢(-) as the feature map. We use
the non-liner form in this paper, of which the linear form is
a special case. Af is fully specified by its parameters w.



We adopt the hinge loss function of SVM as L(y, f(x)) =
max(1—yf(x),0), and a trivial regularization function Q(x) =
x, which leads to Q(||Af||2) = ||Af||# = ||w]||?. The objec-
tive function of a-SVM is given by plugging this loss function
and regularizer into Eq.(2):

N
ngn%nwnz +C3 " max(1 - i f(x.),0) (3)
i=1

This is equivalent to the following function:

N
1 2
min 2w+ C )¢ ()

=1
st & >0, yif*(xi) +yiw’ p(xi) > 1— & V(xi,y:) € D

While this objective function has the same form as that of
SVM (see Eq.(12.8) in [6]), there is a fundamental differ-
ence: here w is the parameter of A f(x), not f(x). Also, we
will show that the regularizer ||w||? = ||f — F°||+ is equal
to the distance between the source and target classifier in
the function space, instead of the margin in SVM. Since
>, & measures the classification error, Eq.(4) seeks a new
classification boundary around the source classifier that can
correctly classify the labeled examples in D*. The cost factor
C balances the two goals, with smaller C indicating larger
influence of the source classifier, and vice versa.

By integrating the constraints in Eq.(4) using Lagrange
multipliers, we can rewrite the objective function as the fol-
lowing (primal) Lagrangian function:

N N
ROy G-y ik ©)
i=1 i=1

Lp =

N

=D sl () + pw o) -

i=1

(1-¢))

where a; > 0, yi; > 0 are Lagrange multipliers. We minimize
Lp by setting its derivative with respect to w and £ to zero,
which results in:

N
w= Z Y p(Xi),
=1

From Eq.(6) we see that Af(:) = Zil aiyi K (-, %;) as a
function in RKHS, where K (xi,X;) = ¢(x;) - ¢(x;) is called
kernel function. Given the definition of inner product in
RKHS, we can prove the regularizer |w|? is equal to the

distance between the target classifier f(x) and the source
classifier f°(x) in RKHS.

N N
> D iy K

i=1 j=1

a; =C — iy Vi (6)

If = F71F = AP = (i %) = [wlf* (7)
Substituting Eq.(6) into Eq.(5), we get the Lagrange dual
objective function:

N N N
1
Lp = Z(l —yif*(xi))evi — 3 Z Z aiagyiy; K (xi, x;) (8)
i=1 =1 j=1
The model parameters o = {a;}; can be estimated by

maximizing Lp under the constraint 0 < «; < C,Vi. This
would give a solution equivalent to that obtained by min-
imizing the primal function Lp. Maximizing Lp over «
is a quadratic programming (QP) problem solved using a

variation of the standard Sequential Minimal Optimization
(SMO) algorithm for SVM, which is described in details in
our previous work [18].

Given the solutions &, the target classifier is written as:

f(x) )+ Z Gy K (%, %) (9)

where (x;,y;) € Dt. Note that the second term, which is the
delta function as Af(x) = Y, duy: K (x,%;), has the form of
a SVM model. Thus, the target classifier f(x) can be seen as
the source classifier f°(x) augmented with support vectors
from the labeled examples of the target domain.

4. MULTI-CLASSIFIER ADAPTATION

We have described a framework and an algorithm for adapt-
ing a single classifier. In practice, there are often multi-
ple existing classifiers that are helpful to the classification
task in the target domain. To take advantage of them, we
extend our framework to perform multi-classifier adapta-
tion, or adapting multiple source classifiers into one target
classifier. It is fundamentally different from our previous
many-to-one adaptation method [18] in that the weights of
the source classifiers are learned automatically. From this
framework we derive multi-adaptive SVM as an algorithm
for multi-classifier adaptation.

4.1 The Extended Adaptation Framework

Suppose there are M source domains and there is a source
classifier trained from each domain, denoted as {f; M
We combine these source classifiers by a weighted sum as
S tefi(x), where t = {t,}nL, are the weights. We treat
this combination as a single classifier to be adapted to the
target classifier f(x):

Ztkfk

The weights {t; }2, of source classifiers can be set manually
based on their utility to the target domain, as we did in our
earlier work [18]. In this case, the combination ), tx f; (x)
is fized and this becomes a single-classifier adaptation prob-
lem. However, manually defining the weights is rarely prac-
tical or desirable given the difficulty of knowing a classifier’s
utility to the (unlabeled) target domain.

To overcome this problem, we extend our framework to
allow the weights {tx}+L; to be learned automatically and
stmultaneously with the target classifier f(x) in one learn-
ing process. This is realized by adding another regularizer
P(||t|]) to the regularized loss expression:

)+ Af(x) (10)

N

gl}r};l 1 L(ys, f(x

)+ AQIAS ) + LN (11)

where ¥(+) is a monotonically increasing regularization func-
tion, ||t||? is the L-2 norm of the weights, and 3 is a scalar.

This new regularizer U(||t||?) penalizes large weights on
source classifiers, so it seeks to minimize the overall contribu-
tion of source classifiers. While this appears to be counter-
intuitive, it can be understood from the structure of the
target classifier f(x). Since f(x) is the sum of the delta
function Af(-) and the source classifiers {f; ()}, there is
a competition between the two terms. The two regularizers



balance the two terms by penalizing their cost, with the old
regularizer Q(||Af||#) preventing over-complex Af(-), and
the new regularizer ¥(||t||?) preventing too much reliance on
the source classifiers, both of which tend to be over-fitting.

4.2 Multi-Adaptive SVM (ma-SVM)

From the above framework, we derive multi-adaptive SVM
or ma-SVM as the counterpart of a-SVM for multi-classifier
adaptation. This is done by plugging SVM’s hinge loss func-
tion and trivial regularization functions (i.e., 2(z) = x and
U(x) = z) into Eq.(11). It is easy to show the objective
function is equivalent to:

N
1 2, 1 2
min vl + Bl + 03
M
st & >0, y Y tfix) +uw ¢(xi) >1-6&
k=1
By integrating the constraints as Lagrange multipliers, we
can rewrite this objective function as a minimization prob-
lem of the following Lagrange (primal) function:

N N

L = Wi+ gBIE+CY 6 Y we  (12)
i=1 i=1
N
=Y iy Y tefi (%) uiw b(x) — (1 - &)
i=1 k

where a; > 0 and u; > 0 are Lagrange multipliers. We set
the derivative of Lp against w, t, and £ to zero, which gives:

N N
1 s
w = Z aiyip(xi), th = B Z aiyifr(xi), o =C— pi(13)
i=1 i=1

The expression of ¢, shows a connection between the weight
of a source classifier f;; and its performance on the target
domain. ¢ is a weighted sum of terms y; fi (x;), which is a
“margin” indicating how well f; classifies training example
x;. The margin is larger if f;; correctly predicts the label
of x;, and vice versa. Thus, source classifiers that classify
the labeled examples better are assigned a larger weight, and
vice versa. This intuitive weighting comes naturally from the
loss minimization framework. This justifies the introduction
of regularizer ||t]|? in the objective function.

By plugging Eq.(13) into the primal Lagrangian Eq.(12),
we obtain the dual Lagrange function as:

N T
Lo = Yoi- 530 s Kexux)
i=1 i=1 j=1
1 .
g X O fi0x) ) (14)
k
The parameters o = {ai}fv:l are estimated by maximizing

Lp using an variation of the standard SMO algorithm. The
target classifier can be expressed using the estimated & as:

N LM
f(x) = Zdiyi (K(Xux)-F EZfzf(Xi)fzf(X)> (15)
i=1 k=1

From Eq.(15), we can interpret ma-SVM as a standard SVM
that treats the outputs of source classifiers as additional
features. Suppose the output of source classifiers on x is

an extra feature vector f = [f{'(x),..., fis(x)]. Similarly,
fi = [ff'(x4), ..., fir(x4)] is the extra feature for x,. We can
rewrite the target classifier as f(x) = >, ciyi (K (xi,x) +
%fi -f). While K(x;,x) is the similarity between x; and
x in the (transformed) feature space, and f; - f measures
their similarity in terms of the output of source classifiers.
If the classifiers’ outputs on x; and x are close, f; - f is large
and their similarity is high, and vice versa. Compared with a
SVM model f(x) =3, asyi K (xi,x), ma-SVM extends sim-
ilarity measure between x and x; to include the similarity
in the classifier-output space. The idea of treating model
(classifier) outputs as additional features is not new. For
example, the “model-vector” approach by Natsev et al. [11]
constructed the semantic feature of a video shot from the
scores of semantic concept detectors and used it in retrieval.
Our analysis provides a formal interpretation of this ad-hoc
technique: using classifier outputs as features is equivalent
to adapting these classifiers under regularized loss minimiza-
tion framework.

5. EXPERIMENTSIN CROSS-DOMAIN
CONCEPT DETECTION

5.1 Data Collections

We use the development set of the TRECVID benchmark
video collection in 2005 and 2007, referred to as TV05Dev
and TV07Dev. The TV05Dev collection contains 86 hours of
broadcast news video from 6 TV channels, including CNN,
NBC, MSNBC, CCTV (Mandarin), NTDTV (Mandarin),
and LBC (Arabic). Due to the difference on editing styles,
target audience, and other factors, the data from different
channels exhibit different characteristics. The 86-hour video
has been manually partitioned into 61,901 video shots, which
are relatively evenly distributed among the channels. The
TV07Dev collection has 50 hours of documentary video, par-
titioned into 21,532 shots. In both collections, each video
shot is represented by a single video frame as its “keyframe”.
Each keyframe is depicted by a 273-d feature vector, which
consists of a 225-d color moment feature computed from 5x 5
grids and a 48-d Gabor texture feature. Since there is not
much change of content within a shot, we use this 273-d
keyframe feature as the feature of the whole shot.

Labels of 39 semantic concepts are provided on the entire
TV05Dev collection as part of the LSCOM-Lite project [10].
The TVO07Dev collection are annotated w.r.t the same set of
concepts expect 3 of them (thus totally 36 concepts). These
concepts cover a wide variety of types, including objects
(e.g., Car), visual scenes (e.g., Sky), semantic topics (e.g.,
Military), human activities (e.g., Meeting), etc.

5.2 One-to-one Adaptation

We first evaluate the performance of single-classifier adap-
tation based on adaptive SVM (a-SVM). Among the 6 chan-
nels in TV05Dev, we choose NBC as the source domain and
CNN as the target domain. The NBC data (9,322 shots) are
fully labeled w.r.t the 39 concepts. The CNN data (11,025
shots) are split along the timeline into a training portion
containing 40% of the shots (4,410 shots) and a test portion
containing all the remaining shots.

For each concept, we train the source classifier using SVM
from all the NBC data. Then we randomly label a cer-
tain number of shots in the training portion of CNN, and
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use them to adapt the source classifier to a target classifier
based on a-SVM. The target classifier is evaluated on the
test portion of the CNN data using average precision (AP)
as performance metric. To reduce randomness, we repeat
the experiment on 4 random labeled samples of the same
size, and compute the average performance. We gradually
increase the number of labeled shots available for adaptation
and repeat the same experiment, until all the 4,410 shots in
the training portion are used. Since the average ratio of pos-
itive data of these concepts is 7%, the positive examples are
quite scarce and insufficient for training reliable classifiers.
For comparison purpose, we also evaluate three alterna-
tive methods for classifying data in target domain (CNN).
To ensure comparability, all the classifiers are trained using
SVM with RBF kernel with v = 0.1 and cost factor C' = 1,
which has reasonable performance in cross-validation.

e Source-only: This approach applies the original source
classifier to the target domain without any adaptation.
It uses no labeled data from the target domain.

e Target-only: This approach builds a new classifier
from scratch using only the labeled examples in the
target domain. It uses neither the source classifier nor
data in the source domain.

e Transductive: The limited labeled data and abun-
dant unlabeled data in the target domain makes semi-
supervised learning (SSL) an appealing approach. We
use transductive SVMs (TSVM), a widely used SSL
method, to build classifiers based on all the video shots
(labeled and unlabeled) in the target domain. It uses
no source classifier or data in the source domain.

Figure 4(a) compares the average performance of 39 con-
cepts in terms of mean average precision (MAP) between a-
SVM and the other three methods. On average, the adapted
classifiers trained by a-SVM outperform other methods by
a large margin. When the training examples are scarce,
the new classifiers trained from CNN (target-only) have
very low performance due to the lack of training data, while
the the source classifiers (source-only) have more decent
performance. In this stage, the adapted classifiers perform
slightly better than the source classifiers, and avoid the “cold

start” problem with little training data. As more labeled ex-
amples become available, the performance of adapted classi-
fiers and of target-only classifiers climbs together, with the
adapted classifiers keeping their lead even when the train-
ing size reaches its maximum. From another perspective,
adapted classifiers need much less training data to reach the
same performance than building new classifiers from scratch.
For example, target-only classifiers need 400 labeled exam-
ples to achieve the same MAP of adapted classifiers at only
50 examples. The transductive approach has the lowest
performance, showing that unlabeled data hurt the perfor-
mance. This implies that in this problem data points close to
each other in the feature space may not share the same label,
which violate the assumption of semi-supervised learning.

We repeat the experiment using the entire TV05Dev as
the source domain and TV07Dev as the target domain (with
the same training/test split). The results are shown in Fig-
ure 4. The relationships between these methods remain the
same as in the NBC-to-CNN setting, except that the source
classifiers provide more leverage to the target domain.

Besides the average performance, it is also important to
see whether our adaptation method excel consistently on ev-
ery single concept. In Figure 5, we show the performance
of the source-only, target-only, and adapted classifier on
a per-concept basis in NBC-to-CNN setting. The adapted
classifier is the best performer for most concepts, and a close
second for the remaining concepts. Also note that for some
concepts (e.g., Person, Sky), the source classifier trained
from NBC performs so well on CNN that adaptation can
hardly improve its performance. This issue is further dis-
cussed in Section 6.

5.3 Many-to-one adaptation

We then evaluate the performance of our multi-classifier
adaptation method. In this experiment, we treat CNN as
the target domain and all the other 5 channels in TV05Dev
as source domains. For each concept, we use multi-adaptive
SVM (ma-SVM) to adapt the 5 classifiers (of this concept)
trained separately from these 5 fully-labeled channels into a
new classifier for CNN. As before, the adapted classifier is
evaluated against the test portion of CNN.

Figure 6 compares the MAP of 39 concepts between a
multi-classifier adaptation run, which uses all the 5 channels
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Figure 5: Per-concept performance comparison between source-only, target-only, and adapted classifiers in
NBC-to-CNN setting, with 1,600 labeled examples per concept
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Figure 6: Performance comparison between multi-
classifier adaptation (ma-SVM) and single-classifier
adaptation (a-SVM)

as source domains, and 5 single-classifier adaptation runs,
each using a specific channel as source domain. The benefit
of using multiple source domains (classifiers) is clear, as it
outperforms even the best run that uses a single source do-
main (classifier). We also notice that the performance gap
between different single-classifier adaptation runs is quite
large, which means that different channels are not equally
useful. Thus, it is important in multi-classifier adaptation
that classifiers trained from different channels are weighted
in a way to reflect their utility.

In order to see whether the weights automatically learned
by ma-SVM are effective, we compare it with two alterna-
tive weighting methods. The wuniform weighting approach
assigns equal weights to all source classifiers and ensure the
weights sum up to 1. The oracle weighting approach assigns
weights proportional to the actual performance of source
classifiers on the target domain and ensures the weights sum
up to 1. It is called “oracle” because such performance is sup-
posed to be unknown without completely labeling the tar-
get domain. While this performance-based weighting is not
guaranteed to be optimal, it provides a quasi upper bound
on the performance for multi-classifier adaptation. For both
uniform and oracle weighting, since the weights are fixed
before adaptation, we combine the source classifiers using
the assigned weights and adapt this combination as a single
classifier to the new classifier using a-SVM.

Mean average precision (MAP)
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Figure 7: Performance comparison between differ-
ent weighting schemes in multi-classifier adaptation

Figure 7 compares these weighting schemes in multi-classifier
adaptation. The automatic weighting by ma-SVM has bet-
ter performance than uniform weighting, suggesting that
ma-SVM is able to weight source classifiers properly. How-
ever, it is well below the oracle weighting when the training
size is small. This is due to the fact that, as revealed in Sec-
tion 4.2, the weights learned by ma-SVM are related to the
performance of source classifiers on the labeled examples.
Since the performance on limited examples may not reflect
the performance on the entire target domain, the learned
weights are far from optimal. When there are more training
examples, the automatically learned weights are as good and
even better than the oracle weights.

6. CONCLUSIONS

We have described a generic framework for adapting one
or more existing classifiers to a classifier for a new domain
through modifications of their decision functions. This frame-
work is efficient and flexible as it relies only on limited la-
beled data in the new domain and needs no “old data”.
We have elaborated on two algorithms derived from this
framework, namely adaptive SVM and multi-adaptive SVM,
for one-to-one and many-to-one adaptation respectively. In
cross-domain semantic concept detection, we have shown
that our adaptation approach is superior to either using the
original (unadapted) classifiers or building new classifiers
from scratch in terms of accuracy and labeling effort.



While this paper has mainly focused on how to adapt a
classifier, another important question is whether to adapt
a classifier. This question deserves more future work. Fig-
ure 5 shows that some classifiers generalize to new domains
better than the other classifiers, and the more generalizable
classifiers do not need adaptation as much as the others.
A classifier with very poor generalizability may not worth
adaptation at all; it is better to discard it and build a new
classifier from scratch. The key problem here is to deter-
mine a classifier generalizability, i.e., how do we estimate a
classifier’s performance on a new domain without labeling
it? Our preliminary study on the generalizability of clas-
sifiers for semantic concept detection [17] suggested several
heuristics to identify generalizable classifiers. If classifiers’
generalizability is measurable, we will be able to prioritize
classifiers such that the most needed ones are adapted first
and/or receive more labeled examples. Adapting classifiers
selectively is more cost-efficient than blindly adapting all
classifiers.

Another future direction on adaptation focuses on data
transofrmation/normalizaiton. Instead of adapting models
to a new domain, one might as well transform the data
in the new domain such that the distribution is similar to
the distribution of data in the old domain. This requires
knowledge on the distributions of the two domains, which
is available or obtainable in some applications (e.g., speech
recognition). The original models need no adaptation if the
data can be transformed. A related idea is to identify fea-
tures whose distribution is more consistent across different
domains. Domain-invariant features will also minimize the
need for adapting models.
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