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ABSTRACT
Combining retrieval results from multiple modalities plays a
crucial role for video retrieval systems, especially for auto-
matic video retrieval systems without any user feedback and
query expansion. However, most of current systems only uti-
lize query independent combination or rely on explicit user
weighting. In this work, we propose using query-class depen-
dent weights within a hierarchial mixture-of-expert frame-
work to combine multiple retrieval results. We first classify
each user query into one of the four predefined categories and
then aggregate the retrieval results with query-class associ-
ated weights, which can be learned from the development
data efficiently and generalized to the unseen queries easily.
Our experimental results demonstrate that the performance
with query-class dependent weights can considerably surpass
that with the query independent weights.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
models

General Terms
Algorithms, Performance, Theory

Keywords
Video Retrieval, Query Class, Modality Fusion, Learning

1. INTRODUCTION
The task of video retrieval is to search a large amount of

video for clips relevant to an information need expressed in
form of multimodal queries. The queries may consist merely
of text or also contain images, audio or video clips that must
be matched against the video clips in the collection. Specif-
ically this paper focuses on the queries that attempt to find
semantic contents such as specific people, objects and events
in a broadcast news video collection. As indicated in Figure
1, our automatic video retrieval system needs to go through

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’04, October 10-16, 2004, New York, New York, USA.
Copyright 2004 ACM 1-58113-893-8/04/0010 ...$5.00.

Figure 1: Overview of our video retrieval system

the following steps to find relevant clips for content-based
queries without any user feedback and manual query expan-
sion. First, various sets of index features are extracted from
the video library through analysis of multimedia sources.
For each video clip, different search modules are used to
generate a vector of retrieval scores, indicating the similar-
ity of this clip to a specific aspect of the query. Finally, these
individual retrieval results are fused via an aggregation al-
gorithm to produce an overall ranked list of video clips.

Inspired by the conventional probabilistic retrieval model,
we frame the retrieval task using a mixture-of-expert archi-
tecture, where each expert is responsible for computing the
similarity scores on some modality and the outputs of mul-
tiple retrieval experts are combined with their associated
weights. Tailoring this architecture specifically for video re-
trieval, we adopt a re-ranking model where text features
provide the primary evidence for locating relevant video con-
tent, while other features offer complementary clues to fur-
ther refine the results.

However, given the large number of candidate retrieval
experts available, the problem of selecting most effective ex-
perts and learning the optimal combination weights natu-
rally follows. Most of current systems only utilize query
independent combination strategies (namely uniform/fixed
weights) or rely on explicit user weighting, which are either
inflexible or unrealistic. Previous experiments [20] showed
that with respect to the best query independent weights,
the retrieval performance of standard TREC Video Retrieval
Evaluation Task(TRECVID)[18] queries benefited from us-
ing query dependent weights for combination, even though
they are trained from the imprecise pseudo relevance feed-
backs. It also implied that once the training data are of
higher accuracy, the performance can be further improved.



However, given the virtually infinite number of queries, it is
impractical to learn weights on a per query basis. A trade-off
needs to be found between the difficulty of providing train-
ing data and the ability of capturing the idiosyncrasy of each
query. To this end, we can consider associating weights with
a few pre-defined classes which consist of queries with simi-
lar characteristics. Hopefully we can achieve better retrieval
performance by fusing multiple retrieval results with query-
class specific weights. In this case, it is also legitimate to
collect truth data for each query class because the number
of classes is very limited, while the learned weights can be
reused for other unseen queries as long as they belong to
some of the predefined classes.

Therefore, we propose an automatic video retrieval ap-
proach which uses query-class dependent weights to com-
bine multi-modality retrieval results. The user query is first
classified into one of the four predefined query classes, i.e.
finding named persons, named objects, general objects and
scenes. Once the query is categorized, the retrieval scores
from multiple modalities can be combined into a final prob-
abilistic output with query-class associated weights, which
are learned from the training data off-line. Our experiments
confirm the effectiveness of the proposed approach using a
video test collection of over 65 hours from the TREC video
retrieval track [18].

1.1 Related Work
Designing the combination approaches for multiple modal-

ities is of great importance to develop video retrieval sys-
tems. Westerveld et al[19] demonstrates how a combina-
tion of different models/modalities can affect the perfor-
mance of video retrieval. They adopt a generative model
inspired by language modeling approach and a probabilistic
approach for image retrieval to rank the video shots. Fi-
nal results are obtained by sorting the joint probabilities
of both modalities. The video retrieval system proposed
by Amir et al[1] performs a query-independent linear com-
bination on both text/image retrieval systems, where the
per-modality weights are chosen to maximize mean average
precision score on development data. Gaughan et al[8] ranks
the video shots based on the summation of feature scores
and automatic speech retrieval scores, where the influence
of speech retrieval is at 4 times that of any other features.
Benitez et al[2] proposed content-based meta-search image
search engine, called Metaseek. It assigns the new query im-
ages to one of the predefined clusters and selects one of the
target image search engines based on their previous success
of handling the similar queries. However, most of these sys-
tems either simply apply a query-independent combination
approach, or rely on user feedback to decide the weights of
multiple experts. It is desired to design a better fusion ap-
proach which takes query characteristics into account with-
out explicit user feedback.

Query classification has been widely investigated in the
community of information retrieval and query answering. Li
et al[13] and VideoQA[21] adopt a hierarchial classification
approach to categorize free-form factual queries. Five types
of machine learning approaches are experimented by Dell
et al [23] for automatic question classification task. Kang
et al[12] classify the user queries into three categories, that
is, the topic relevance task, the homepage finding task and
the service finding task using various statistics from query
words. Different linear weights of text information and hy-
perlink information will be assigned based on the query cat-
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Figure 2: The two-level hierarchial mixture-of-
expert architecture for video retrieval

egories to improve the web document retrieval. The similar
idea can be naturally extended to the context of video re-
trieval.

2. A HIERARCHIAL MIXTURE-OF-EXPERT
ARCHITECTURE

In the following discussion, we consider the task of shot-
based video retrieval which is to find relevant video shots
satisfying users’ information need and a shot is defined as
a sequence of video frames from a single camera operation.
Conventional probabilistic retrieval models [17] rank doc-
uments by the probability that each document would be
judged relevant to a given query. Following this model, the
shot-based video retrieval task can be thought of as a super-
vised learning problem which aims at estimating the prob-
ability P (R|q, si) where R is the relevance of query q to
shots si. Typically, the video features can be constructed
from multiple modalities. In broadcast news video archives,
the candidate features we used include low-level ones such as
color, texture, and edge features of video frames, motion en-
ergy, audio features, as well as high-level ones such as video
transcript, faces, anchor, commercials, etc.

Multiple specific retrieval experts are usually developed
to handle various features. Therefore, our retrieval system
can be naturally formulated into a mixture-of-expert archi-
tecture [11]. The mixture of expert handles the retrieval
task by first dividing the input space, i.e. query and docu-
ment features, into a set of regions and accordingly fitting
specific decisions to the data in these regions. The regions
have “soft” boundaries which allow data fall simultaneously
in multiple regions, and the weights of combining experts
are adjusted by learning algorithm. This framework can be
viewed as a single layer tree, or a single-layer mixture of ex-
pert(SME). Each expert at the leaves of the tree produces
the probabilities of relevance Pk(R|q, si) from one modal-
ity. The gating function at the nonterminals of the tree
produces scalar outputs as the linear weights for each ex-
pert and blends the probabilistic outputs of experts using a
generalized linear function

P (R|q, si) = f

(∑

k

λkPk(R|q, si)

)
, (1)

where λk is the linear weights. f(·) is generally chosen to
be the identity function or the logistic function.



We need to design the gating function based on the query
q and the video shot si. In this work, the gating function is a
function of the query q, more specifically, it is determined by
the category or class of the query. Under this assumption,
Eq(1) can be rewritten as,

P (R|q, si) = f

(∑

k

λk(cq)Pk(R|q, si)

)
, (2)

where cq are the query class of q as defined in the Section
3. It indicates that the same type of queries will share an
identical set of weights λk. Some feature selection algorithm
can be applied to pick out the most representative experts
for each type of queries. For example, the face recognition
expert can be selected for finding-person-type queries but
the outdoors detector is not consistently helpful for them.
As a future work, the gating function can be also related
to the video source of si, which allows the weight variation
when the video source changes.

Although considered a supervised learning problem which
simply fuses results from multiple experts, video retrieval
has its distinct properties. First, based on evidence from the
best-performing video retrieval systems in the TRECVID
2001–2003, text features are demonstrated to be the most
reliable features for selecting semantically relevant shots in
video retrieval. However, many complementary sources from
various video modalities can be used to rerank the text re-
trieval outputs. These sources include audio features, mo-
tion vectors, visual features (e.g. color and edge histograms),
and pre-defined high-level semantic features (e.g. a face
detector and an anchor detector). Therefore, we adopt a
reranking model for combining the output of experts, i.e.,
the overall ranking is provided by

P (R|q, si) = λu
1 (cq)P

u
1 (R|q, si) + λu

2 (cq)P
u
2 (R|q, si) (3)

where the subscript u means the upper level mixture, λu
1 (cq)+

λu
2 (cq) = 1, P u

1 (·) is the retrieval scores generated by text
retrieval and P u

2 (·) is a generalized linear function of other
expert outputs P l

k(·) on the lower level,

P u
2 (R|q, si) = f

(
m∑

k=1

λl
k(cq)P

l
k(R|q, si)

)
(4)

The architecture of our design is shown in Figure 2, which
can be viewed as a two-level hierarchial mixture of experts(
HME) [11]. λu

1 is typically close to 1 because text retrieval
usually provides most reliable results. This property al-
lows text retrieval to dominate the retrieval results while
the other weaker experts re-rank and adjust the output.

3. QUERY CLASSIFICATION

3.1 Defining query classes
The query classes are defined with two guidelines. First,

using the class specific combination should outperform using
the query-independent combination. This requires queries
with similar characteristics to be grouped into the same
class, and vice versa. Second, queries can be automatically
classified into classes with reasonable accuracy, which is es-
sential to apply this idea in real-word systems. In the follow-
ing discussion, we mainly consider TRECVID queries as a
standard set of queries with rich text descriptions, although
our method is generally useful for queries with a small set of
keywords. Some examples used by TRECVID can be seen in

1. Find shots of Yasser Arafat.

2. Find shots of a rocket or missile taking off.

3. Find shots of the Tomb of the Unknown Soldier at
Arlington National Cemetery.

4. Find shots of the front of the White House in the day-
time with the fountain running.

Figure 3: Text Query Examples from TRECVID

Figure 3, which are in the form of short imperative sentences
like “Find shots of Yasser Arafat”. After inspecting these
queries, we define the following four query classes according
to intent of the queries:

Named person (P-query) queries for finding a named per-
son, possibly with certain actions, e.g., “Find shots
of Yasser Arafat” and “Find shots of Ronald Reagan
speaking”.

Named object (E-query) queries for a specific object with
a unique name, which distinguishes this object from
other objects of the same type. For example, “Find
shots of the Statue of Liberty” and “Find shots of Mer-
cedes logo” are such queries.

General object (O-query) queries for a certain type of
objects, such as “Find shots of snow-covered moun-
tain” and “Find shots of one or more cats”. They
refer to a general category of objects instead of a spe-
cific one among them, though they may be qualified
by adjectives or other words.

Scene (S-query) queries depicting a scene with multiple
types of objects in certain spatial relationships, e.g.,
“Find shots of roads with lots of vehicles” and “Find
shots of people spending leisure on the beach”. They
differ from O-queries mainly by the number of the
types of object involved.

Here the definition of query classes is different from the
definitions of question categories in the TREC questions an-
swering track, such as searching for location, numeric num-
ber and description[13], because our purpose is to improve
the fusion of multiple retrieval results instead of extracting
exact answers from text archives. Intuitively, each query
class by our definition favors a specific set of features. For
example, face presence, size, position information and face
recognition are critical to P-query but of little value to other
query classes. For both P-query and E-query, transcript
is particularly important since such queries are more likely
to have perfect match in transcript, and so is video OCR
since proper names may appear on screen as overlaid text.
On the other hand, visual features like color, texture, and
shape can be helpful to the O-query and S-query. Overall,
such classification captures query characteristics regarding
feature effectiveness, and is therefore promising for better
performance.

We design the query classes above mainly for news video
collections, which may not be applicable for arbitrary video
retrieval systems. As an example, movie archives may not
have as many P-queries as news video archives, but they
may instead have more S-queries. These systems might have



different or even more query classes. But the idea of query-
class specific retrieval is generally applicable. Moreover, due
to the lack of effective features for depicting various motions,
this classification does not address the action of the target
being searched. As the result, queries like “Bill Clinton” and
“Bill Clinton walking out of the oval office” are in the same
class and treated using the same set of features, though the
latter favors motion feature.

3.2 Query Classification by Text Processing
As can be found in Figure 3, the queries from TRECVID

are generally in a regular form and primarily factual queries,
but the size of existing query pool is relatively small so far.
Therefore query classifiers based on a data-driven statisti-
cal inference approach might not be a good choice. Alter-
natively, we use the text processing techniques, which con-
sists of three phases as named entity extraction, tagging and
chunking, and syntactic parsing.

Named entity extraction is mainly used to identify queries
for named persons and objects, which contain proper names
like people, location, or organization. Our named entity ex-
traction method is similar to that used by MITRE [14] and
BBN [3]. First, every word in a corpus of broadcast news
transcript is manually labeled with a named-entity tag like
-person-, -location-, -organization-, -time-, and -none-, re-
sulting in a sequence alternating between words and tags,
such as “-person- Barry, -person- Serafin, -organization- ABC,
-organization- news, -none- in, -location- Washington”. A
trigram model is then trained from this tag-word sequence
using statistical language modeling toolkit [5]. To detect
named entities from unlabeled text, we build a Hidden Markov
Model (HMM) that models each type of named-entity tag
as a state and words as the observations of each state. The
transition and emission probabilities of the HMM are pro-
vided by the trigram model. Viterbi algorithm is used to
find the most likely sequence of states (or named-entity
tags) that generates the observed sequence of words in the
given text. After extracting the named entities from queries,
we classify those containing people names as P queries and
those containing organization and/or location names as E
queries. The queries with both people and organization/location
names are also put into the P class.

After the P and E-queries are recognized in the previous
stage, some preliminary text analysis including POS-tagging
and NP-chunking is conducted on the remaining queries to
distinguish O-queries and S-queries. This starts with apply-
ing Brill’s transformation-based part-of-speech (POS) tag-
ger [4] on each query to obtain the POS of each word in the
query. The tagged query is then fed into a text chunker,
namely baseNP chunker [15], which divides the query into
segments such as noun phrases (NP) and verb phrases (VP).
Since one major distinction between queries for general ob-
jects and for scenes is the number of (different) objects, we
label the queries with one longest-matched NP as O-queries,
and those with multiple longest-matched NPs as S-queries.
It is intuitive to count the number of objects by the number
of NPs in the query, as objects are normally referred by noun
phrases. We only count the longest-matched NPs because
NPs can be nested. For example, the NP “a pink flower” re-
cursively contains another NP “flower”, both of which refer
to the same object. Thus, the number of the longest NPs
better approximates the number of objects a user intends to
specify.

Although the method described above works reasonably

well, it has an obvious drawback: a single longest NP may
refer to multiple objects, such as in the S-query “a per-
son diving into water” and “balloon in the sky”, which our
method classify as O-queries by mistake. Syntactic parsing
is applied to correct the misclassified S-queries. Specifically,
we send all the queries classified as O-queries, namely those
with only longest NP, to Link Grammar Parser[9], which
produces the syntactic structure of the queries. In this way,
the internal structure of the longest NP can be seen. For
example, “a person diving into water” is parsed as NP (NP
(a person) VP (diving PP (into (NP water)))), where PP
denotes prepositional phrase. The queries with a single NP
which actually contains multiple NPs inside are re-assigned
to S-queries, while the rest remain as O-queries. The only
exception is queries with NP PP (prep NP) structure but
having “of” as its preposition, such as “a cup of coffee”,
which actually refers to only one object since the NP after
“of” is normally used to modify the NP before it. Hence,
queries with such structure are classified as O-queries. This
query classification method based on superficial text anal-
ysis is able to classify most TRECVID queries correctly as
shown in our experiments. Note that this work does not
necessarily depend on the rich description of the topic. Our
query classification technique is also applicable when users
only provide several simple keywords by using the named
entities from transcripts.

4. LEARNING QUERY-CLASS DEPENDENT
WEIGHTS

Learning query-class dependent weights λi for each query
class cq can be treated as a maximum likelihood estimation
problem. Given a query class cq, for any query q belonging to
cq, a set of training data {xi, yi} is collected where xi is a set
of expert outputs (P u

1 (R|q, si), P
l
1(R|q, si), ..., P

l
m(R|q, si))

and yi ∈ {−1, +1} indicates whether the shot si is rele-
vant to q or not. We compute the log-likelihood by taking
the logarithm of the product of P (R|q, si),

l(λu; X) =
∑

i

log
∑

t=1,2

λu
t P u

t (R|q, si) (5)

where P u
1 is retrieval scores of the text retrieval, P u

2 is
f

(∑m
k=1 λl

kP l
k(R|q, si)

)
. We present a learning algorithm

to estimate the parameter based on the Expectation Max-
imization (EM) algorithm[7]. To apply EM algorithm for
estimating λu

t , we must define appropriate hidden variable
so as to simplify the likelihood function. Here we define the
hidden variables zit for each shot si, where one and only one
of the zit is one while others are zero. zit = 1 means the
prediction of the shot si is generated from the tth retrieval
expert. By taking the expectation of the complete-data like-
lihood, we obtain the E step by defining the auxiliary func-
tion Q(λ, λj) for jth iteration,

Q(λu; λu
j ) =

∑
t=1,2

∑
i

hit (log λu
t + log P u

t (R|q, si)) . (6)

where hit is the expectation of zit give the observable vari-
ables E(zit|X). The M step is setting λj+1 = arg maxλ Q(λ; λj).
We summarize the EM algorithm in Figure 4.

To finish the M step, we need to maximize the weighted
log-likelihood on the lower-level mixture of experts,

l(λl; X) =
∑

i

hi2 log f

(
m∑

k=1

λl
kP l

k(R|q, si)

)
(7)



Input: P u
t (R|q, si), t=1,2, and yi ∈ {−1, +1}

Output:
∑2

t=1 λtP
u
t (R|q, si) which optimizes l(λ; X).

Algorithm:

Initialize λ
(0)
i such that ∀i, 0 < λ

(0)
i < 1,

∑
i λ

(0)
i = 1

For j = 1, 2, ....

1. E-step: Compute expectation

h
(j)
it =

λ
(j)
t Pt(R|q, si)∑

t λ
(j)
t Pt(R|q, si)

2. M-step: Update parameter λ
(j+1)
t = 1

n

∑
i h

(j)
it

3. M-step: Maximize the weighted log-likelihood in (7)

4. Check convergence if |l(λ(j+1); X)− l(λ(j); X) < ε|

Figure 4: An EM algorithm for learning linear com-
bination weights

where hi2 is the expectation for the second hidden variable
zi2 and the link function f is a generalized linear function.
It is typically chosen as an identity function or a logistic
function. We will discuss these two cases as follows.

4.1 Linear Combination
When the link function f is defined as an identity function,

Eq(7) can be rewritten as,

l(λl; X) =
∑

i

log hi2

m∑

k=1

λl
kP l

k(R|q, si), (8)

where the sum of λk is equal to 1 and each λk is larger than
0. A similar EM algorithm is applied to estimate the λl

k,
which results in a nested EM learning framework. However,
since not every expert prediction is consistently useful, we
proceed an additional feature selection algorithm before the
EM algorithm to filter out the inconsistent experts and pro-
vide more generalized outputs. In more details, we apply a
χ2 test to select features with confidence interval 0.1 [22].
The χ2 statistics is generally computed to measure the de-
pendence of two random variables. In our work, we use it to
measure the dependence of each expert prediction and the
corresponding labels. If an expert output is suggested to be
independent to its labels the expert will be eliminated. Note
that the expert with continuous probabilistic output will be
converted to discrete output with a threshold of 0.5.

4.2 Logistic Regression
When the link function f is defined as a logistic function,

Eq(7) can be rewritten as,

l(λ; X) = −
∑

i

hi2 log

(
1 + exp

(
λl

0 +

m∑

k=1

λl
kP l

k(R|q, si)

))
. (9)

In this case, there are no constraints on the choice of λk

because the output of logistic function will map any real
value into probabilistic output in [0,1]. To handle the logis-
tic function, we apply a boosting type algorithm for learning
the combination of experts due to its handy implementation.
The boosting algorithm shown in Figure 5 are modified from
the parallel update algorithm proposed by Collins et al[6].
For each round k, the algorithm first updates the distribu-
tion qk,i in a manner that increases the weights of examples
which are misclassified. A new step, i.e. step 2, is added

Input: Matrix M ∈ [−1, 1]m×n where Mij =
yiP

l
j (R|q, si). N+: the number of positive examples,

N−: the number of negative examples
Output:

∑
k λkPk(R|q, si) which optimizes l(λ; X).

Algorithm:
Let λ1 = 0, q0 = (0.5, 0.5, ...)
For k = 1, 2, ....

1. Compute distribution qk given M, δk and qk−1

qk+1,i = qk,i exp
(
−∑n

j=1 δk,jMi,j

)

2. For every positive example xi, balance the dis-
tribution qk,i = hi2N

−qk,i/N
+

3. For j = 1, .., n :
W+

k,j =
∑

i:sign(Mij)=+1 qk,i|Mij |
W−

k,j =
∑

i:sign(Mij)=−1 qk,i|Mij |
δk,j = 1

2
log

(
W+

k,j/W−
k,j

)

4. Update parameter: λk+1 = λk + δk

Figure 5: A boosting type algorithm with parallel-
update optimization for logistic regression

to balance the distribution between positive and negative
examples and incorporate the additional weights. The same
feature selection algorithm mentioned in Section 4.1 is ap-
plied to filter out the noisy experts.

5. EXPERIMENTAL RESULTS

5.1 Description of retrieval experts
In this section we describe a subset of the retrieval experts

that are available in our retrieval system, including text re-
trieval, image retrieval based on color and edge feature, an-
chor detector, commercial detector, outdoors detector, new
subject monologue detector, face detetion/recognition. Here
we only describe two major retrieval experts and discuss the
probability generation methods because of space limit. More
details of the other experts can be found in [10].

5.1.1 Text Retrieval
Generally the most reliable retrieval expert is the retrieval

component for text features. The text features processed by
our system span several dimensions: Production metadata
such as titles and published descriptions of the video, Auto-
matic speech transcripts(ASR), Closed captions (CC) and
Video optical character recognition (VOCR) extracted from
the overlaid text visible on the video frames.

VOCR is useful to capture names of people that are some-
times not explicitly referred to in the transcript, event names,
and location names, as well as product names in commer-
cials. Our experiments have shown that speech transcripts
are important supplementary sources to closed captions, es-
pecially in commercial advertisements where closed captions
are not available. Closed captions are synchronized to the
spoken words with corresponding time alignment informa-
tion from the speech transcripts. Words from a stopword
list are removed, and the Porter stemming algorithm is used
to remove morphological variants. All the retrieval is done
using the OKAPI BM-25 formula [16]. Queries are auto-
matically reformulated by extracting the noun phrases from
the text description of the original TRECVID queries.



Video Retrieval with the Query Independent Weights

Video Retrieval with the Query-Class Dependent Weights

Figure 6: The keyframes of top 16 retrieved shots for the query “Finding shot of Pope John Paul II”. Both
set of weights are learned from the development data. The words “corret/incorrect” above the keyframes
indicate whether the corresponding shots are relevant to the query or not

5.1.2 Image Retrieval
For image retrieval we generated two types of low-level

features, i.e., color features and edge features. The color
features are computed as the cumulative color histograms
for each separate color channel from the HSV color space.
Another low-level feature set is the canny edge direction
histogram. A canny edge detector is applied to extract the
edges from images. The edge histogram includes a total of 73
bins. First 72 bins represents the edge directions quantized
at 5 degree interval and the last bin represents a count of the
number of pixels that are not contributed to any edges. We
compute a harmonic mean of the Euclidean distances from
each image example to the shot’s keyframe as the distance
between multiple image examples and video shots.

5.1.3 Probability Generation from Expert Outputs
As mentioned before, each retrieval expert as the leaf

node has to generate the probabilistic output of relevance
P (R|q, si). Since various experts generally produce incom-
patible retrieval output, different approaches are employed
to normalize the retrieval scores. For a {0,1}-value output
experts, we smooth the probability P (R|q, si) when the ex-
pert’s output is zero or one to be ε or 1− ε where ε is set to
10−4. For a probabilistic output expert, we simply use the
output as the probabilistic estimation. For other real-value
output experts, the probabilistic estimation can be derived
from the rank distribution where the posterior probability
for shot si can be derived from P (R|q, si) = 1−Rank(si)/N ,
where N is the number of shots in the collection. This ap-
proximation allows a simpler form of probability estimation.
Other learning algorithms such as logistic regression could
be chosen to convert scores into probabilities, but the neces-
sity to learn the parameters on the fly limits their usage in
retrieval.

In addition, it is also necessary to decide if the normal-
ized expert output is representing the probability of rele-
vance P (R|q, si) or irrelevance P (NR|q, si). The output
of text and image retrieval experts are always representing
P (R|q, si). But it is not always true for semantic feature
detectors such as the face detector. For example, for the P-
query the output of face detector is treated as the probability

Query Class P E O S Overall
Truth Labels 14 12 30 28 84

Correct 14 10 28 21 73(87%)
QC1 Miss 0 2 2 7 11(13%)

False Alarm 1 1 8 1 11(13%)
Correct 14 10 28 26 78(93%)

QC2 Miss 0 2 2 2 6(7%)
False Alarm 1 1 3 1 6(7%)

Table 1: The Results of Query Classification

of relevance, but for the O-query it is treated as the prob-
ability of irrelevance. Basically we will check if the mean
of expert outputs for the relevant training data is smaller
than that of the irrelevant training data. If so, it means the
output represents P (NR|q, si) which will be mapped into
P (R|q, si) = 1− P (NR|q, si), otherwise P (R|q, si) is set to
the output directly.

5.2 Query Classification Results
Our automatic query classification method described in

Section 3.2 is evaluated using the TRECVID queries used
in past 3 years, totally 84 queries. Each testing query is
first manually labeled with the query class it belongs to. All
the manual labels are checked by two human subjects with-
out any disagreement found. Then the manual labels are
compared with the class labels assigned by our query classi-
fication method. The comparison results are summarized in
Table 1, where QC-1 and QC-2 refer to the method without
and with syntactic parsing respectively.

Our method works very well and quite reliably in classi-
fying the TRECVID queries, achieving 87% without using
syntactic parsing and 93% using it. P-queries and E-queries
are almost perfectly classified, which implies the effective-
ness of our named entity extraction algorithm. For QC-1,
the large number of false alarms on O-query and misses on
S-query are due to its mistaking some S-queries with only
one longest-matched NP as O-queries. We can see that QC-2
by syntactic parsing corrects 5 out of 8 such misclassifica-
tions. It fails to correct the other 3 due to the parsing errors
caused by complicated structures of the NP. For example,
when parsing “a hot air balloon in the sky” our parser erro-



Models Weights Learning MAP Prec10 Prec30 Prec100 Rec10 Rec30 Rec100

TEXT QI N/A 0.15 0.24 0.19 0.13 0.09 0.17 0.30
HME QI Logistic 0.14 0.29 0.23 0.14 0.08 0.16 0.31
HME QI Oracle 0.18 0.34 0.25 0.15 0.12 0.20 0.35
SME QCD Logistic 0.16 0.33 0.25 0.14 0.12 0.20 0.31
HME QCD Linear 0.19 0.29 0.25 0.16 0.12 0.22 0.38
HME QCD Logistic 0.20 0.34 0.26 0.16 0.13 0.22 0.38
SME QD Logistic 0.17 0.34 0.25 0.14 0.12 0.19 0.29
HME QD Logistic 0.21 0.39 0.27 0.16 0.15 0.24 0.38

Table 2: Comparison between various retrieval approaches in terms of multiple retrieval criteria. HME:
hierarchial mixture of experts, SME: single-layer mixture of experts, TEXT: text retrieval, QI: query inde-
pendent, QCD: query-class dependent, QD: query dependent. See text for more details.

neously put “air” as a noun and “balloon” as a verb, result-
ing in a classification error. Besides parsing errors, another
source of errors is the implicit priority of query classes. For
example, the only false alarm on P-query, which also ac-
counts for a miss on E-query, is because an E-query “Find
shots of Price Tower designed by Frank Lloyd Wright” which
has been classified as P-query since higher priority is given
to the P-query over other named entities. We realize that
the query pool is still not large enough to provide convincing
result for other types of queries. To evaluate the proposed
query classification scheme, we might need to collect more
queries in the future work.

5.3 Video Retrieval Results
Our video retrieval experiments followed the guidelines

for the manual search task in the TRECVID 2003, which
require an automatic system to search without human feed-
back for video shots. The shot boundaries are provided
by TRECVID. The system needs to search 25 query top-
ics in a 65-hour news video collection of ABC World News
Tonight, CNN Headline News and C-SPAN programming.
The definitive information about this collection can be found
at the TRECVID web site [18]. The retrieval units were
video shots defined by a common shot boundary reference.
The evaluation results are reported in terms of the mean
average precision(MAP) and precision/recall at top N re-
trieved shots. The ground truth is provided officially by
TRECVID. We use the Informedia client [10] to collect the
relevant video shots for 20 out of all 25 queries from the de-
velopment collection, which is another 65-hour news video
collection from a different period. There are no relevant
shots available for the other 5 queries. Although we cannot
guarantee all the relevant shots can be found, the collection
generally provides a high coverage for the relevance data
based on our previous experience. We used the manual la-
beled query class for training while the predicted query class
for testing.

Figure 6 illustrates the advantage of using the query-class
dependent weights against query-independent weights. This
improvement is achieved by successful combining of different
expert outputs, such as the face detector and the image
retrieval expert, using the weights learned for the P-query.
There are 10 relevant shots retrieved out of top 16 shots with
query-class dependent weights, compared with 5 relevant
shots retrieved with query-independent weights.

Table 2 lists a more detailed comparison for various re-
trieval approaches in terms of mean average precision at top
400 shots and precision/recall at 10, 30 and 100 shots. We
present three baseline combination strategies as compared to
the proposed approaches, i.e. the text retrieval(Text+QI),

learning the query-independent weights using logistic regres-
sion(HME+QI+Logistic) and an oracle of the best query-
independent weights assuming the ground truth on the test-
ing collection is available (HME+QI+Oracle). For the
proposed approach using query-class dependent weights, the
performance using both linear combination and logistic re-
gression are reported(HME + QCD+Linear, HME +QCD
+ Logistic), where the development data of queries in the
same query class are aggregated into a larger training pool
for weight learning.

Surprisingly, learning a set of query-independent weights
from the development data produces even worse performance
than the text retrieval alone, which again indicates the dif-
ficulty of multi-modality combination. In contrast, the pro-
posed approaches with both learning algorithms are consid-
erably superior to the baseline strategies on both mean av-
erage precision and precision/recall at several levels. Over-
all they have around 5% improvement over text retrieval
and even 2% improvement over the global oracle in terms of
mean average precision. On average the logistic regression
algorithm achieves a slightly better performance than the
linear combination algorithm.

To further investigate whether it is sufficient for learning
query-class dependent weights compared to learning query
dependent weights, we also list the retrieval results learned
on a per query basis(HME+QD+Logistic), which, al-
though impractical, can be considered a upper bound for
the proposed approaches. For the queries without any rel-
evant shots in the development set, it naturally backs off
to use the class-specific weights. It can be observed that
the performance of learning on a per query basis is not sig-
nificantly better than that of learning on query class basis.
This observation shows that using the query-class specific
weights might be a reasonable choice which can be learned
from a tractable number of training data and generalized to
the unseen queries without suffering from remarkable per-
formance hurt. Finally, we show how the system can benefit
from the hierarchial mixture of expert model(HME) com-
pared to the single-layer mixture of expert model(SME) with
the same learning setting(SME + QCD+Logistic, SME
+QD+Logistic). Although the SME model can also gain
improvement using query dependent weights, the increase
is not as large as that of the HME model, which can be
partially explained by the overfitting problem of learning
the text retrieval weights. Figure 7 depicts the interpolated
precision-recall curve of the proposed approaches against
text retrieval for every query class. It can be found that
the hierarchial mixture-of-expert model consistently outper-
forms text retrieval by a noticeable margin.
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Figure 7: The Precision-Recall curves comparing HME and text retrieval for every query class.

6. CONCLUSION
This paper presented an automatic video retrieval ap-

proach using query-class dependent weights within a hier-
archial mixture of expert framework to combine multiple
retrieval results. We first classify each user query into one
of the 4 predefined query classes, i.e. finding named persons,
named objects, general objects and scenes. Then we apply
the associated weights, which are learned from the develop-
ment data off-line, to fuse the outputs of multiple retrieval
results. The combined probabilistic outputs are translated
into a rank list of video shots as the final retrieval output.

The experimental results on TRECVID manual retrieval
task demonstrate that applying query-class dependent weights
can considerably improve the retrieval performance over the
query-independent weights. Our experiments also show the
feasibility of accurately mapping queries into some prede-
fined classes. Moreover, by observing the similar perfor-
mance between using query-class dependent weights and
query dependent weights, we conclude that it is reason-
able to learn the combination weights based on pre-defined
classes because they can be learned from a tractable num-
ber of training data and generalized to other unseen queries
easily without significant performance decline. Future work
includes evaluating our query classification approach with a
larger pool of queries, refining our definition of query classes
and using image examples to aid query classification.
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