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ABSTRACT
Great effort has been made to improve video concept detec-
tion and continuous progress has been reported. With the
current evaluation method being confined to carefully an-
notated domains and thus quite forgiving, the reliability of
the state-of-the-art concept classifiers remains in question.
Adopting a more rigorous evaluation approach, we find that
most concept classifiers built using the mainstream approach
are unreliable because they generalize poorly to domains
other than their training domain. Moreover, evidences show
that SVM-based concept classifiers learn little beyond mem-
orizing most of the positive training data, and behave close
to memory-based models such as kNN indicated by com-
parable performance between the two models. Examining
the properties of the reliable concept classifiers, we find that
the classifiers of frequent concepts, “bloated” classifiers, and
classifiers capable of learning the pattern of data, tend to
be more reliable. This paper contributes to a better under-
standing of concept detection, suggests heuristics to iden-
tify reliable concept classifiers, and discusses solutions to
improving concept detection reliability.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing

General Terms
Experimentation, Performance

Keywords
Video concept detection, Generalizability, SVMs, kNN

1. INTRODUCTION
Semantic concept detection is a challenging research topic

critical to the analysis and retrieval of multimedia data. Also
known as high-level feature extraction, it aims to determine
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the presence or absence of any semantic concepts, such as
Outdoor, Studio, and Airplane, in images or video shots [11].
The basic approach of concept detection is to use classifica-
tion algorithms, typically support vector machines (SVMs),
to build concept classifiers which predict the relevance be-
tween images or video shots and a given concept. Built
on this basic approach, many sophisticated methods have
been proposed in the recent years that exploit, among other
things, heavy parameter tuning, concept correlations [7, 10,
13], and combination of different features and models [1,
8, 12, 15]. Continuous performance improvement has been
reported using these methods.

What is the real status of the state-of-the-art concept de-
tection methods? An objective evaluation method is key to
the answer. In the literature, most concept detection meth-
ods are evaluated against a specific TRECVID benchmark
dataset which contains broadcast news video or documen-
tary video. A concept classifier is evaluated by average preci-

sion (AP), which examines whether positive data are ranked
higher than negative ones based on the classifier’s output,
and MAP as the mean of APs. Despite its popularity, this
evaluation setting has several limitations:

• First, the training and test data of concept classi-
fiers are typically drawn from a single domain of rel-
atively homogeneous data, such as news video from
same broadcaster(s) produced in a certain period of
time, and rarely from different domains. This creates
room for overfitting and illusions of good performance.
Therefore, the previous evaluations can be too forgiv-
ing. How well concept classifiers generalize across dif-
ferent domains is a tougher but more faithful metric.

• Second, AP as a metric of classifier performance is af-
fected by the frequency of a concept in the sense that
a frequently-occurring concept has a higher “random
baseline” than a rare concept. As we will see, this
makes results of different concept classifiers less com-
parable and performance improvement deceptive.

• Last but not the least, most existing work on concept
detection is result-driven. This is risky when the eval-
uation method itself is limited. Little effort has been
spent on finding out why a concept classifier works and
what it has learned, besides knowing its performance
in terms of a certain metric.

Limiting as this evaluation method is, re-examining con-
cept detection methods regarding the above issues is impor-
tant to understand the real status of this area.



This paper provides more rigorous evaluations and deeper
examinations of concept classifiers built using the main-
stream approach. The main observation is the poor gen-
eralization ability of concept classifiers. The majority of the
concept classifiers suffer a significant and consistent decline
of performance when they are applied to a domain other
than their training domain, whether it be another chan-
nel (broadcaster) or another genre. Another observation is
that SVM concept classifiers in general have learned little
from the data besides memorizing the positive instances,
because over 90% of the positive instances are support vec-
tors (SVs). They behave close to memory-based models such
as k-nearest neighbor (kNN), indicated by the comparable
performance between the two models. Together, these ob-
servations show that, in general, concept classifiers are not
as reliable or intelligent as previous evaluations might have
suggested.

While concept classifiers are generally unreliable, some are
more reliable than the others. We provide an in-depth analy-
sis as to which concept classifiers are more reliable, and more
importantly, the common properties of these reliable classi-
fiers. We find that classifiers of frequent concepts, classifiers
bloated with a large number of SVs, and classifiers using
a small percentage of positive data as SVs have relatively
consistent and generalizable performance. These heuristics
help us identify reliable concept classifiers a priori without
testing them on all possible domains, which is prohibitively
expensive in terms of labeling effort.

This paper does not evaluate any specific method for con-
cept detection; instead, we adopt the general approach to
build concept classifiers using SVMs with RBF kernel and
empirically sound model parameters. The state-of-the-art
methods, which involve heavy parameter tuning, feature en-
gineering, and/or exploiting of other knowledge [1, 8, 12,
10, 13, 15], almost certainly achieve better performance (in
terms of AP or MAP) than the concept classifiers used in
this study. Nevertheless, our findings should still be valid
because our approach is the very core and the building block
of more sophisticated methods. In fact, more tweaking of the
concept classifiers may result in overfitting and worse gen-
eralization ability despite achieving higher APs or MAPs on
a specific data set.

Rather than proposing a new method, our paper con-
tributes to a better understanding of concept detection. First
of all, it presents a quantitative study on the performance of
concept classifiers in cross-domain settings, which shows how
unreliable and fragile they are. While this issue has been dis-
cussed in some previous work (e.g., [4]), our study is more
comprehensive. We are also the first to examine the struc-
ture of SVM concept classifiers and compare their perfor-
mance with memory-based models, which lead to revealing
observations. We propose ∆AP and ∆MAP as frequency-
insensitive performance metrics. Finally, the heuristics for
identifying reliable concept classifiers provide practical guid-
ance as to which concepts are worthwhile to detect and use.

The remainder of the paper is organized as follows. Sec-
tion 2 describes our experimental setup and our performance
metrics. Section 3 describes the generalizability test on con-
cept classifiers, and Section 4 explores the problem of how
much these classifiers actually learn from training data. In
Section 5, we identify the reliable concept classifiers and
their common properties. We discuss the conclusions and
future directions in Section 6.

2. EVALUATION SETTING AND PERFOR-
MANCE METRIC

The experiments are carefully designed to be representa-
tive of the mainstream concept detection methods, so that
the conclusions are general and convincing. As discussed
below, we choose the data, semantic concepts, features, and
learning methods that are frequently used in the literature
and/or representative among various options. On the other
hand, we propose new performance metrics to overcome the
limitations of the existing ones.

2.1 Experiment set-up
Data: The experiments are conducted on two video col-

lections used in the TREC Video Retrieval Evaluation [11]:
the development set of 2005 (TREC05) and the development
set of 2007 (TREC07). The TREC05 collection contains 86
hours of broadcast news video from 6 channels, which are
CNN, NBC, MSNBC, CCTV, NTDTV, and LBC. Among
them, CCTV and NTDTV are in Chinese (Mandarin), LBC
is in Arabic, while the others are in English. Due to edit-
ing styles, target audience, and other factors, each channel
exhibits distinctive data characteristics. Based on the pro-
vided shot boundaries, this 86-hour footage has 61,901 video
shots, which are relatively evenly distributed across the 6
channels. The TREC07 collection contains 50 hours of news
magazine, science news, news reports, documentaries, edu-
cational programming, and archival video provided by the
Netherlands Institute for Sound and Vision, which can be
collectively described as documentary video. This collection
has 21,532 shots, and there is no further partitioning into
channels or sub-collections.

Semantic concepts: The labels of 39 semantic con-
cepts are provided on all the shots of TREC05 as part of
the Light Scale Concept Ontology for Multimedia (LSCOM-
Lite) project [6]. The labels of the same concepts except
three of them (thus totally 36 concepts) are also available
on TREC07. These concepts belong to various types, such
as objects (e.g., Car), scenes (e.g., Sky), semantic topics
(e.g., Military), and human activities (e.g., Meeting). There
is a large difference between concepts in terms of frequency,
which is the ratio of relevant shots among all the shots. Gen-
eral concepts have frequencies around 50%, such as Outdoor,
while rare ones have frequencies below 1%, such as Prisoner.

Features: Each video shot is represented by the middle
frame in the temporal axis as its “keyframe”. The keyframe
is described by a 225-d color moment feature computed from
5×5 grids and a 48-d Gabor texture feature. We concatenate
them into a 273-d feature vector representing the video shot.
In several TRECVID evaluations (e.g., [3]), this frequently
used feature has shown to provide performance on par with
other state-of-the-art visual features. Given the time and
space constraints, we choose to focus on this representative
feature set and leave the investigation of other features (e.g.,
SIFT-like local features) to future work.

Method: Almost all the methods apply SVMs with radius-
basis kernel function (RBF) to train concept classifiers due
to its practical success. Even sophisticated methods are
built on SVM concept classifiers as the building blocks, e.g.,
combining SVM classifiers built on different features and
classifiers for related concepts [10, 13, 1, 8, 12, 15]. It is
fair to say that training SVM concept classifiers is the foun-
dation of concept detection, and their performance is an
important indicator of the status of this area. To make sure



the results of our study are general, we train all the con-
cept classifiers based on SVMs with RBF kernel using the
widely-used LIBSVM package [2].

The model parameters, especially gamma in the RBF ker-
nel, have shown to have a large impact on the performance
and were heavily tuned in practice. In our study, we set the
model parameters to values that lead to respectable perfor-
mance on the same concepts and data in TRECVID 2005
evaluation [3]. They are not necessarily the parameters that
achieve the highest AP or MAP. This is not a problem since
our focus is on the consistency and generalizability of per-
formance. We care about the change of performance across
different domains instead of the absolute performance in one
domain. In fact, more tweaking of parameters may result in
further overfitting and even worse generalization ability.

Setting: Concept classifiers are trained either on one of
the 6 channels in TREC05, such as CNN, or on the entire
collection, i.e, TREC05 or TREC07. The reason to have
them trained from multiple datasets is to make conclusions
more convincing and less likely the result of pure chance.
This also allows us to test the generalization ability of con-
cept classifiers across different channels and across different
collections.

2.2 Performance metric: ∆AP and ∆MAP
Average precision (AP) is a standard performance met-

ric of a concept classifier. Given the classifier’s output as
relevance scores on a set of shots, we rank the shots in de-
scending order of their score, and compute AP as the average
of the precisions of this ranked list truncated at each of the
relevant shots. The mean of APs, or mean average precision

(MAP), is a metric of the average performance of multiple
concept classifiers.

While AP is a good metric of rank quality, as the metric of
classifier performance it can be incomplete and misleading.
The lower bound (baseline) of AP on a concept should be
the AP of a“random classifier” that sorts the test shots com-

pletely randomly. Given the definition of AP, it is easy to
see that the baseline AP of a concept is not zero; instead, it
is equal to the frequency of that concept. Therefore, differ-
ent concepts have different baselines, and the baselines have
no relation with how well concept classifiers perform. For
comparing classifiers, AP is misleading because it contains
the baseline AP, giving concepts with higher baseline unfair
advantage to concepts with lower baseline.

Two specific problems arise with the use of AP. First,
it makes concept classifiers less comparable. For example,
an Outdoor classifier with 0.9 AP is not necessarily better
than a Studio classifier with 0.8 AP, as the random baseline
(frequency) of the latter is much lower. Even for the same
concept, the classifiers built on different collections are still
not comparable because the concept’s frequency varies with
collections. The second problem comes with using MAP
as the metric of average performance on multiple concepts,
where MAP is the mean of the APs on these concepts. Be-
cause concept frequency varies greatly, sometimes by orders
of magnitude, MAP can be easily dominated by the AP of a
concept with a much higher frequency than the rest. On the
other hand, a rare concept whose positive instances occur in
nearly identical form (e.g., commercials) typically has a very
high AP if one such instance is in the training data. This
results in a large but somewhat deceptive improvement on
MAP, without any generalizability to other domains.

Training

CCTV CNN LBC MSNBC NBC NTDTV

Test

CCTV .332 .167 .172 .166 .172 .138
CNN .145 .319 .151 .193 .168 .132
LBC .161 .152 .306 .159 .180 .159
MSNBC .123 .176 .129 .312 .179 .122
NBC .140 .147 .152 .180 .329 .138
NTDTV .127 .129 .165 .141 .150 .313

(a) MAP

Training

CCTV CNN LBC MSNBC NBC NTDTV

Test

CCTV .256 .088 .093 .089 .095 .061
CNN .075 .250 .080 .124 .100 .062
LBC .080 .070 .226 .079 .101 .077
MSNBC .058 .111 .064 .249 .116 .057
NBC .074 .081 .086 .116 .265 .072
NTDTV .058 .059 .094 .072 .081 .242

(b) ∆MAP

Table 1: Average concept detection performance as
(a) MAP and (b) ∆MAP of 39 concepts with train-
ing and test data from any two of the 6 channels in
the TREC05 collection.

A concept classifier should be evaluated as to how much
better it performs than a random classifier. Thus, we define
delta AP (or ∆AP) as the difference between the AP of a
concept classifier and the random baseline of this concept in
a particular dataset. In other words, ∆AP measures the im-

provement of rank quality as the result of using a classifier,
which is a more faithful metric than AP for evaluating clas-
sifiers. While not directly measuring rank quality, a higher
∆AP definitely means better rank because AP > ∆AP .
Note that ∆AP can occasionally be negative if the classifier
performs worse than random. We also define ∆MAP as the
mean of multiple ∆APs.

3. GENERALIZABILITY TEST
To see how well concept classifiers generalize, we build

classifiers from one domain and compare their performance
on the data from the same domain (i.e., within-domain per-
formance) and from other domains (i.e., cross-domain per-
formance). The experiment consists of two settings. In the
cross-channel setting, we apply concept classifiers trained
from one news channel of TRECV05DEV to another chan-
nel. In the cross-genre setting, we apply concept classifiers
trained from the entire TREC05 to TREC07, or the other
way around. The second setting is perhaps more challenging
since it is between news video and documentary video, while
the former is between news video from different broadcast-
ers.

3.1 Cross-channel performance
For each of the 6 channels in TREC05, we build concept

classifiers of the 39 LSCOM-Lite concepts using all the video
data in that channel. This results in a total of 6 × 39 clas-
sifiers. The channel used for training a classifier is called
training channel, while the channel to which the classifier is
applied is called test channel.

Table 1 shows the average performance as MAP and ∆MAP
of the concept classifiers for the 39 LSCOM-Lite concepts



�

����

���

����

���

����

�����	
���		� �����
���		���������
�����
���		����	�

�����
���		��������

�
��
� 
 ���


 � �


 !"�

Figure 1: Comparison of within-channel perfor-
mance and the highest, mean, and lowest cross-
channel performance in ∆MAP.

under various training and test channels in two matrices. In
each matrix, the numbers on the diagonal denotes within-

channel performance, namely the performance when the train-
ing and test channel are the same. This performance is
evaluated using 5-fold cross validation on each channel in
order to avoid overfitting caused by using the same data
for both training and testing. The numbers off the diag-
onal in each matrix denote the cross-channel performance

of concept classifiers trained from one channel applied on a
different channel.

It is clear from Table 1 that cross-channel performance
of concept classifiers is consistently and substantially lower
than the within-channel performance. While all within-
channel MAPs are above 0.3, all the cross-channel MAPs
are below 0.2, so the average decline is around 50%. This
is a significant drop, but it is still biased by the random
baseline, which is about 0.07 MAP as the average of 39
concepts. ∆MAP corrects this bias by factoring out the
baselines. In terms of ∆MAP, the performance has a more
significant decline at about 70%, from around 0.25 to below
0.1 in most cases. The performance decline is also universal,
with the smallest decline around 50%, which happens when
we apply MSNBC classifiers on CNN. While performance
decline is expected, the severity of decline is surprising given
that all the video data are of the same genre, i.e., broadcast
news video. Overall, concept classifiers generalize poorly to
channels other than their training channel.

There are two more interesting observations in Table 1.
First, the channel with the highest within-domain MAP is
CCTV with 0.332 MAP, and the channel with the lowest
within-domain MAP is LBC at 0.306. However, the aver-
age cross-channel performance of CCTV classifiers is 0.139
MAP, lower than the average cross-channel performance of
LBC classifiers, which is 0.151 MAP. This suggests that con-
cept classifiers with higher performance in their training do-
main do not guarantee higher performance in other domains.
In fact, they may have worse cross-domain performance as
the result of overfitting. This warns against the common
practice of heavy parameter tuning through cross validation
in a single domain.

Second, the cross-channel performance of concept clas-
sifiers varies significantly with different test channels. As
shown in Table 1, when applying classifiers trained from a
fixed channel to the other 5 channels, there is a large gap be-
tween the highest and the lowest performance. For example,
MSNBC-based classifiers achieve 0.193 MAP on CNN but

MAP ∆ MAP

Training TREC05 TREC07 TREC05 TREC07

Test
TREC05 0.294 0.143 0.223 0.073
TREC07 0.166 0.201 0.086 0.122

Table 2: Average concept detection performance
on 36 concepts with training and test data from
TREC05 (news video) and TREC07 (documentary).

only 0.141 MAP on NTDTV. Note that the basic assump-
tion of supervised classification is that the training and test
data follow the same distribution. Thus, the cross-channel
performance is determined by how similar the training and
test channel is in terms of data distribution. In the above
example, MSNBC is definitely more similar to CNN than to
NTDTV.

Figure 1 shows the within-channel performance and the
highest, mean, and lowest cross-channel performance in terms
of ∆MAP, where each performance is the average of the re-
sults on 39 concepts and 6 training channels. It is clear
that the relation between training and test channel has a
huge impact on performance. On average, concept classi-
fiers lose only 40% performance when they are applied to
the most similar test channels, but almost the entire perfor-
mance (85%) on the most dissimilar ones.

3.2 Cross-genre performance
The cross-genre experiment involves both the news video

in TREC05 and the documentary video in TREC07. To
obtain the cross-genre performance, we build SVM classifiers
for the 36 common concepts using all the data in either of the
two collections, and evaluate them on the other collection.
Similarly, the within-genre performance is obtained by 5-fold
cross validation on each collection.

Table 2 shows the within-genre and cross-genre perfor-
mance in terms of MAP and ∆MAP. Similar to the obser-
vation in cross-channel experiment, the cross-genre perfor-
mance is significantly lower than the within-genre perfor-
mance. The relative drop of ∆MAP is 61% when applying
classifiers trained from news video (TREC05) to documen-
tary video (TREC07), or 40% the other way around. Some-
what surprisingly, this performance drop is not larger than
in the cross-channel setting, although the training and test
data from the two genres are more dissimilar. A possible ex-
planation is that the concept classifiers are built on a much
larger training set (the data in all 6 channels are aggregated
for training) and are therefore more reliable.

3.3 Discussion
The experiments undoubtedly show that concept classi-

fiers generalize poorly beyond their own domain. The prob-
lem exists even between data that we might think are very
similar, such as the news video from MSNBC and from NBC.
This implies that existing concept classifiers offer little help
on future data. Whenever a new domain emerges, one has
to build new classifiers from scratch, which involves a huge
amount of labeling effort and computational resource. For
example, in TRECVID a large set of training data were
manually labeled to build concept classifiers for test data of
approximately the same size, and this effort was repeated
every year. This practice simply does not scale in the face
of an increasing variety of multimedia data.



An obvious reason for the poor generalizability is the dif-
ference on data distribution between domains, which vio-
lates the basic assumption of supervised learning. For ex-
ample, a Studio shot may look very different in CNN and in
CCTV, causing the classifiers to fail. But this is no excuse.
As speech recognition systems should work with different
speakers, concept detection should work consistently despite
the source of the data, and ideally, despite the genre of the
data. The real problem might be that our features are su-
perficial and not domain-invariant, or that our classification
algorithms are not smart enough to learn the essential pat-
terns of each concept. We explore the question of how much
our classifiers have learned from data in the next section.

4. LEARNING, OR MEMORIZATION
We approach the problem of whether our concept clas-

sifiers actually learn from the data or merely memorize it
from two aspects. We first examine the ratio of data used as
support vectors in these SVM classifiers, and then compare
their performance with a memory-based approach.

4.1 Ratio of Support Vectors
The decision function of a SVM classifier is expressed as:

f(x) =
X

xi∈DSV

αiyiK(x, xi) (1)

where DSV is a subset of training data called support vectors
(SVs), xi and yi ∈ {−1, 1} are a SV and its label indicating
its relevance to a given concept, and K(x, xi) is the kernel
function determining the similarity between the query point
x and each SV xi. This shows that the decision boundary of
a SVM classifier is completely determined by the SVs, which
are representative instances chosen by the SVM algorithm to
define how the positive and negative data are separated. For
example, training instances close to the decision boundary
are typically chosen as SVs.

When RBF is the kernel function, the number of SVs in-
dicates the complexity of the decision boundary and, as we
will show, how much the SVM classifier has learned from
the data. Think SVM learning as data compression. If the
SVM algorithm finds a smoothed boundary to separate the
two classes, it would need only a small percentage of data
as SVs to represent that boundary. In this case, it has com-
pressed the data into a small set of SVs while retaining the
information about classification. If a smoothed boundary
cannot be found, the SVM algorithm would produce a con-
voluted boundary that zigzags to place every positive in-
stance on one side and negative instance on the other side.
Such as boundary needs to be supported locally by a large
number of SVs. In this case, it fails to compress the data.
It does not do much learning besides saying “the neighbor-
hood around positive data is positive, and the neighborhood
around negative data is negative”.

In Table 3, we show the ratio of SVs among the entire
training data, among the positive data, and among the neg-
ative data, in SVM classifiers trained on the 6 channels and
the TREC05 and TREC07 collection. All the ratios are
averaged among the classifiers for the 39 concepts (36 for
TREC07). The number of SVs in each classifier is obtained
by examining the SVM model file generated by LIBSVM.
We see that while the SVM classifiers do “compress” the
data into a small set of SVs about only 12% to 15% of the
training data, they retain most of the positive instances as

Percentage of SVs in

Dataset # shots pos data neg data all data

CCTV 10896 92.1% 10.5% 13.2%
CNN 11025 93.8% 9.3% 12.0%
LBC 15272 94.0% 10.4% 12.8%
MSNBC 8905 96.2% 9.7% 12.2%
NBC 9322 95.6% 11.4% 14.5%
NTDTV 6481 94.1% 10.9% 13.6%

TREC05 61901 94.7% 9.8% 12.4%
TREC07 21532 94.3% 12.6% 15.5%

Table 3: The average ratio of SVs in all data, in
positive data, and in negative data of the SVM con-
cept classifiers for the 39 concepts (36 for TREC07)
trained on datasets of different sizes.

��

�
� � �

�
�

��
��
��
��
��

���� 	�
������
	����
��� ���

���
���
��

��
�	


��

� �
� �

�
�
��
��
��
��
��

���� ������������������� ����

���
���
��

��
�	


(a) TREC05 (61901 shots) (b) TREC07 (21532 shots)
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(c) CNN (11025 shots) (b) NTDTV (6481 shots)

Figure 2: The number of concepts with ratio of SVs
in positive data in different ranges on 4 datasets.

SVs. The compression is mainly from the negative data,
which are abundant and less valuable to classification. The
SVM classifiers fail to summarize the positive data, which
are more valuable due to the imbalance of the two classes,
into general and concise representations. As a result, they
have to memorize most of them.

Figure 2 shows the distribution histogram of concepts
against the ratio of SVs in positive data on 4 of the 8 data
sets listed in Table 3. The distribution is very similar across
the 4 datasets whose sizes are very different. For a majority
of concepts, all the positive instances are used as SVs, and
for many of the remaining ones, over 90% of the positive
instances are SVs. Only on very few concepts is the ratio of
SVs in positive data around or below 50%.

Overall, SVM concept classifiers do not learn the “gen-
eral patterns” of positive data for most concepts, while they
summarize negative data well. One explanation is the im-
balance between the positive and negative data. However,
we see no connections between the absolute number of pos-
itive data and the ratio of SVs in them. As shown in Table
3, from NTDTV to TREC05 the data size (and the size of
positive data) increases almost 10 times, but the ratio of
SVs in positive data remains in the small range of 92% to
96%. The relative ratio between positive and negative data
(which is related to concept frequency) is a better reason,
but there are still exceptions. The classifiers of some in-
frequent concepts use only a small ratio of positive data as
SVs. For example, Studio classifiers use only 40.6% of the
positive data as SVs, despite that only 10% of all the data



are positive. In contrast, classifiers for Sky which has a sim-
ilar frequency (11%) use 97.3% positive data as SVs. This
is because Studio shots are visually similar and can be well
represented by a subset of them, which is not the case with
Sky. So it seems that the high ratio of SVs in positive data is
more related to the intrinsic property of each concept, such
as irregularity of the distribution of positive data in the fea-
ture space, which in turn is related to the limitation of the
visual features we used.

4.2 SVMs vs. kNN
From another perspective, we can view each term yiK(x, xi)

in the summation of Eq.(1) as an atomic classifier that pre-
dicts the label of x to be the same as the label of SV xi with
confidence weighted by their similarity (distance). There-
fore, a SVM classifier can be viewed as an ensemble of many
such atomic classifiers, and its prediction the result of weighted
majority voting by all the SVs. This shows that SVMs are
similar to memory-based models such as k-nearest neighbor
(kNN), except that they use only SVs rather than all the
training data for prediction.

A memory-based model like kNN needs no training pre

se; it merely memorizes the training data. The high ratio
of SVs in positive data in the SVM concept classifiers im-
plies that they too learn little beyond memorizing most of
the positive data and some negative data. It is now inter-
esting to compare the performance of the two in order to
see whether SVMs perform any better than kNN. We use a
kNN classifier that predicts a score for each query point xq

as the normalized weighted sum of the labels yi ∈ {0, 1} of
its K nearest neighbor x1, ..., xK :

f(x) =

PK

i=1
wiyi

PK

i=1
wi

(2)

where the weight is set to the inverse of the Euclidean dis-
tance between x and each of its neighbors, i.e., wi = 1/D(xi, x).
We choose K = 100 based on preliminary experiments. Ex-
cept for the denominator, Eq.(2) has a similar form to SVMs’
decision function in Eq.(1) if we view the kernel K(x, xi) also
as a weight related to the similarity (distance) between x and
xi. The difference is that kNN makes predictions based on
nearest neighbors while SVMs make predictions based on
SVs. When most positive data are used as SVs, as shown
above, a SVM classifier behaves very close to a kNN classifier
with a very large K.

Figure 3 compares the (within-domain) performance of
SVM and kNN concept classifiers side by side on each of the
6 channels and the TREC05 and TREC07 collection. The
performance is measured by MAP of 5-fold cross-validation
and is averaged from the 39 concepts (36 for TREC07). Sur-
prisingly, SVM and kNN classifiers have comparable per-
formance, despite the fact that the training-less kNN sim-
ply memorizes all the training data. One may argue that
with careful parameter tuning SVMs may outperform kNN.
While this is possible, we may also fine-tune kNN by vary-
ing K and the ways weight wi is computed. Given that this
comparison is done over many data sets, we believe SVMs
and kNN are at the same level of performance in the case
of concept detection. Together with the observation on the
number of SVs, we see that SVM classifiers have “down-
graded” themselves to memory-based methods in terms of
both structure and performance. This is probably due to
(again) the limitation of the visual features we used, and it
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Figure 3: Comparison of the performance of SVM
and kNN concept classifiers on different datasets.
The performance is measured as MAP of 5-fold
cross-validation and the average of 39 concepts (36
on TREC07).

is an interesting future work to see if the same observation
occurs on other features.

At the same performance level, SVMs not only require
longer training time than the training-less kNN, they are
not necessarily faster in prediction. Given the form of its
decision function Eq.(1), the prediction time of a SVM clas-
sifier increases linearly with the number of SVs. In compar-
ison, there are efficient implementations of kNN which can
significantly reduce the instances to be traversed in search
for nearest neighbors. In fact, the ANN library for approx-
imate kNN [5] we used in our experiment performs faster
than LIBSVM in terms of prediction time.

4.3 Discussion
The observation that SVM concept classifiers learn little

besides memorizing the training data may help explain their
poor generalizability. Because they memorize most of the
positive data, they perform nearest-neighbor type of predic-
tion, i.e., classifying data close to the positive SVs as positive
and so on. This approach is fragile and it fails easily when
the new data are distributed differently. For example, there
are some gray-scale keyframes in TREC07 which distribute
away from the color keyframes in TREC05 in the space of
color features. As a result, concept classifiers trained on
TREC05 perform poorly on TREC07. A concept classifier
may generalize better if its boundary is more general and
smoothed.

5. FINDING RELIABLE CONCEPT CLAS-
SIFIERS

We have learned that in general concept classifiers learn
little from data and generalize poorly. On a per-concept ba-
sis, however, classifiers of some concepts are more reliable
than the others. It is important to find out these reliable
concept classifiers so that we can use them with trust on
other domains or in tasks such as retrieval. More impor-
tant is to identify the common properties of reliable concept
classifiers, which can guide us to discover new classifiers that
are reliable without testing their generalizability on other do-
mains. In this section, we explore the problem of what the
reliable concept classifiers are and how to find them.

Figure 4(a) shows the within- and cross-channel perfor-
mance as ∆MAP on 39 concepts ordered from left to right
in descending concept frequency, where the performance is
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(b) Within-genre performance vs. cross-genre performance

Figure 4: The within- and cross-domain performance for the 39 concepts in descending order of frequency in
(a) cross-channel setting and (b) cross-genre setting.

averaged from all training-test configurations. Figure 4(b)
shows the within- and cross-genre performance as ∆AP on
36 concepts as we apply classifies trained on TREC05 to
itself (via cross-validation) and to TREC07. The use of
∆AP and ∆MAP removes the impact from the difference
on concept frequency and allows a realistic measure of the
performance decline on each concept.

From Figure 4, we see a large variation between concepts
in terms of the reliability of performance. The decline from
within- to cross-domain performance is small for some con-
cepts, such as Person and Crowd, but substantial for the
others, such as Animal and Charts. Overall, reliable concept
classifiers are more scarce than unreliable ones. Moreover,
concept classifiers with higher within-domain performance
are not necessarily more reliable, e.g., Sports. This shows
(again) that optimizing for the performance on the training
domain does not lead to more reliable concept classifiers.

A closer examination shows that the reliability of concept
classifiers tend to increase as concept frequency increases. In
fact, the 5 most frequent concepts have the smallest relative
performance decline in cross-domain setting, while all the
19 concepts with frequency below 0.02 suffers a performance
decline over 70%. So we speculate that reliable concept clas-
sifiers share common properties like high concept frequency
and perhaps more.

We measure reliability by the relative decline from within-
domain ∆MAP to cross-domain ∆MAP:

Decline =
∆MAPwithin − ∆MAPcross

∆MAPwithin

(3)

where smaller decline indicates better reliability, and vice
versa. To explore the common properties of concept classi-
fiers, we plot in Figure 5 the distribution of relative decline
from within- to cross-channel performance on each of the 39
concepts against (a) the concept frequency, (b) the average
number of SVs, (c) the average number of SVs in positive
data, and (d) the average ratio of SVs in positive data in
the classifiers of the concept trained from 6 different chan-
nels. We also calculate the correlation coefficient between
the decline and each factor, which is shown in the figure.

Figure 5(a) shows that the classifiers of frequent concepts
indeed have smaller performance decline, which means they
are more reliable than the classifiers of rare concepts. This
trend is quite pronounced as indicated by a large (nega-
tive) correlation coefficient of -0.79. One reason is that fre-
quent concepts are also generic ones whose definitions are
relatively insensitive to domain changes (e.g., Outdoor, Per-

son). Another reason can be that frequent concepts have a
large number of positive data, which are necessary for build-
ing reliable classifiers, while rare ones do not have sufficient
positive data.
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Figure 5: The relative decline of cross-channel ∆MAP from within-channel ∆MAP on each concept against
(a) the concept frequency, (b) the average number of SVs, (c) the average number of SVs in positive data,
and (d) the average ratio of SVs in positive data in the classifiers of the concept. The correlation coefficient
between the decline on ∆MAP and each factor is shown in each figure.

The second point is somewhat confirmed by Figure 5(b)
and (c), which shows that the performance decline is smaller
when the total number of SVs or the number of SVs in posi-
tive data (i.e., positive SVs) in the classifiers increases. The
correlation coefficients in both cases are -0.87, indicating
an even stronger (negative) correlation than that between
decline and concept frequency. Thus, more complicated and
“bloated” concept classifiers tend to generalize better than
simpler ones. This observation seems to be against the Oc-
cam’s razor, which states that the simplest solution is the
best. This is of no surprise, however, given our observa-
tion that SVM concept classifiers memorize most of the pos-
itive data and behave close to memory-based models. For
memory-based models like kNN, a larger set of training data
reduces model variation and usually leads to better perfor-
mance. This helps explain why SVM classifiers bloated with
a large number of SVs are more reliable.

Less obvious but more interesting is the correlation be-
tween performance decline and the ratio of SVs in positive
data shown in Figure 5(d). While this ratio is 100% for
many concepts, from the remaining ones we find that the
performance tends to be more reliable if a concept classifier
uses a smaller percentage of positive data as SVs. For the 4
most reliable concept classifiers, the ratio of SVs in positive
data are 39%, 71%, 77%, and 97%, much lower than the
average. Because the ratio of SVs in positive data indicates
how much SVM classifiers have learned from the data, this
observation implies that the more a SVM classifier learns
from data, the better it will generalize to other domains.

On the one hand, concept classifiers with more SVs in
positive data are more reliable. On the other hand, concept
classifiers with a smaller ratio of SVs in positive data are
more reliable. There is no contradictions between the two
seemingly conflicting observations. If a SVM classifier is able
to learn the pattern of training data, it needs only a small
percentage of positive instances as SVs and still performs
reliably. If not, it has to use most positive instances and
resort to a memory-based approach for classification. In
this case, more positive SVs help reduce model variation
and yield better performance.

To confirm our findings, we repeat the same analysis in the
cross-genre setting by applying concept classifiers trained on
TREC05 to TREC07 and analyzing the performance decline
on a per-concept basis. In this case, the concept classifiers
are trained with a much larger set of training data. Fig-
ure 6(a) - (d) shows the distribution of performance decline
against the concept frequency, the number of SVs, and the
number and ratio of SVs in positive data in each concept
classifier. While the correlations are slightly weaker, the
general trend is consistent with that in the cross-channel
experiment. Classifiers of frequent concepts and bloated
classifiers with a large number of SVs appear to be more
reliable across different genres (collections).
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Figure 6: The relative decline of ∆MAP on each concept against (a) the concept frequency, (b) the number
of SVs, (c) the number of SVs in positive data, and (d) the ratio of SVs in positive data in the concept
classifier, when applying concept classifier trained from TREC05 to TREC07.

6. CONCLUSION AND FUTURE WORK
We summarize the highlights of our findings as follows:

• Concept classifiers trained using the standard approach
are generally unreliable because they generalize poorly
to domains other than it training domain, indicated by
significant and consistent decline of performance.

• The SVM-based concept classifiers are generally un-
able to learn much from data and have to retain most of
positive data as support vectors. This makes them be-
have close to memory-based approaches such as kNN,
which is confirmed by the comparable performance be-
tween the two models.

• There is a large variation in terms of reliability among
concept classifiers. Classifiers of frequent concepts,
classifiers bloated with many SVs, and classifiers us-
ing a small percentage of positive data as SVs, tend to
be more reliable than the others. This helps us identify
reliable concept classifiers a priori without having to
evaluate their generalizability to all possible domains
through expensive experiments.

These observations cause serious concern. Among nearly
40 concepts, all except a precious handful do not have gener-
alizable classifiers. Ungeneralizable classifiers are of limited
use in the face of a growing variety of multimedia data, and
building new classifiers for every domain is a daunting task
in terms of annotation effort and computation. Moreover,

our observations are limited because the experiments focus
on data with similar nature, i.e., news video from differ-
ent channels and documentary. As an area of future work,
we plan to study the generalizability issue between data of
different nature, such as news video and Web video (e.g.,
YouTube video), where the problem can be more serious.

Semantic concepts were proposed to bridge the gap be-
tween low-level features in image and video data and high-
level user queries. We argue that these concepts themselves
constitute too large a gap to the low-level features. On the
feature side, this paper has shown that global features on the
distribution of color, texture, or edge are too limiting and
data-sensitive to capture the essential patterns of most con-
cepts, resulting in poor generalizability across domains. Lo-
cal or keypoint-based features (e.g., SIFT, bag-of-features)
have shown promising results in image and video classifica-
tion [9, 8]. We plan to study their reliability as interesting
future work. Moreover, it is beneficial to use specialized
features and approaches for certain concepts. A successful
example is the use of a face detector for the Face concept.
One specialized approach may detect only one concept, but
in a more reliable way. After all, it is quality instead of
quantity that really matters.

On the concept side, many concepts are simply too high-
level to be detected from the features available. It is hard
to imagine that concepts requiring high-level human judge-
ment, such as Prisoner, Corporate-leader, can be reliably
detected from color and texture features. The (deceptive)



performance on them is achieved by recognizing contextual
clues such as background, which are seriously data depen-
dant. Concepts like Outdoor and Sky have better correspon-
dence with low-level features and as our study shows, they
are indeed more reliable (and deservedly so). This shows
that we should focus on less “semantic”, intermediate-level
concepts that have an explainable, demonstrated connec-
tion with low-level features, such as Desert and Waterscape.
Given the complexity of many video scenes, we may also
consider training concept classifiers based on image regions
rather than the whole images or video shots.

Another future work is on adapting concept classifiers
from one domain to another. Several approaches have been
proposed on this direction. For example, cross-domain SVM
(CDSVM) proposed in [4] updates existing classifiers to a
new domain by re-training over the previously learned sup-
port vectors and training instances from the new domain.
In comparison, adaptive SVM (aSVM) proposed in [14] di-
rectly modifies the decision functions of the existing classi-
fiers based on the limited training instances from the new
domain. These approaches improve the performance on new
domains at the cost extra labeling, but they do not make
concept classifiers fundamentally more reliable. Adapting
existing classifiers is meaningful only when they provide use-
ful information on the new domains. With the observations
in this study, we can make a better judgement as to which
concept classifiers to adapt and which to discard (and re-
place with new classifiers).
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