
This paper is published in the 3rd International Conference on Web Information Systems Engineering, Singapore, 2002.

Search for Flash™ Movies on the Web

Jun Yang1,3 Qing Li 1 Liu Wenyin 2 Yueting Zhuang 3
1Dept. of Computer Engineering

 and Information Technology
2Dept. of Computer Science

City University of Hong Kong, HKSAR, China
yangjun@acm.org {itqli, csliuwy}@cityu.edu.hk

3 Dept. of Computer Science
Zhejiang University

Hangzhou, China, 310027
yzhuang@cs.zju.edu.cn

Abstract

Flash™ is experiencing a breathtaking growth and has become
one of the prevailing media formats on the Web. Unfortunately, no
research effort has been dedicated to automatic retrieval of Flash
movies by content, which is critical to the utilization of the
enormous Flash resource. A close examination reveals that the
intrinsic complexity of a Flash movie, including its heterogeneous
components, its dynamic nature, and user interactivity, makes
Flash retrieval a host of research issues. As the first endeavor in
this area, we propose a generic framework termed as FLAME
(FLash Access and Management Environment) embodying a
3-tier architecture that addresses the representation, indexing,
and retrieval of Flash movies by mining and understanding of
movie content. In particular, FLAME features a unique
multi-level indexing and retrieval approach that supports
characterization and retrieval of Flash at (1) object level, which
describes the heterogeneous components embedded in a movie, (2)
event level, which depicts the movie’s dynamic effects constituted
by the spatio-temporal features of objects, and (3) interaction
level, which models the relationships between user behaviors and
the consequential events. An experimental prototype for
Web-based Flash retrieval is implemented to verify the feasibility
and effectiveness of FLAME.

1. Introduction

Flash™ is a new format of vector-based interactive movie
proposed by Macromedia Inc. [13], which can be embedded in
web pages and delivered with them over the Web. Since its birth
in 1997, Flash has experienced an explosive growth and become
one of the most prevalent media formats on the Web. According to
the statistics [14], by April, 2002 there are over 440 million
Internet users worldwide that can view Flash movies using
Macromedia Flash Player, the presentation tool of Flash. The
percentage of Web browsers in which Flash Player has been
installed is 98%, compared with 86% for Java, 69% for Media
Player, and 51% for Real Player. Among the top 50 websites in
United States, 58% has adopted Flash movies, including AOL
Time Warner Network, Yahoo!, and MSN Sites. This percentage
in the global scale is 50%. Flash can be used for a variety of
purposes, among which the most prominent use is to enhance the
interactive and multimedia feature of static, textual websites.
Besides that, Flash movies are being created as cartoons,
commercial advertisements, electronic postcards, MTV movies,
computer games, or even electronic commerce and interactive
media, each of which has huge market potentials. The huge
success of Flash can be contributed to several unique features,
including small size (for fast delivery), easy composition, rich
semantics (due to vector-based format), powerful interactivity,
which constitute a great advantage over its competing
technologies on the Web, such as streaming video and java script.

Thus, the popularity of Flash is likely to persist in the future even
if the global deployment of broadband offsets its advantage of
compactness.

Given the popularity of Flash and its promising future, it
becomes an imperative task of the multimedia community to
develop indexing and retrieval technology for Flash movies in
order to fully utilize the enormous Flash resource on the Web.
Such technology will become an integral part of the Web search
engine, not only because Flash movies are prevalent in numbers
on the Web, but also because very often they convey the major (or
entire) semantics of web pages. (In fact, sometimes web pages are
merely the containers of Flash movies). It can be foreseen that
Flash retrieval tools will be needed by a variety of user
communities, ranging from teenagers looking for Flash games,
music fans looking for MTVs, to Flash developers reviewing the
designs of existing movies, and customers searching for Flash
advertisements. Unfortunately, although previous research has
addressed the retrieval of various media types on the Web (e.g.,
text, image, video), some of which may not even be as popular as
Flash, there is no work on the indexing and retrieval of Flash
movies in the research community (to the best of knowledge).
Note that this claim does not conflict with the fact that some
online Flash repositories (e.g., Flash Kit [7]) do provide users with
simple search functions based on manual classification and
annotation. This approach does not scale to large data collection
(as it requires manual efforts), nor does it investigate the rich
content of a movie, which is indispensable for understanding
movie semantics and evaluating movies towards user queries. In
comparison, our motivation is to present the first piece of work
(again, to our knowledge) on fully automatic Flash retrieval
technology based on the mining and understanding of movie
content.

A detailed anatomy of Flash movie reveals its intrinsic
complexity on three major aspects: (1) a typical Flash movie
usually contains heterogeneous components, including texts,
graphics, images, QuickTime™ videos, sounds, and even
recursively embedded Flash movies; (2) it features dynamic nature
that is constituted by the spatio-temporal features of its
components; and (3) it enables interactivity which allows users to
interfere with the playout of the movie. Given this intrinsic
complexity, Flash retrieval is likely to be more complicated than
and thus cannot be addressed by the retrieval technology for any
existing media (e.g., text, image, video); rather, Flash retrieval
may employ a synergy of various existing technologies to provide
the “ingredients” of the whole retrieval framework, such as
content-based retrieval technology (for media components),
information retrieval technology (for text component),
spatio-temporal indexing techniques, Web mining techniques [4],
etc,

In this paper, we propose a generic framework termed as
FLAME (FLash Access and Management Environment) for users
to search Flash movies based on various content characteristics

Page 1

mailto:yangjun@acm.org

and using diverse retrieval approaches. FLAME has a 3-tier
architecture that addresses the representation, indexing, and
retrieval of the Flash content. A unique multi-level indexing and
retrieval approach is developed in FLAME to support query of
Flash movies at different level of details, including (1)
heterogeneous components embedded in movies, (2) dynamic
effects constituted by the spatio-temporal features of the
components, and (3) the relationships between user interactions
and the consequential effects. Regarding the sophistication of
FLAME (which is due to the complexity of Flash), it is unrealistic
to address all the components with satisfactory solutions within
the scope of this paper. In fact, the objective of this paper is to
come up with a comprehensive “skeleton” such that many
follow-up works will be devoted to “fill in” the components of
this skeleton. Nevertheless, to validate the feasibility and
effectiveness of FLAME, we have also implemented a
prototypical Flash retrieval system as an “instance” of the
framework.

The rest of the paper is organized as follows. In Section 2,
we present an overview of Flash retrieval, addressing the
characteristics of Flash, the research issues, and its connection
with previous works. We elaborate on the proposed FLAME
framework in Section 3. The prototypical system for Web-based
Flash retrieval is described in Section 4. The conclusion is given
and promising future directions are suggested in Section 5.

2. Flash retrieval: an overview

In this section, we describe the unique properties of Flash
and the research issues of Flash retrieval aroused by these
properties. We also discuss how Flash retrieval is related to
previous works on multimedia retrieval and how it can benefit
from them.

2.1. Characteristics of Flash movies

Through a detailed anatomy of the content of several sample
movies, we discover that the semantics of a Flash movie is mainly
synthesized and conveyed by the following three types of devices:
• Heterogeneous components. A typical Flash movie usually

consists of component media objects of various types. Texts
and graphics (i.e., drawings) of arbitrary complexity can be
easily created as components using authoring tools of Flash.
Bitmap or JPEG images and QuickTime video clips can be
imported into the movie as well. Sounds compressed using
ADPCM or MP3 standard are embedded in the movie in one of
the two forms: event sound, which is played in response to
certain event such as mouse-click, and streaming sound, which
is played in synchronization with the advance of the movie.
According to the format of Flash [15], all these components are
encoded separately such that they can be easily extracted from
Flash data files. This differs fundamentally from pixel-level
media formats such as image and video. Furthermore, a Flash
movie can consist of recursively embedded Flash movies,
which are defined as a special type of components. An
embedded movie component can also consist of its own
components and support dynamic effects of them.

• Dynamic effect. A Flash movie is composed of a sequence of
frames that are played in an order subject to user interactions.
With the progression of frames, components can be placed on
the current frame, removed from it, or changed with respect to
their positions, sizes, shapes, and angles of rotation. The
spatio-temporal features of the components, as well as the
spatio-temporal relationships among them, make up of some
high-level dynamic effects (such as morphing, motion) that

suggest the semantic meaning of a movie.
• User interactivity. Rather than a passive media such as

streaming video, Flash is an interactive movie in the sense that
a user can interfere with the presentation of the movie. As an
example, by clicking a button in a movie the user can let the
movie “jump” to a frame prior to the current frame, while
clicking another button may cause the movie jump to a frame
behind the current one. Consequently, an interactive Flash
movie usually has multiple presentations, and each of them is
the result of a certain series of user behaviors.

2.2. Research issues

The intrinsic complexity of Flash leads to many issues
concerning Flash retrieval that have not been addressed in existing
research successfully. Some key issues are discussed as follows:
• Indexing of heterogeneous components, dynamic effects, and

user interactions. The heterogeneous components, dynamic
effects, and interactive feature of Flash are all important clues
based on which users are likely to query for movies. For
example, a user may search for those movies “accompanied by
the song ‘Yesterday’”, movies “containing the text ‘Lord of
rings’”, or movies “describing the scene of sunset”. To support
such queries, the properties of Flash on each of the three
aspects should be indexed with features that facilitate effective
retrieval of Flash movies, especially, high-level and
semantic-flavored features Obviously, different features are
required to describe component objects of different types (i.e.,
text, graphic, image, video, sound). Although the feature
extraction of component objects and their dynamic effects can
largely rely on the existing techniques, modeling user
interactions poses a brand-new problem. Moreover, the
indexing method should take into account the situation that a
movie component is recursively embedded in another Flash
movie.

• Retrieval models for diverse features. Since the features of a
Flash movie are diverse in semantics and representation,
multiple retrieval methods are needed for Flash retrieval based
on various features. For example, text-based information
retrieval (IR) methods can be used for Flash retrieval by the
text components embedded in movies; content-based retrieval
(CBR) techniques are suitable for multimedia components such
as images, videos, and sounds; database-style queries can
facilitate retrieval by predefined features such as the shape of
graphic components. Ad hoc retrieval methods are needed for
the features of dynamic effects and user interactions, depending
on their respective representations.

• Query specification and user interface. Given the diversity of
retrieval methods, user queries also need to be specified in a
variety of ways, e.g., keyword query for IR approach,
query-by-example for CBR approach, query language for
database-style search. All the means of query specification
should be provided in an integrated interface that allows users
to compose various queries conveniently and efficiently.
Furthermore, as the query interface directly addresses user
experiences, it should be designed friendly and easy-to-use for
average users. In particular, for complex query methods such as
using a query language, iconic/graphic query specification
techniques need to be investigated.

2.3. Connection with previous work

There have been a great number of publications devoted to
the retrieval of multimedia data (including text), and for each type
of data, some specific retrieval approaches have been proposed.

Page 2

Among them, text-based information retrieval (IR) technique [17]
is mainly used for searching large text collections using query
expressed as keywords. Content-based retrieval (CBR) technique
is invented by the Computer Vision community to retrieve
multimedia objects based on low-level features that can be
automatically extracted from the objects. CBR techniques have
been widely used for image retrieval [16], video retrieval [3], and
audio retrieval [8]. The low-level features used in retrieval vary
from one type of multimedia to another, ranging from keywords
for texts, color and texture for images, and pitch and melody for
audios. In addition, database query using declarative query
language (such as SQL) [5] is a method widely used by the
Database community to retrieve structured data based on
predefined attributes, such as captions of images, titles of
documents. This approach is basically applicable to any types of
data, as long as the data can be represented in a way conforming
to certain structures or constraints (i.e., schemas). Despite these
extensive works, since none of the media formats addressed in
these works has all the three characteristics of Flash (e.g., none of
them is interactive), their retrieval methods cannot be applied on
Flash retrieval without significant modification. Nevertheless, as a
Flash movie usually contains various types of multimedia objects
in it, these existing methods can serve as the “enabling
techniques” for Flash retrieval based on component objects.

Spatial/temporal features have been addressed by the
research on multimedia with dynamic nature, usually, video
streams. For instance, in the VideoQ system proposed by Chang et
al. [3], videos are retrieved based on the joint spatio-temporal
attributes of video objects represented as motion trajectories. In
the work of Hjelsvold et al. [10] and Chan et al. [2], specialized
query languages augmented with spatial and temporal operators
are proposed for video retrieval. However, the complexity of the
dynamic effects supported by Flash goes beyond the capability of
the current techniques on modeling spatial/temporal features. For
example, Flash supports the morphing of a graphic component
from a square to a trapezium, which is insufficiently described by
any current techniques. On the other hand, the usefulness of some
detailed spatio-temporal attributes such as motion trajectory is
arguable, since users are unlikely to query movies by specifying
the precise movement of a component, say, “find Flash movies
with a circle moving from coordinate (0,0) at frame 1 to (100, 50)
at frame 10”. In contrast, high-level, semantics-flavored queries
are usually more preferred by users.

In addition, some research work has been devoted to the
modeling and retrieval of generic multimedia presentation, which
is defined as a synchronized and possibly interactive delivery of
multimedia as a combination of video, audio, text, graphics, still
images, and animations [12]. Hence, Flash movie is a typical type
of multimedia presentation. Lee et al. [12] adopt an acyclic-graph
representation of multimedia presentation and propose a graphical
query language as an effective tool to query and manipulate the
presentations based on their content. Adali et al. [1] suggest an
algebra for creating and querying interactive multimedia
presentation databases based on a tree representation. Both
approaches are not directly applicable to Flash retrieval since (1)
they do not tailor to the specific characteristics of Flash
presentation, and (2) as database-flavored approaches they are not
automatic.

3. FLAME: a generic framework for Flash
retrieval

Flash Parser

Multi-Level Query Engine

Tag TagHeader End Tag...

XML Representations of Flash movies
Representation

 Layer

Indexing
 Layer

Retrieval
 Layer

User Interface
(Query specification + Result Display)

Flash-To-XML Coverter

Flash
movies

Object Retrieval
Module

IR CBR

Tag

Object
(text, graphic,

image, video ...)

 Interaction
 (<mouse-click,
motion>, …) Event

 (motion, play,
morph, show...)

DB

Event Retrieval
Module

...DB ...

Interaction
Retrieval Module

...DB ...

Figure 1: The 3-tier architecture of FLAME

FLAME is proposed as a generic framework for indexing
and retrieval of Flash movies by mining and understanding of
movie content. As depicted in Figure 1, it has a 3-tier architecture
constituted by representation layer, indexing layer, and retrieval
layer. The detail of each layer is described in this section, and
sample queries are given to demonstrate its usefulness.

3.1. XML representation of Flash movies
(Representation layer)

Flash movies are delivered over the Internet in the form of
Macromedia Flash (SWF) file. Each Flash file is composed of a
series of tagged data blocks, which belong to different types with
each type having its own structure. In essence, a Flash file can be
regarded as an encoded XML [11] file (a Flash file is binary while
a XML file is ASCII text file), and it can be converted into a XML
file using tools such as JavaSWF [11]. Each tagged data block in a
Flash file is mapped to a XML tag, which usually has attributes
and embedded tags representing the structured data inside the
block. Data blocks of the same type are mapped to XML tags with
the same name. In the representation layer, we convert Flash files
into XML formats using Flash-To-XML Converter for two reasons:
(a) XML files are readable and thus convenient for us to
understand the internal structure of Flash; (b) being a global
standard XML format facilitates interoperability with other
applications.

Page 3

Shape

Text

Sound

Shape

1

3

2

4

ID Object

...

DefineShape (ID=1)

DefineText (ID=3)

DefineShape (ID=4)

DefineSound (ID=2)

ShowFrame

PlaceObject ID 4

StartSound ID 2

PlaceObject ID 3

PlaceObject ID 1

...

Dictionary
Tags in Flash file

define

manipulate

Control tag

Definition tag

Defined
object

Legend

Figure 2: Structure of Macromedia Flash (SWF) file

There are two categories of tags in Flash files: definition

tags, which are used to define various components in a movie, and
control tags, which are used to manipulate these components to
create the dynamic and interactive effect of the movie. For
example, DefineShape and DefineText are typical definition tags,
while PlaceObject (placing a component on the frame) and
ShowFrame (showing the current frame) are typical control tags.
All the components defined by definition tags are maintained in a
repository called dictionary, from which control tags can access
these components for manipulation. The diagram shown in Figure
2 illustrates the interaction between definition tags, control tags,
and the dictionary.

3.2. Multi-level movie indexing (Indexing layer)

According to the research issues discussed in Section 2.2, a
Flash movie can be characterized from three perspectives as its
heterogeneous components, dynamic effects, and user interactions.
In the indexing layer of FLAME, the characteristics of Flash on
the three facets are modeled using the concepts of object, event,
and interaction respectively. Specifically, object represents movie
components as texts, videos, images, graphics, and sounds; event
describes the dynamic effect of an object or multiple objects with
certain spatio-temporal features; interaction models the
relationships between user behaviors and events resulted from the
behaviors. Naturally, these three concepts are at different levels:
an event involves object(s) as the “role(s)” playing the event, and
an interaction includes event(s) as the consequence of user
behaviors. The features describing the objects, events, and
interactions in a Flash movie are extracted by the Flash Parser
from the XML representation of the movie (see Figure 1). The
formal description of each concept is presented as follows:
• Objects. A component object in Flash is represented by a tuple,

given as:

object = <oid, o-type, o-feature>

where oid is a unique identifier of the object, o-type ∈ {Text,
Graphic, Image, Video, Sound} denotes the type of the object,
and o-feature represents its features. Obviously, the particular
types of feature used to describe an object depend on the type
of the object. Table 1 summarizes the most commonly used
features for each type of object, which are extracted from the
corresponding definition tags in Flash files either directly or
through some calculations. For instance, keywords and font

size (indicative of the importance of text) can be directly
obtained from a text object, whereas the shape of a graphic
object has to be deduced from the coordinates of the lines and
curves constituting the contour of the graphic object, as long as
it is a simple shape such as rectangle or circle. The feature
extraction techniques for each media type are widely available
[8, 16, 19].

Table 1: Features for various types of objects
Object Features

text keywords, font size
graphic shape, color, number of borders

image size, color (histogram, coherence, etc), texture
(Tamura texture, wavelet, etc)

sound MFCCs (mel-frequency cepstral coefficients)

video features of a set of key-frames, motion vectors

• Events. An event is a high-level summarization of the
spatio-temporal features of object(s), which is denoted as:

event = < eid, {action}n > (n=1, …, N)
action = <object, a-type, a-feature>

where eid is a unique identifier of the event, followed by a
series of actions. Each action is a tuple consisting of an object
involved as the “role” of the action, a-type as the type of the
action, and a-feature as the attributes of the action. Each type
of action is described by a particular set of features and can be
applied to certain type(s) of objects (e.g., only graphic objects
can be morphed). The relationships among action type, its
applicable objects, and its features (which are derived from
control tags) are summarized in Table 2. Two action types
require more explanation: (1) “trace” is the action of an object
following the movement of the mouse cursor in the movie
frame; (2) “navigation” is an action of a Web browser being
launched and directed to a specified URL, and therefore it does
not involve any object.

Table 2: Features and applicable objects of actions

Action Applicable objects Features
show all but sound position, start/end frame

motion all but sound trail, start/end frame

rotate all but sound angle of rotation, location,
start/end frame

resize all but sound start/end size, location,
start/end frame

morph graphic start/end shape, number of
frame

play sound, video current frame
trace all but sound closeness to mouse

navigate N/A target URL

Compared with the existing models [2, 3, 10], the concept of
event provides a compact, semantics-flavored representation of
spatio-temporal features, since the predefined action types directly
address the human perception on the dynamic effects of a movie.
On the other hand, it is also powerful in terms of expressiveness,
mostly because an event can have multiple actions. For example, a
graphic object that is moving and resizing simultaneously over
frames can be modeled by an event consisting of two actions
describing the motion and resizing of the object respectively. Such
a multi-action event can be also used to model the recursively
embedded movies in a main Flash movie (cf. Section 2). Although

Page 4

an embedded movie is defined by a definition tag DefineSprite,
we model it as an event whose actions describe the dynamic
features of its components (which are modeled as objects).
Another definition tag that is modeled as event is the
DefineMorph tag, which is decomposed into a graphic object and
an event describing the morph of this object.
• Interactions. The concept of interaction describes the

relationship between user behavior and the event caused by the
behavior. Its formal definition is given as:

interaction=<iid, i-type, {event}n, i-feature> (n=1,…,N)

where iid, i-type, and i-feature represent the identifier, type, and
features of the interaction respectively, and {event}n is a set of
events triggered in the interaction. The type of interaction
indicates the device through which user behavior is conducted,
including button, mouse, and keyboard. Button is a special
component in Flash movies for the purpose of interaction, and
it responses to mouse and keyword operation as a normal
button control does. Interactions involving buttons are
classified as “button” interaction, even though they may also
involve keyboard and mouse operations. The feature for each
type of interaction is summarized in Table 3. For a button
interaction, for example, an important attribute is the button
event, such as mouse-over, mouse-click. Similar to even
features, the features of interactions and the triggered events are
extracted from the control tags of Flash files.

Table 3: Features for different interactions

Interaction Features
button Event (press, release, mouse-over,

mouse-click, mouse-up), position
keyboard key code
mouse action (drag, move, click, up), position

So far we have described the concept of object, event, and

interaction. The index of a Flash movie can be represented as the
collections of objects, events, and interactions that are embodied
in it, given as:

movie = <{object}m, {event}n, {interaction}t >

The retrieval of Flash movies is conducted based on such
multi-level features, as described in the next subsection.

3.3. Multi-level query processing (Retrieval layer)

As shown in Figure 1, the retrieval layer of FLAME consists
of three individual retrieval modules for matching objects, events,
and interactions based on their respective features. These three
modules do not work independently; rather, since interactions
involve events, which in turn involve objects, the retrieval
modules for higher-level concepts need to “call” the modules for
lower-level concepts. For example, to find movies containing, say,
a rotating rectangle graphic object, the event retrieval module,
which matches the “rotate” action, needs to cooperate with the
object retrieval module, which matches the “rectangle” graphic
object. On the other hand, as user queries usually target at
movies and may involve features at multiple levels, a multi-level
query engine is designed to decompose user queries into a series
of sub-queries for objects, events, and interactions processed by
underlying retrieval modules, and then integrate and translate the
results returned from these modules into a list of relevant movies.
In the following, we describe each retrieval module and the
multi-level query engine in detail. In particular, we define some

high-level functions as the summarizations of their functionalities.

• Object retrieval module. This module accepts the type and
features of object as inputs, and returns a list of objects of the
specified type that are ranked by their similarity to the given
features. The retrieval process is summarized by the following
function:

object-list: SearchObject (o-type, o-feature)

where object-list is a list of <oid, score> pairs with score
indicating the similarity of each object to the feature specified
by parameter o-feature. If o-feature is not specified, all objects
of the given type are returned. Note that the “search space” of
this operator covers all objects of every movie in the database.
Thus, the returned objects may belong to different movies.

The type of features specified as search condition varies
from one type of object to another. Even for the same type of
object, diverse types of features can be used. For example, we
can query for image objects either by submitting a sample
image or by designating the dominant color as “red”. Therefore,
various retrieval techniques are needed to cope with different
object features. Specifically, IR approach is used for the
keyword feature of text objects, CBR approach is used for the
low-level features of video, image, and sound objects, and
DB-style retrieval is well-suited for structured features such as
the shape of graphic objects.

• Event retrieval module. To search events, we need to specify
search conditions for not only actions but also objects as the
“roles” of the actions:

event-list: SearchEvent (a-type, a-feature, object-list)

This function returns a list of events having at least one
action that satisfies all the following three conditions: (1) the
type of the action is equal to a-type, (2) the feature of the action
is similar to a-feature, and (3) the object involved in the action
is within object-list. If either a-feature or object-list or both of
them are not given, the returned events are those with at least
one action satisfying conditions (1) and (3), (1) and (2), or only
condition (1). The event-list is of the same structure with
object-list, except that the elements in it are events. One point
worth particular attention is that the ranking of events in
event-list is fully determined by the similarity of their action
features with a-feature, and is not subject to the ranking of
objects in object-list. . Moreover, since only one action can be
specified in SearchEvent, the query for multi-action events is
handled by firstly performing SearchEvent based on each
desired action and then finding the events containing all the
desired actions by intersecting multiple event-list returned from
SearchEvent.

• Interaction retrieval module. The retrieval of interactions is
conducted by the following function:

interaction-list: SearchInteraction (i-type, i-feature, event-list)

The semantics of this function, its parameters, and its return
value are similar to those of SearchEvent. The event-list
specifies the scope of events at least one of which must be
triggered in every interaction returned by this function.
Similarly, to search for an interaction that causes multiple
events, we need to perform this function for each desired event
and integrating the results to find the interactions causing all the
desired events.

• Multi-level query engine. The results returned by individual

Page 5

retrieval modules are objects, events, and interactions, while
the real target of the user queries is Flash movies. A primary
function of the multi-level query engine is to translate the
retrieved objects (and events, interactions) into a list of relevant
movies, as defined by the following function:

movie-list: Rank (object-list / event-list / interaction-list)

The movies in movie-list are those containing the objects in
object-list, and their similarity scores (and therefore ranks) are
identical to their corresponding objects in object-list. As an
exception, if more than one object in object-list belongs to the
same movie, the rank and similarity score of the movie are
decided by the object with the highest rank. The semantics of
Rank taking event-list or interaction-list as parameters is
similar.

It is common that a user query may specify multiple search
conditions. To deal with such multi-condition queries, we need
to merge multiple lists of movies retrieved based on each
search condition into a single list giving the final ranking of
similar movies. The Merge function is proposed for this
purpose:

movie-list: Merge ({movie-list}n , {weight}n)

where {movie-list}n denotes n movie lists that are obtained
based on different search conditions, and {weight}n contains
the weight indicting the relative importance of each condition,
which is preferably specified by users. If not specified, all the
weights are assumed to be 1. Each movie in the returned movie
list must appear in at least one input list, and similarity score of
the movie (and thus its rank) is determined by the weighted sum
of its similarity score in each input list (if it is not in a particular
list, its similarity there is assumed to be zero). Note that this
function implements only the simplest method of merging
multiple similarities, which is itself a separate research topic
and is beyond the scope of this paper.

3.4. Sample query processing
The functions defined above, when used in combination, can

support rather sophisticated queries of Flash movies. In this
subsection, we describe the processing of some sample queries to
demonstrate the usage and expressive power of these functions.

Example 1: (Search by object)

A user trying to find Flash movies about the film “Lion
King” through a poster (as an image file ‘lion-king.jpg’) can
compose his query as: Find all Flash movies that contain images
similar to a poster of the film “Lion King”. This query can be
processed as:

Rank (SearchObject (image, ‘lion-king.jpg’))

Example 2: (Search by multiple objects)

A user who wants to search for MTV movie of a specific
song from a known singer can probably express his query as: Find
all Flash movies that have keyword “John Lennon” and are
accompanied by the song ‘Imagine’. (Suppose the audio file of the
song is ‘imagine.mp3’.) This query can be handled by combining
the results of a search based on the keyword and another search
based on the song:

Merge ({Rank (SearchObject(text, ‘John Lennon’)),
 Rank (SearchObject(sound, ‘imagine.mp3’))})

Example 3: (Search by event)

A query for movies containing the scene of “sunset” can be
composed as: Find all Flash movies that contain a red circle
descending from the top of the frame to the bottom. The
processing of this query requires specifying both the desired
object and its dynamic effect:

Rank (SearchEvent (motion, ‘descending’,
 SearchObject (graphic, ‘red circle’)))

Example 4. (Search by interaction and object)

Since the Flash movies as commercial advertisements
sometimes contain the link to the company, a query for Flash
advertisements of, say, BMW cars, can be expressed as: Find all
movies that have keyword ‘BMW’ and a button by clicking which
the BMW website will be opened in a Web browser. This query is
processed by a combination of all functions defined in Section
3.3:

Merge ({Rank (SearchObject (text, ‘BMW’),
 Rank (SearchInteraction (button, ‘mouse-click’,
SearchEvent(navigate,‘www.bmw.com’))))}

4. An experimental prototype
To demonstrate the feasibility and effectiveness of FLAME,

an experimental prototype as a Web-based Flash search engine
system has been built based on FLAME. The prototype system has
implemented the indexing and retrieval functions for most types
of objects, events, and interactions supported by FLAME. Other
functions are currently left out either because they are difficult and
time-consuming to implement or because they are not very critical
compared with other functions.

Figure 3: The main interface of the prototype

The great variety of queries supported by FLAME poses a

challenge on user interface design. A good user interface should
allow users to compose various types of queries conveniently and
efficiently, as well as display the retrieved Flash movies in an
appropriate layout. The interface of our prototype system can be
displayed in standard Web browsers and accessed remotely over
the Internet. In order to achieve good visual experience, we divide
various query methods into two separate interfaces. The main
interface shown in Figure 3 supports only keyword-based query,
where a user can input query keywords and receive a list of Flash
movies whose text (objects) matches with the query. The
“thumbnails” of the retrieved movies ranked in descending order
of their similarity (to the query) are displayed in the lower pane of

Page 6

the interface. The main interface contains a hyperlink labeled as
“Advanced Search” pointing to the second interface (shown in
Figure 4), which allows users to compose more sophisticated
queries by specifying the objects, events, and interactions
appeared in the desired movies. This interface arrangement is
based on the fact that keyword is the most natural device for users
to express their requests, a “rule of thumb” proved by many
commercial search engines. Providing advanced query options in
a separate interface allows professional users to conduct more
complicated queries without confusing non-professional users.

Figure 4: The “advanced search” interface of the

prototype

The visualization of query specification methods is essential
to the convenience and thus productivity of users. In the
“advanced search” interface, we adopt an iconic specification of
sophisticated queries. As shown in Figure 4, users can specify
various components (including text, images, graphics, videos,
sounds) appearing in desired movies with respect to their (the
components’) features, dynamic effects, and user behaviors
triggering the effects. The features of these components are
specified in different manners. For example, graphic objects are
specified by their shape (chosen from a list of shape icons), size
(chosen from a drag-down box), and dominant color (chosen from
a color palette), while the features of images are specified through
a sample image. The desired dynamic effects of each component
in the movie can be designated using the drag-down box in the
column labeled as “Effect”, and the user behavior triggering the
event can be specified using the drag-down box in the column
labeled as “Behavior”.

In our current work, we have not conducted a quantitative
evaluation of the retrieval performance (e.g., in terms of precision
and recall) of the prototype system for two reasons: (1) there is no
Flash collection serving as standard test dataset for retrieval
systems (to the best of our knowledge, FLAME is the first Flash
retrieval system); (2) due to the intrinsic complexity of Flash,
there are probably a variety of subjective criteria regarding the
relevance of Flash movies to a given query. Therefore, it is very
difficult to define an objective “ground truth” for the test dataset.
More likely, the retrieval performance of the system can be only
evaluated by a large number of human subjects who conduct
random queries and judge the quality of the retrieval results
according to their own criterion.

5. Conclusions

This paper has investigated the problem of content-based
Flash retrieval, which is critical to better utilization of the
proliferating Flash resource on the Web but unfortunately has not
been noticed by the research community. In this paper, we have
presented an overview of Flash retrieval covering its
characteristics, important research issues, and the connection with
previous works. As our main contribution, a generic framework
called FLAME has been put forward, which has a 3-tier
architecture for the representation, indexing, retrieval of Flash
movies by mining and understanding movie content. This
framework features a unique multi-level indexing and retrieval
approach that facilitates query of Flash movie based on the
characteristics of its heterogeneous components, its dynamic
effects, and the means of user interactions supported in it. An
experimental prototype for Web-based Flash retrieval has been
implemented to verify the feasibility of FLAME.

Although FLAME has covered a broad range of research
issues, there remains much room for future research on Flash
retrieval and management. One interesting future direction is to
investigate the role of human-computer interaction for better
management and retrieval of Flash. A foreseeable work is to adopt
relevance feedback technique on Flash retrieval to enhance the
retrieval performance based on user evaluations. Other
management issues, such as storage, navigation, classification,
and clustering of Flash collections, are equally important and
promising directions for effective Flash retrieval. On the other
hand, the research on Flash retrieval can be generalized to the
retrieval of other types of multimedia representations, such as
PowerPoint, SMIL[19], etc.

References

1. Adali, S., Sapino, M.L., Subrahmanian, V.S. An algebra for

creating and querying multimedia presentations. ACM
Multimedia Systems, 8(3): 212-230, 2000.

2. Chan, S.S.M. and Li, Q. Developing an object-oriented video
database system with spatio-temporal reasoning capabilities.
In Proc. 18th Int. Conf. on Conceptual Modeling (ER'99),
LNCS 1728, pp. 47-61, 1999.

3. Chang, S.F., Chen, W., Meng, H.J., Sundaram, H., Zhong, D.
VideoQ: An automated content based video search system
using visual cues. In Proc. ACM Int. Multimedia Conf., pp.
313-324, 1997.

4. Chen, Z., Liu, W.Y., Zhang, F., Li, M.J., Zhang, H.J., "Web
Mining for Web Image Retrieval", J. of the American Society
for Information Science and Technology, 52(10): 831-839,
2001

5. Elmasri, R. and Navathe, B. Fundamentals of database
systems, 2 Edition. The Benjamin/Cummings Publishing
Company, Inc., Redwood City, CA, 1994.

6. Extensible Markup Language (XML).
http://www.w3.org/XML/

7. Flash Kit. http://www.flashkit.com/index.shtml

8. Foote, J. An overview of audio information retrieval. ACM
Multimedia Systems, 7: 2-10, 1999.

9. Hauptman, A.G. and Smith, M.A. Text, speech and vision for
video segmentation: the Informedia project. In Proc. AAAI

Page 7

http://www.w3.org/XML/
http://www.flashkit.com/index.shtml

Fall Symposium of Computational Models for Integrating
Language and Vision, 1995.

10. Hjelsvold, R. and Midtstraum, R. Modelling and querying
video data. In Proc. 20th Int. Conf. Very Large Database, pp.
686-694, 1994.

11. JavaSWF. http://www.anotherbigidea.com/javaswf/

12. Lee, T., Sheng, L., Bozkaya, T., Ozsoyoglu, G., Ozsoyoglu,
M. Querying multimedia presentations based on content.
IEEE Trans. Knowledge and Data Engineering,
11(3):361-387, 1999.

13. Macromedia, Inc. www.macromedia.com.

14. Macromedia Flash Player adoption statistics.
www.macromedia.com/software/player_census/flashplayer

15. Macromedia Flash File Format (SDK)
http://www.macromedia.com/software/flash/open/licensing/fi
leformat/

16. Rui, Y., Huang, T., and Chang, S. Image retrieval: current
techniques, promising directions and open issues. J. of Visual
Communication and Image Representation, 10: 1-23, 1999.

17. Salton, G. and McGill, M.J. Introduction to modern
information retrieval. McGraw-Hill Book Company, 1983.

18. Smoliar, S.W. and Zhang, H.J. Content Based Video
Indexing and Retrieval. IEEE Multimedia, 1: 62-72, 1994.

19. Synchronized Multimedia Integration Language (SMIL).
http://www.w3.org/AudioVideo/

Page 8

http://www.anotherbigidea.com/javaswf/
http://www.macromedia.com/
http://www.macromedia.com/software/player_census/flashplayer

