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ABSTRACT

Many multimedia applications can benefit from techniques
for adapting existing classifiers to data with different distri-
butions. One example is cross-domain video concept detec-
tion which aims to adapt concept classifiers across various
video domains. In this paper, we explore two key problems
for classifier adaptation: (1) how to transform existing clas-
sifier(s) into an effective classifier for a new dataset that only
has a limited number of labeled examples, and (2) how to
select the best existing classifier(s) for adaptation. For the
first problem, we propose Adaptive Support Vector Machines
(A-SVMs) as a general method to adapt one or more existing
classifiers of any type to the new dataset. It aims to learn the
“delta function” between the original and adapted classifier
using an objective function similar to SVMs. For the second
problem, we estimate the performance of each existing clas-
sifier on the sparsely-labeled new dataset by analyzing its
score distribution and other meta features, and select the
classifiers with the best estimated performance. The pro-
posed method outperforms several baseline and competing
methods in terms of classification accuracy and efficiency in
cross-domain concept detection in the TRECVID corpus.
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H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing
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1. INTRODUCTION

We consider the problem of cross-domain video con-
cept detection, which aims to generalize models built for
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Figure 2: “Weather” shots in CNN and CCTV

detecting semantic concepts in one domain of video data to
other domains. Here a domain can be a video genre, a con-
tent provider, or a video program. The data distributions of
different domains are likely to be different. For instance, the
TRECVID collection [13] is such a multi-domain video cor-
pus which has news video from different TV channels and in
different languages. Conventional concept detection meth-
ods [11, 13, 14, 19] build concept classifiers from labeled ex-
amples in one or more domains and assume that the test data
come from the same domain(s). In real applications, how-
ever, there is often a need to apply classifiers to data from
a different domain. Cross-domain concept detection is chal-
lenging because, as shown in Figure 1 and 2, video shots of
easily recognizable concepts such as “anchor” and “weather”
exhibit dissimilar visual features when they are from two
domains. As a result, concept classifiers trained from one
domain may perform poorly on the other domains, and it
is too costly to manually collect a large number of exam-
ples and build separate classifiers for every domain. While
the mismatch between training and testing distribution is a
fundamental problem in machine learning [5, 17, 18], it is
particularly severe in the multimedia area due to the large
data variance and the “semantic gap” between content and
semantics. In this paper, we investigate general methods for
adapting existing classifier(s) to data with different distri-
butions and their application in cross-domain video concept
detection.

We consider the general problem of a binary classification
task with respect to a given topic in a primary dataset
DP, where only a limited number of instances DY are labeled
and the majority D}, are unlabeled (thus, D = D} U D%).



In addition, there are one or multiple auxiliary datasets
as DY, ..., Dy, each of which is drawn from a distribution
that might be different from the distribution of the pri-
mary dataset. The auxiliary datasets are fully labeled, and
an auxiliary classifier f; has been trained from each of
these datasets Dj. In order to classify DP, simply apply-
ing any fi may not achieve good performance due to the
mismatched distribution. On the other hand, using a new
classifier learned only from the limited labeled examples in
D! may suffer from the high variance problem. For better
bias-variance tradeoff, one should leverage both the knowl-
edge in the auxiliary data and the labeled primary examples
to build better classifiers for the primary data.

In this paper, we explore classifier adaptation techniques
that aim to adapt auxiliary classifier(s) to the primary dataset
based on limited labeled examples in an efficient and prin-
cipled manner. Two subproblems are studied:

1. Given auxiliary classifier(s) of any type, how to mi-
grate it (them) into an effective classifier for the pri-
mary dataset using limited labeled examples?

2. How to choose the best auxiliary classifier for adapta-
tion if there are multiple existing classifiers?

For problem 1, we propose Adaptive Support Vector Ma-
chines (A-SVMs) for adapting an auxiliary classifier to the
primary dataset by learning a “delta function” between the
decision functions of the auxiliary and new classifier using
an objective function extended from standard SVMs. We
then propose a simple extension of A-SVMs to deal with
multiple auxiliary classifiers, and an efficient learning algo-
rithm for A-SVMs based on quadratic programming. For
problem 2, we base our selection of auxiliary classifiers on
the estimation of their performance on the primary dataset
which is basically unlabeled. Our performance estimation
method exploits features from the score distribution (of the
classifier) and its consistency with other classifiers.

A-SVMs has several unique properties that distinguish
it from related methods on transfer learning, incremental
learning, and drifting concept detection. First, it is a “black-
box” method in that sense that it can handle auxiliary classi-
fiers of arbitrary types, and it does not require the availabil-
ity of auxiliary data. This makes it applicable to domains
where the classifiers are unconventional and/or the old data
are unaccessible for some reasons. Second, its learning pro-
cess does not involve auxiliary data and is therefore as fast
as learning a classifier from the new (primary) data. Last,
instead of explicitly modeling the distribution difference, it
takes a discriminative approach and measures the distribu-
tion difference by estimating a classifier’s performance on
another distribution. This is because modeling distribution
change is extremely hard in high-dimensional spaces and not
necessarily useful to classification, for which the distribution
of positive data is more critical (but unknown).

We evaluate the proposed methods to cross-domain video
concept detection in the TRECVID collection [13], which
consists of news video from multiple sources. In the experi-
ments of adapting concept classifiers across data sources, the
adapted classifiers trained by A-SVMs significantly outper-
form both auxiliary classifiers and new classifiers trained ex-
clusively from labeled examples. We also compare A-SVMs
to an aggregate approach that re-trains a classifier using all
the (both primary and auxiliary) data, and an ensemble ap-

proach that combines the outputs of classifiers trained sep-
arately from the primary and auxiliary data. Experiments
show that our method achieves better performance than the
ensemble approach and comparable performance to the ag-
gregate approach while using 1/10 of its training time.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the related work. The proposed adaptive
SVM model is described in Section 3, and the method for
selecting auxiliary classifier is discussed in Section 4. Two
alternative methods for adaptation are introduced in Section
5. We describe the application of video concept detection in
Section 6 and present the experiment results in Section 7.
The conclusions and future work are discussed in Section 8.

2. RELATED WORK

Classifier adaptation can be seen as an effort to solve
the fundamental problem of mismatched distributions be-
tween the training and testing data. This problem occurs
in concept detection in a video corpus such as TRECVID
[13], which contains data from different sources (programs).
In existing approaches[11, 14, 19], concept classifiers are
built from and applied to data collected from all the pro-
grams without considering their difference on distribution.
In this paper, we consider a different scenario where clas-
sifiers trained from one or several programs are adapted
to a different program. The proposed classifier adaptation
method is related to the work on drifting concept detection
in the data mining community and transfer learning and
incremental learning in the machine learning community.

Classifying data with mismatched distribution is similar
to the problem of drifting concept detection if we treat the
target class as a concept. In the data mining community, two
types of approaches have been proposed to detect drifting
concepts from data streams. The first type of approaches
selects training instances using a fixed /adaptive window that
moves over the data stream, weights them by their age or
utility to the target concept, and uses them to build and
update a single target model. Examples in this category
are the approach proposed by Klinkenberg and Joachims [6]
and by Delany et al. [2]. The second type of approaches
maintains an (weighted) ensemble classifier that combines
a set of base classifiers learned from different chunks of the
data stream. The work of Wang et al. [16], Kolter and
Maloof [7] belong to this category. The A-SVMs model is
different from them as it directly adapts an existing model
to the new data, and avoids the overhead of training over
the existing data or maintaining multiple base models.

Transfer learning aims to apply knowledge learned from
one or more tasks to improve the performance on other re-
lated tasks. Similar to our approach, some transfer learn-
ing methods leverage the knowledge of auxiliary data or
other form of prior knowledge to build better models for
the current data. The approaches of Liao et al. [8], Wu
and Dietterich [17], and Wu and Srihari [18] incorporate the
(weighted) auxiliary data into the current training data to
train a more reliable SVM or logistic regression classifier.
But, because their training process involves all the auxiliary
data, they are more expensive than our model which directly
manipulates the classifier(s) learned from auxiliary data.

Incremental learning methods, such as incremental SVMs
[15, 1], continuously update a model with new examples
without re-training over all the examples. When the training
and test distribution is identical, A-SVMs can be treated as



a generic incremental method which can handle classifiers
of any type. It is also more efficient than existing methods
[15, 1] whose training involves at least part of the previous
examples (e.g., support vectors).

3. ADAPTIVE SUPPORT VECTOR
MACHINES

Let D = Dy U DL denote a partially-labeled primary
dataset, where DY is the labeled subset and DY, is the unla-
beled subset. The size of labeled subset D! is very small
compared with that of the whole dataset D?. We have
Dr = (xi,yi)}f\rzl where x; is the iy, data vector and y; €
{—1,+1} is its binary label. For notational simplicity, we let
each data vector x always include a constant 1 as its first ele-
ment such that x; € ]Rdﬂ, where d is the number of features.
In addition to the primary dataset DP, there exists a fully-
labeled auxiliary dataset D* = {(x?,yf)}ﬁv:l or multiple
auxiliary datasets as DY, ..., D}, with Df = {(xiﬂyf)};\;’g17
where x¢,x¥ € R and y¢,yF € {—1,+1}. The distri-
bution of auxiliary data is likely to be different from the
primary data. We assume that an auziliary classifier f*(x)
(or fi(x)) has been trained from each auxiliary dataset D
(or D), which predicts the data label through the sign of its
decision function, i.e., § = f*(x). These auxiliary classifiers
can be trained using any classification algorithm, such as
SVMs, Naive Bayes, decision tree, etc.

Our goal is to learn a classifier f(x) that can accurately
classify the primary dataset. We first briefly review the stan-
dard SVMs which train f(x) from the labeled examples D?.
Inspired by SVMs, adaptive support vector machines (A-
SVMs) are able to adapt an auxiliary classifier f%(x) to a
new classifier f(x) based on the labeled examples in DI.
The basic A-SVMs are further extended to a more general
form which can adapt a combination of multiple existing
candidates f{'(x), ..., fa;(x) to the new classifier.

3.1 Standard SVMs

In SVMs, the label of a data vector x is determined by
the sign of a linear decision function as f(x) = w” x, where
w € R¥! are the model parameters. The non-linear classifi-
cation boundaries preferred by many classification tasks are
achieved through the “kernel trick”: we use a feature map ¢
to project each data vector x into a feature vector ¢(x) in
a space of a higher or even infinite dimension, and rewrite
f as a linear function in that projected feature space, i.e.,
f(x) = wl¢(x). Linear decision boundaries in the projected
feature space corresponds to non-linear boundaries in the
original input space. The form of the decision boundary is
determined by the kernel function K (z,z') = {(¢(x), »(x')),
which defines the inner product of two projected feature
vectors. Our following discussion is based on kernel SVMs,
since linear SVMs are special cases of the kernel model when
¢(x) = x and K(z,7') = (x,x’).

Training a standard SVM classifier from DF = {(x;, y:) }12q
involves the following optimization problem:

N
1 2
H‘EHEHWH +C’Z§i (1)
i=1
s.t. & > 07 yinqS(xi) >1- §i7 V(xi7yi) S 'Df
where ), & measures the total classification error, and ||w||?
is a regularization term that is inversely related to margin

between training examples of two classes. This objective
function seeks a decision boundary that achieves a small
classification error and meanwhile creates a large margin,
with two goals balanced by a scalar cost factor C'.

3.2 One-to-one Adaptation

In this setting, we consider adapting the auxiliary clas-
sifier f%(x) trained from the auxiliary data D® to a new
classifier f(x) for the primary data DP. In A-SVMs, this
is implemented by adding a “delta function” in the form of
Af(x) = wl¢(x) on the basis of f*(x):

FOO) = f2(x) + Af(x) = (%) + w' $(x) (2)

where w are the parameters to be estimated from the labeled
examples in DY.

To learn the parameter w of delta function Af, we pro-
pose an objective function inspired by SVMs:

N
1 2
H&HEHWH +C’;§i (3)
s.t. & >0
yif" (xi) +yiw" p(xi) > 1= &, V(xi,yi) € D}

Similar to Eq.(1), >, & measures the total classification er-
ror of the adapted classifier f(x). The regularization term
|w]|?, although having exactly the same form as in Eq.(1),
has a different meaning because w are the linear parame-
ters of Af(x) rather than f(x). This regularizer favors a
“minimal” delta function that is close to Af(x) = 0, and
consequently, a decision function f(x) that is close to the
auxiliary classifier f¢(x). Therefore, the objective function
in Eq.(3) seeks a new decision boundary that is close to the
boundary of the auxiliary classifier (in the feature space)
and meanwhile separates the labeled examples in D} well.
The cost factor C' in A-SVMs balances the contribution be-
tween the auxiliary classifier (through the regularizer) and
the training examples. The larger C' is, the smaller the in-
fluence of the auxiliary classifier is. Thus, one should use a
small C for a “good” auxiliary classifier and vice versa.

The objective function in Eq.(3) can be rewritten as the
following (primal) Lagrangian:

1 N N
Lp = 5Iwl* +CY & =3 piks
i=1 i=1

N
=3 @y f ) + W o(xi) — (1 - €)) (4)
i=1
where a; > 0, ; > 0 are Lagrange multipliers. We minimize
Lp by setting its derivative with respect to w and £ to zero,
which results in:

g
Il

N
Z iy d(xi)
=1

Q = C—/J,i7 Vi (5)

From the above, it is easy to show that Af(-) = SV, ayi K (-, x:)

as a function in the Reproducing Kernel Hilbert Space (RKHS).
Given the definition of inner product in RKHS, we have

If=£407 = |AfIIP = (Af,Af)
N N
D> aiogyay K (xi,x5) = |lwl* (6)

i=1 j=1



This offers a more intuitive interpretation of the regularizer
lw||® in Eq.(3). Since ||w|* = ||f — f*||?, the regularizer
aims to minimize the distance between the adapted decision
function f(x) and the auxiliary one f(x) in the RKHS.

In addition to Eq.(5), the Karush-Kuhn-Tucker (KKT)
conditions, which the optimal solution of Eq.(4) must satisfy,
also include:

(1-&)}=0

OéiZO
(1-&)>0

pi&i =0

wi >0

§& =0 (M)

ai{yi £ (%) + yiw” x; —

yif (%) + yiw’ x; —

Substituting Eq.(5) into Eq.(4), we get the Lagrange dual
objective function:

N

N N
Lp :Z(l— Zzaa]ylyj (xi,%5) (8)

i=1 i=1 j=1

l\JI»—l

where \; = y; f*(x;). The model parameters o = {ai}f\rzl
can be estimated by maximizing Lp under the constraint
0 < a; < C,Vi. This would give a solution equivalent to that
obtained by minimizing the primal function Lp. Maximizing
Lp over a is a quadratic programming (QP) problem solved
using the algorithm in Section 3.4. Given the solutions &,
the adapted decision function is written as:

fx) = )+ Z Qiyi K (x, i) 9)

where (x4,y:) € DY. The adapted classifier f(x) can be
seen as augmented from the auxiliary classifier f(x) with
support vectors from the labeled subset of the primary data.

The only difference between the dual form of standard
SVMs [5] and the dual form of A-SVMs in Eq.(8) is that
the latter contains the extra term A. We discuss how A
affect the estimation of a. In Eq.(8), if A\i = i f®(x:) < 0,
which indicates the auxiliary classifier f® misclassifies x;, a
larger «; is preferred in order to maximize the dual form
Lp, and vice versa. This is intuitive because the resulting
classifier f(x) is adapted from f“(x) with the additional
support vectors x; € D} and a4 can be seen as their weight.
If the auxiliary classifier f¢(x) misclassifies x;, the output
of the adapted classifier f(x;) needs to deviate from f°(x;)
such that it can predict y; correctly. This is realized by
introducing a support vector x; with a large weight a;. On
the other hand, if the auxiliary classifier correctly classifies
Xi, the value f(x;) does not need to be different from f¢(x;),
so the weight a; can be small or even zero.

As is obvious from its dual form in Eq.(8), an A-SVM clas-
sifier does not introduce any extra variables or constraints
other than those associated with the labeled examples in DY.
Therefore, adapting f*(x) to f(x) is no more expensive than
training a standard SVM model entirely from D7, except
the cost associated with computing every \; for i = 1,.., N.
Since A; = y; f*(x;) is a constant throughout the optimiza-
tion process, there is only a one-time cost for evaluating
f%(x) at N data points in Df. Although the actual cost
varies depending on the complexity of the auxiliary classi-
fier f*(x), it is typically small compared with the cost of
iteratively optimizing the model parameters {o; }7 ;.

3.3 Many-to-one Adaptation

In many real-world applications, there are multiple aux-
iliary datasets DY, ..., D}; with similar distributions to the
primary (current) dataset DP. While our previous model
allows only one auxiliary dataset, we remove this restriction
by proposing an extended A-SVMs model which is able to
leverage multiple auxiliary classifiers fi'(x), ..., fa;(x). The
key idea is to first construct an “ensemble” of auxiliary clas-
sifiers, and then adapt this ensemble to a new classifier f(x)
using the same method in Section 3.2. The adapted classifier
has the following form:

Z tfi (%) + Af(x Z tifi (x

where t;, € (0,1) is the weight of each auxiliary classifier
fi(x) which sums to one as Zﬁil ty, = 1. The objective

) +w'g(x) (10)

function is given by replacing f°(x) with 224:1 tr fio (xi) in
Eq.(3):

N
1 2
min 7 [|w]| +C;§i (11)
M
st & >0, vy efi(x) +yiw! d(xi) > 1—&
k=1

and the Lagrange dual form is rewritten as:
N

Lp=>) (1-X) -——ZZazagyzyg

=1 =1 j=1

(xi,x5)  (12)

where \; is now defined as \; = y; Zlyzl tr fie (x3). Similarly,
maximizing Lp under the KKT conditions (which need to
be modified accordingly) gives the estimation of the model
parameters &, and the adapted classifier is expressed as:

M
> tefi(x)
k=1

3.4 An Efficient Learning Algorithm

We describe an efficient algorithm for A-SVMs. The pa-
rameters « in A-SVMs are estimated by maximizing the dual
objective function defined in Eq.(8) or Eq.(12). This is a
large-scale quadratic programming (QP) problem, where the
number of variables {ai}ﬁil is equal to the number of labeled
examples. The sequential minimal optimization (SMO) al-
gorithm proposed by Platt [12] can efficiently solve a large
QP problem by decomposing it into a series of QP subprob-
lems and optimizing them iteratively. We present a modified
SMO algorithm to A-SVMs as follows.

Specifically, « is the optimal solution to the QP problem
in Eq.(8) if and only if the KKT conditions in Eq.(7) are
fulfilled. This QP problem is solved when, for all i:

+ Z Gy K (x,X5) (13)

OQ':O = M:C’7§i:0$yif(xi)21

0<a; <C = pi>086=0=yf(x)=1
=C = pi=086>0=yf(x)) <1 (14)
Eq.(14) provides a way to check the optimality condition of
the problem and to find variables that violate the optimality

condition. This SMO algorithm chooses one variable to op-
timize in each iteration. While there are many ways to select



working variables, we adopt an intuitive heuristic of select-
ing the variable a;+ that violates the optimality condition
the most:

i" = argmax |y f(x;) — 1] (15)
i€ {iup,ilow}
where tup = argmin ¥ f(X:), 40w = argmax y;f(x;)
i€{tlar<C} i€{t|at>0}

Without loss of generality, let us suppose o is the working
variable to optimize. We update it by setting the derivative
of the dual objective function Lp against oy to zero:

OLp
8011

where f°'4(z) is the decision function Eq.(9) or (13) evalu-
ated using the existing value of a. This leads to an analytical
solution of a:

=1 -y 1) — yi(al®’ — 'YK (z1,21) £ 0

new __ _old 1— ylfOld(xl)
a - + K($17$1)

which may need to be clipped to satisfy the constraint 0 <
a1 < C. To learn an A-SVM classifier, we iteratively choose
working variables by Eq.(15) and optimize them using Eq.(16).
This process continues until the optimality condition in Eq.(14)
is satisfied up to a certain accuracy.

(16)

4. AUXILIARY CLASSIFIERS SELECTION

An important problem related to the success of classifier
adaptation is the selection of auxiliary classifiers from a set
of existing classifiers. Ideally, one should select the “best”
classifier such that the classifier adapted from it outperforms
those adapted from other existing classifiers on the primary
dataset. This metric, however, is difficult to compute, and
in practice we select the classifiers that have the highest es-
timated performance on the primary dataset to be the aux-
iliary classifiers. This is because intuitively, a classifier with
the high performance on the primary data must be trained
from a similar distribution and thus provides a good starting
point for adaptation.

A classifier’s performance on the limited labeled examples
D? may not be a reliable approximation of its performance
on the whole data DP, because DY is too small to faithfully
represent the distribution of DP. Labeling more examples in
DP improves the quality of the estimation at the cost of ex-
tra human labor, which offsets the benefit of classifier adap-
tation on minimizing labeling effort. In order to improve
the performance estimation without having to label more
examples, we explore several meta-level features that indi-
cate a classifier’s performance on a given dataset and can be
computed without data labels. Some of these features come
from the score distribution of the classifier, while the other
features are related to its consistency with other classifiers.

4.1 Features on Score Distribution

A classifier produces a score for each instance to indicate
how likely it is a positive (or negative) instance. The distri-
bution of the scores from a “good” classifier exhibit certain
properties. For example, the scores of positive instances
should be well separated from the scores of negative ones,
and we can use such property to judge the “goodness” of a
classifier. However, it is difficult to examine the between-
class score separation on the primary data where most in-
stance labels are unknown. To overcome this problem, we
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Figure 3: The score distribution of two classifiers on
the same dataset. The histograms show the actual

score distributions, and the Gaussian curves are fit
by EM. Classifier A performs better than B.

propose a model-based approach: assuming that the scores
of positive and negative data follow distributions of a cer-
tain family, we recover their respective distributions from
the overall score distribution using the Expectation Maxi-
mization (EM) algorithm [5], and then examine the score
separation from the estimated distributions.

Modeling score distribution have been discussed in the
context of combining multiple search engine outputs [9] and
rank aggregation [3]. Given the diversity of classification al-
gorithms, it is impossible to find a distribution family that
fits the scores produced by all the classifiers. Therefore, we
made several simplifying assumptions on the scores gener-
ated by a classifier in our problem: (1) the scores are in the
range of (—o00,400); (2) the boundary between two classes
is zero, with scores above zero indicating positive instances,
and vice versa; (3) the absolute value of a score indicates the
degree of confidence on the predicted label. While seemingly
restrictive, these assumptions are actually general enough to
include popular methods such as SVMs and logistic regres-
sion, which have been the dominant algorithms in our target
application on video concept detection [14, 19].

Similar to [3], we use two Gaussian distributions to fit the
scores of positive and negative instances respectively. This is
because Gaussian distributions fit the actual scores well and
their parameters are easy to estimate. Suppose z = f*(x)
is the score of instance x produced by classifier f¢. The
scores of positive instances follow the distribution p(z|y =
1) = N(up, 02), where u, and oy, are the mean and variance.
Similarly, p(zly = —1) = N (un,0r) is the distribution of



Feature Description

sample_ap
maz_score
pos_neg_dist
pos_mid_dist
distribution intersects
aggregation_ap

average precision of f¢ on the labeled subset D} of the primary data

the maximum score produced by f* on the primary data

distance b/w the estimated mean scores of positive data and of negative data

distance b/w the mean score of positive data to the point where the positive and negative score

average precision of f* computed on pseudo labels derived from score aggregation

Table 1: Meta-level features for predicting the performance of a classifier f?(x) on the primary dataset DP.

the scores of negative instances. We also assume the prior
of labels to be P(y =1) =7 and P(Y = —1) =1 — 7. The
overall score distribution is therefore a Gaussian mixture
model with two components:

p(2) = 7N (up, 0p) + (1 = TN (n, o) (17)

The parameters (7, up, Op, Un, 0n) of this score model can
be easily estimated if both the scores {z;} and labels {y;}
are available. If the labels are unknown, which is the case
in our problem, we can estimate these parameters from only
the scores {z;} using EM algorithm. The EM algorithm it-
eratively improves the model parameters starting from their
initial values until it finds two Gaussian components that
best fit the scores. Figure 3 shows the estimated score
distributions of two “studio” classifiers, one trained from
NTDTV-1 program and the other from NBC-1 program in
TRECVID collection [13], both applied to the NTDTV-2
program (see Section 6.1 for the details of these datasets).
We find that the Gaussian mixture models estimated by EM
fit the score distributions well. Moreover, it shows a strong
relationship between the score distribution and the classifier
performance, because the classifier with larger between-class
score separation has much higher performance.

Suppose (7, Up, Gp, Un, 0pn) are the parameters estimated
by the EM algorithm. An intuitive indicator of the score
separation is the distance between the mean of the positive
and negative data as U, — Un. A slightly different feature,
which is proven to be effective in previous work [9], is the
distance between the mean of the positive 4, to the middle
point 2™ at which the two Gaussian densities intersect

(ie., p(z""y = 1) = p(z™"|y = —1)).

4.2 Features on Score Aggregation

Another way to evaluate classifiers is based on the no-
tion that the “average” of multiple classifiers is usually bet-
ter than any individual one. Specifically, we aggregate the
outputs of multiple classifiers to predict the labels of the
primary data, and then use these “pseudo” labels to eval-
uate each classifier. Assuming 27, ..., 2 are the scores on
instance x; produced by a set of M existing classifiers, a
principled way to aggregate these scores is to compute the
posterior distribution as P(y; = 1|2}, ..., zM). If the outputs
of different classifiers are independent given an instance and
its label, we have the following based on Baye’s rule:

Py = D)ol p(2flyi = 1)
D yi=—11 P Wi) 1.5, p(2Elyi)

where p(2F|y; = 1) and p(2F|y; = —1) are Gaussian distribu-
tions fit by the EM algorithm described above, and the prior
P(y;) is set to the ratio of positive (or negative) instances
in the training data of these classifiers.

Plyi = 1]z, 2" ) =

(18)

An individual classifier is evaluated by measuring the agree-
ment between its output and the estimated posterior proba-
bility. One way is to convert the posteriors into the pseudo
labels as §; = sgn(P(y; = 1]z}, ..., 2M) — 0.5), and compute
a certain performance metric (e.g., average precision [13])
of the classifier based on the pseudo labels. Another way is
to convert the posteriors into ranks and measure the consis-
tency between this aggregated rank and the rank generated
by a classifier using the Kendall tau distance. Empirically
we find the measure based on pseudo labels is better.

4.3 Predicting Classifier Performance

We build a regression model to predict a classifier’s per-
formance in terms of average precision (AP) on the pri-
mary dataset. As summarized in Table 1, the input includes
the meta-level features collected from score distribution and
score aggregation, as well as the performance of the clas-
sifier on the labeled examples D! of the primary set. The
output is the classifier’s performance on the whole primary
set DP. The regression model is trained using support vec-
tor regression (SVR) [4]. The existing classifier(s) with the
highest (estimated) AP on the primary data are selected as
auxiliary classifiers. Note that we choose AP as the per-
formance metric because it is widely used in video concept
detection and retrieval [11, 13, 14, 19]. The features used
here are general enough for predicting other metrics such as
classification accuracy.

5. ALTERNATIVE ADAPTATION METHODS

We describe two alternative approaches based on SVMs
that leverage auxiliary data or classifiers for classifying the
primary data, and discuss their relations to A-SVMs.

Aggregate Approach: This is a computationally inten-
sive approach which learns a single SVM classifier using all
the labeled examples in the auxiliary datasets {Dj}r and
in the primary dataset DF. The decision function is in the
form of f*997(x) = w” ¢(x) with w are estimated from the
following objective function:

1 N M N
min S w|l® +CY &+ > CE Y€l (19)
i=1 k=1 i=1

st.6 >0, & >0
yiw p(x;) > 1 — &, Y(xi,yi) € DY
yiw p(xF) > 1 - ¢&F, V(xF,yl) € Di,Vk

The cost factor C' and C}, can be seen as the weights of
the instances in the primary set D and the auxiliary set
Dy:. This allows the instances from different datasets to be
weighted according to their relative importance. Usually, we
have C' > Cj; because the examples from the primary set are
more valuable.



Many existing works [2, 6, 8, 17] in data mining and
transfer learning can be seen as variants of this aggregate
approach. This approach is fundamentally different from
A-SVMs in that it involves the auxiliary data in the train-
ing process while A-SVMs directly manipulate the auxiliary
classifiers. The number of parameters to be optimized is N
in A-SVMs and N + ny:l Ny in this aggregate approach,
so training A-SVMs is significantly more efficient. However,
it is hard to predict which one performs better in terms of
classification accuracy and we leave it to empirical study.
Moreover, the A-SVMs model is more flexible because it is
applicable even when the auxiliary data are unavailable or
unaccessible for some reasons.

Ensemble Approach: While the aggregate approach
combines the training examples, the ensemble approach com-
bines the output of classifiers trained separately on different
datasets, i.e., the auxiliary classifiers and a SVM classifier
trained from the labeled examples in D (denoted as the
primary classifier fP(x)). The final score of an instance x in
this ensemble classifier is computed as:

F ) = COfF (%) + ) CRfi (%) (20)
k=1

where C' and C} here are weights for the primary and aux-
iliary classifiers. This has been the approach used in [7,
16]. The ensemble form in Eq.(20) is similar to that of A-
SVMs in Eq.(10) except one important difference. Here, the
primary classifier fP(x) is trained independently from the
auxiliary classifiers {fy }x, while in A-SVMs the delta func-
tion Af(x) is trained under the influence of {ff }r, which
can provide valuable prior information beyond the limited
labeled examples.

6. CROSS-DOMAIN VIDEO CONCEPT
DETECTION

6.1 The Task and Collection

Video concept detection is to automatically classify video
shots by the presence or absence of certain semantic con-
cepts, such as Studio, Outdoor, and Sports. Cross-domain
video concept detection is to do that in a corpus with mul-
tiple domains (data sources) by extending concept classi-
fiers across different domains. We investigate the problem
of cross-domain concept detection in the benchmark dataset
used in TREC Video Retrieval Evaluation 2005 (TRECVID)
[13]. It contains 86-hour video footage, which is partitioned
into 74,523 video shots. Each shot is represented by one
video frame as its “keyframe”, and each keyframe is depicted
by a 273-d feature vector, which consists of a 225-d color mo-
ment feature computed from 5 x 5 grids and a 48-d Gabor
texture feature. As part of the LSCOM-Lite project [10],
all the shots have been manually annotated with (binary)
labels indicating the presence or absence of 39 semantic con-
cepts. These concepts cover a wide variety of types, varying
from outdoor scene (Building, Road), indoor setting (Stu-
dio, Meeting), to news genre (Sports, Entertainment), and
general objects (Airplane, Animal).

The video footage in TRECVID belongs to 13 news pro-

grams from 6 channels, including CNN, NBC, MSNBC, CCTV

(Chinese), NTDTV (Chinese), and LBC (Arabic), making
it suitable for evaluating cross-domain concept detection.
Each channel except LBC has two news programs, while

LBC has three. We name each program by their channel,
such as CNN-1, CNN-2, and so on. The video shots are
relatively evenly distributed among the news programs. As
exemplified in Figure 1 and 2, due to editing styles and other
factors, shots belonging to the same concept but from differ-
ent programs exhibit large visual difference. Based on our
observation, programs from the same channel (a.k.a sibling
programs) are usually more similar compared with programs
from different channels in terms of data distribution.

In each setting of our experiments, we pick one of the 39
concepts as the target concept and one of the 13 programs
as the target program. The target program is the primary
dataset and the other 12 programs are the candidates of aux-
iliary datasets. A limited number of randomly selected shots
are labeled in the target program. Meanwhile, the other 12
programs are fully labeled, and a classifier for the target
concept has been trained from each of these programs. The
goal is to classify the video shots in the target program by
the presence or absence of the target concept. Our approach
is to select one or more existing classifiers as auxiliary clas-
sifiers and adapt them into a new classifier for the target
program based on the limited labeled shots in it. By vary-
ing the target program and target concept, we have 13 x 39
settings. We remove the settings where the number of rele-
vant (positive) shots in the target program is less than 10,
which results in 384 qualified settings for evaluation.

The adapted classifier is evaluated on the unlabeled shots
in the target program, as the labeled ones have been polluted
in the training. We convert the classifier output into a shot
list ranked in descending order by their scores, and measure
its quality using average precision (AP), which is a standard
metric in TRECVID. AP is the average of the precisions of
the ranking list truncated at each of the relevant shots, and
its value approximates the area under the precision-recall
curve. We also use mean average precision (MAP) to average
the APs in multiple settings.

6.2 Adaptation Strategies

We examine a variety of adaptation strategies for building
concept classifiers for a target program where only limited
labeled examples are available. In each strategy, we first
adopts a criterion to rank all the classifiers trained on the
other programs by their utility to the target program, selects
the top-ranked ones as auxiliary classifiers (programs), and
picks an adaptation method to train the classifier for the
target program. We list the design choices on these aspects
below:

Selection Criterion: We examine five utility criteria to
rank the candidate classifiers.

e Oracle ranks the candidate classifiers by their actual
performance in AP on the target program. It guar-
antees to be optimal, but it is also unrealistic as it
requires all the labels of the target program.

e Random ranks the candidate classifiers randomly.

e Prior places the classifier trained on the sibling pro-
gram of the target program (i.e., the one from the same
channel as the target) at the top, and ranks other clas-
sifiers randomly. It uses the prior knowledge that sib-
ling programs are likely to have similar data distribu-
tion. Such prior knowledge is unavailable to the other
criteria discussed below.
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Figure 4: The performance (MAP) of 5 methods on the target program

criterion of auxiliary classifier.

e Sample ranks the candidate classifiers by their perfor-
mance in AP on the small set of labeled shots in the
target program.

e Meta ranks the candidate classifiers by their predicted
performance (AP) on the target program. It uses the
regression model in Section 4 to predict a classifier’s
AP based on meta-level features listed in Table 1.

Number of Auxiliary Classifiers: Given a ranking
criterion, the top-ranked candidate classifiers are selected
as auxiliary classifiers. We vary of the number of selected
classifiers from 1 to 5 in order to study its impact on the
classification performance.

Methods: We compare five types of classifiers, among
which three make use of the auxiliary classifiers or data:

e Prim: a SVM classifier trained entirely from the la-
beled examples in the target program, denoted as pri-
mary classifier. This is a baseline method.

e Aux: the auxiliary classifier, or an ensemble of multiple
auxiliary classifiers. This is another baseline method.

e Adapt: the classifier adapted from the auxiliary clas-
sifier(s) Aux using the labeled examples in the target
program, based on the proposed A-SVMs model.

e Aggr: an aggregate SVM classifier trained from all the
labeled examples in the auxiliary programs and in the
target program (i.e., Eq.(19)).

e Ensemble: a weighted ensemble classifier combining
the scores of the auxiliary classifiers Aux and the pri-
mary classifier Prim as a weighted sum (i.e., Eq.(20)).

Great cares are taken to ensure these methods are com-
parable. We use the same RBF kernel function K (z;,x;) =

e~Plzi=zill® with p = 0.1 in all the methods. For the cost
factor, we use a fixed C* = 1 for training of Aux and the
same C' for the training of Prim, Adapt, Aggr and Ensem-
ble, i.e., the C' in Eq.(3), (11), (19) and (20) are set to
the same value. This ensures Adapt and Aggr are compara-
ble as both weight auxiliary and primary data in the same
way, and because C' and C* are weights for classifiers in En-
semble, this also makes Ensemble comparable to Adapt and
Aggr. When multiple auxiliary classifiers are available, we
set Cy in Eq.(19) and (20) to Cy = tp = 1/M, where t;, is
the weight for auxiliary classifiers in Eq.(10) and M is the
number of auxiliary classifiers. This means we treat multiple
auxiliary classifiers (or datasets) equally.
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with C'=1,3,10 and Prior selection

5 6

7

8 9 10

# of positive Total training time (minutes)

/ all examples | Prim/Ensemble Adapt Aggr
1/16.5 10.3 13.5 191.0
3/494 10.5 13.8 209.9
5 /824 12.1 14.9 229.0
10 / 164.7 17.4 20.1 271.9

Table 2: The total training time of each method
summed from all the settings.

7. EXPERIMENTAL RESULTS

We present the experimental results on adaptation meth-
ods applied to cross-domain video concept detection in the
TRECVID collection. The results are presented in two parts.
The first part focuses on the comparison between A-SVMs
and other adaptation and baseline methods, while the sec-
ond part is on the selection of auxiliary classifiers.

7.1 Results on Adaptation Methods

As mentioned in Section 6.1, there are a total of 384 set-
tings depending on the choice of target concept and target
program. In each setting, we build 5 classifiers as Prim, Aux,
Adapt, Aggr, and Ensemble to classify the data in the target
program. We use the Prior criterion to select the sibling
program as the auxiliary for the target program. Because
the labeled examples are sampled randomly, we repeat the
experiment in each setting for 4 times with different random
samples and average the performance. In TRECVID, posi-
tive examples are usually more valuable than negative ones
since most of the concepts are rare. Therefore, we sample
positive and negative examples separately according to their
ratio, and use the number of positive ones as an indicator
of the amount of information available to the classification
methods. In the experiment, we set the number of positive
examples to 1, 3, 5, and 10. The corresponding number of
negative examples (averaged from different concepts) con-
cepts are 15.5, 46.4, 77.4, and 154.7.

Figure 4 shows the performance of the 5 classifiers in terms
of MAP across the 384 settings against the number of pos-
itive training examples. On average, the three adaptation
methods as Adapt, Aggr, Ensemble perform significantly bet-
ter than the two baseline methods as Prim and Aux, indicat-
ing the benefit of leveraging the knowledge of auxiliary data
or classifiers. Depending on the choice of the cost factor C,
either Adapt or Aggr is the top-performer, while Ensemble is
worse. Since Adapt has comparable performance with Aggr



Metric MAP of the top-ranked classifier Ratio of the optimal classifier ranked in top 3
# of positive examples | 1 3 5 10 1 3 5 10
Oracle 0.247 0.247 0.247 0.247 100% 100% 100% 100%
Prior 0.211 0.211 0.211 0.211 68.2% 68.2% 68.2% 68.2%
Meta 0.188 0.201 0.208 0.216 56.6% 60.7 % 68.0% 76.9 %
Sample 0.153 0.186 0.201 0.218 44.6% 57.8% 64.9% 76.2%
Random 0.132 0.132 0.132 0.132 30.1% 30.1% 30.1% 30.1%
Table 3: Comparison of 5 auxiliary classifier selection criteria.
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top-ranked classifier is used as the auxiliary classifier; C' = 3.

and is much more efficient to train (see Table 2), we conclude
that A-SVMs provide a good tradeoff between effectiveness
and efficiency for classifier adaptation. Another advantage
of Adapt (or A-SVMs) is that it is relatively less sensitive to
the choice of C' compared with Aggr and Ensemble.
Efficiency in terms of training time is another aspect of
the performance. Table 2 summarizes the total training time
for all the settings of the above methods except Aux which
has already been trained. Among them, the training time
for Prim and for Ensemble are basically identical since the
latter involves the training of the former. The training cost
of Adapt is only slightly higher than Prim, while the cost of
Aggr is an order of magnitude higher due to the incorpora-
tion of auxiliary training data (over 1,000 extra examples in
average). This shows the efficiency advantage of A-SVMs as
the result of directly manipulation of the classifier functions.

7.2 Results on Auxiliary Classifier Selection

In each setting, we need to select auxiliary classifier(s) for
the target program from a pool of classifiers trained on the
other 12 programs. This is done by the 5 selection crite-
ria discussed in Section 6.2. The candidate classifiers are
ranked using each of the criteria, and the top-ranked ones
are selected as auxiliary classifiers. We evaluate these selec-
tion criteria using two metrics: (a) the actual performance
(MAP) of the top-ranked classifier on the target program;
(b) the ratio that the optimal classifier (the one with the
highest performance on the target program) is ranked within
top 3. The results are summarized in Table 3. Among these
criteria, Oracle is the optimal criterion, Random is the base-
line, and the performance of the other three criteria are in
between. The prior knowledge on whether two programs are
from the same channel turns out to be very useful, since the
Prior is best criterion except Oracle. Sample is a relatively
poor criterion when the labeled examples are rare, but gets
better as more examples are labeled. Meta is much better
than Sample when the labeled examples are scarce, show-
ing that the meta-level features from score distribution are
useful in terms of predicting the classifier’s performance.
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Figure 6: Performance of Adapt with different num-
ber of auxiliary classifiers selected by Meta (C = 3)

We then evaluate the performance of the adaptation meth-
ods (Adapt, Aggr, and Ensemble) using the auxiliary classi-
fier selected by these criteria. Only the classifier ranked first
is chosen as the auxiliary classifier, and the cost factor is
fixed to C' = 3. The performance in terms of MAP computed
from all the settings are shown in Figure 5. We find that the
choice of auxiliary classifier has a large impact to the per-
formance despite the adaptation method used. In fact, this
choice is more important for good adaptation methods, be-
cause the gaps between different criteria are larger for Aggr
and Adapt than for Ensemble. Moreover, the order in which
these selection criteria performs is consistent with Table 3.
Prior is our first choice if such prior knowledge is available.
If not, we should use Meta which exploits the meta-level fea-
tures of a classifier in addition to its performance on the
labeled samples, especially when they are scarce.

Does more auxiliary classifiers imply better performance?
Using the Meta selection criterion, we evaluate the Adapt
method with 1, 3, and 5 auxiliary classifiers. The auxiliary
classifiers are equally weighted, i.e., tx = 1/M in Eq.(10). As
shown in Figure 6, increasing the number of auxiliary clas-



sifiers from one to three results in a moderate performance
improvement, but only minimal improvement is seen when
the number increases to 5. Comparing this result to Fig-
ure 5, we conclude that increasing the number of auxiliary
classifiers is not as effective as choosing the right auxiliary
classifier.

8. CONCLUSION

We have proposed adaptive support vector machines (A-
SVMs) for adapting auxiliary classifiers to a new dataset
which contains only limited labeled examples, and a method
for selecting the most effective auxiliary classifiers for adap-
tation. This general method has been evaluated on cross-
domain video concept detection in the TRECVID 2005 col-
lection. We have the following observations from the exper-
iments. First, adapted classifiers trained by A-SVMs sig-
nificantly outperform auxiliary classifiers and new classifiers
trained from the labeled examples; Second, compared with
other adaptation techniques, our approach achieves better
performance than the ensemble approach and comparable
performance to the aggregate approach while requiring 1/10
of the latter’s training time; Third, selecting good auxiliary
classifiers for adaptation is critical to the performance, and
our selection method has proved to be effective.

There are many open questions for the framework of clas-
sifier adaptation. For example, currently the cost factor in
our model, which balances the contribution between the aux-
iliary classifiers and training examples, is set manually or
empirically. Since it has shown to have an impact on the
performance (see Figure 4), a mechanism for automatically
choosing the “right” cost factor is desirable. One possibility
is to associate it with the performance of the auxiliary clas-
sifier, which can be predicted using the method in Section 4,
such that a good auxiliary classifier has a larger contribution
and vice versa. This is related to other important questions
such as whether to perform classifier adaptation and how
many auxiliary classifiers are needed. In extreme cases, one
can directly use the existing classifiers without adaptation if
they perform well enough, or discard existing classifiers and
build new ones if they turn out to be useless. We plan to
explore these questions in our future work.
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