
Simulation (three lectures)
How used in games?
Dynamics
Collisions—simple
Collisions—harder

detection
bounding boxes
response

Controllers
Mocap + simulation
User control
What is the future?

Credits

Demos, slides, figures from
Michiel van de Panne (UBC)
Michael Mandel’s talk at GDC (CMU alum)
Victor Zordan (UC Riverside)
Petros Faloutsos (UCLA)

Harder

Easier
Falling

Diving
Balancing

Tai Chi

Difficult to design complex
coordination of limbs

Results can look stiff and unrealistic

More ballistic: not so many DOFs
to specify directly

Difficulties of Controller Design

Running

Control
Joint-level Control

pose control—poses specified by artist
continuous control—tracking mocap or programmer-

specified function

Hierarchical Control (layered)
State machine picks low level controller based on sensors

or timing
Low level controller controls joints

Combined approaches

Proportional-Derivative (PD) Controller

and are spring and damper gains
is desired joint angle and is current angle

Actuate each joint towards desired target:

Acts like a damped spring attached to joint (rest
position at desired angle)

Joint-level Control

Control

What should k’s be?
Where does come from?

(see [Zordan ‘02] for more...)

Reduce tuned parameters to a single spring and damper:
scale by effective MOI of the chain about the joint

shoulder

elbow

wrist

Perhaps more like natural dynamics of a behavior

Gains are often hand tuned (tedious for 15x2 or more!)

Choosing Controller Gains

Pose Control

Artist selects key poses and
dynamics interpolates between
them

Very effective but requires
patience and tuning

Diving (Wooten)
Getting up (Faloutsos)

Complex Behaviors from Simple
Behaviors (Faloutsos 01)

Build basic pose controllers

Classify transitions between
behaviors

Supervisory controller swaps
between them when conditions met

Goal: Keep the center of
mass (COM) inside the
support polygon

Pick a desired COM and
minimize errors by making
corrections in the desired
angles for ankles and hips

Balance: Programmer specified
function

graphics

control

state

forces and
torques

desired
behavior

user model/
machine

numerical
integrator

Hierarchical Control

State machine
Control actions
Low-level PD servos

Robotics

CMU and MIT 1987, with Marc Raibert

Useful for video games?

• Working on a physical robot is impressive –
but is that good enough for a video game?

• Needs to work every time for every input…
Or have graceful failure modes.

• And how are we going to do more interesting
things than just hopping???

Running Running [[HodginsHodgins ‘‘95]95]

FlightFlight

Heel ContactHeel Contact

LoadingLoading

Foot ContactFoot Contact

Toe ContactToe Contact

UnloadingUnloading

heel touches ground

Knee bend

ball of foot touches groundhip in front of heel

Knee extended

ball of foot leaves ground

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.

Control Systems for Humans

Simulating Behaviors

SIGGRAPH 1995

Combining Simulation and Mocap

Mocap for trajectory tracking
Mocap for control system design
Mocap -> sim -> mocap

Combining Approaches

Average between balance controller and data
Victor Zordan, PhD thesis

Boxing (with opponent)

Boxing (comparison)

Receive Im
pact

Data-Driven Control
Dynamics Control

Motion Database
Get Up

Idle

Run

Jump

Attack

Fall Balance
Grab Onto

Ledge

Simulated Behaviors

Search
Motion

Database

Settle Near

Motion Receive Im
pact

Data-Driven Control
Dynamics Control

Motion Database
Get Up

Idle

Run

Jump

Attack

Fall Balance
Grab Onto

Ledge

Simulated Behaviors

Search
Motion

Database

Settle Near

Motion

Mocap -> Sim -> Mocap

State space of data-driven technique:

State space of dynamics-based technique:
Set of poses allowable by joint limit constraints
MUCH larger because it:

Any pose in the motion database

Clearly, some correspondence must be made
to allow smooth transitions between the two

can produce motion difficult to animate or capture
includes unnatural poses

Executing Transitions

SimulationMotion Data

Simulation Motion Data

Easy. Just initialize simulation with pose and velocities
extracted from motion data.

Much harder. How to get near stored data?

Transitions between techniques

1. Data Reduction/Representation
Search only some of the keyframes

2. Process into Spatial Data Structure

Problem: Find nearest matches in the motion
database to the current simulated motion.

3. Search Structure at Runtime

kd-tree works well

Query pose comes from simulation

Data Representation: Joint positions

Nearest neighbor search problem
Choose motion most relevant to in-game situation

Walk Simulated Fall Get Up
Data-Driven Data-DrivenDynamics

Idle

QuickTime™ and a
 decompressor

are needed to see this picture.

What’s missing?

Walk Simulated Fall Get Up
Data-Driven Data-DrivenDynamics

Idle

QuickTime™ and a
 decompressor

are needed to see this picture.

1. The fall lacks life

2. Transition has
blending artifacts

What’s missing?

At the time of the transition the simulation
is NOT likely to be in a posture in the
motion database

How can we get the simulation to settle
near the best matching motion data?

Can we maintain physical constraints between the
body and the environment?

(It IS likely, however, to be interacting
closely with the environment)

Fixing the Transition

Solution: Settle Controller
Actuate joints using a special PD controller to settle the
simulation near selected motion data

A physically grounded alternative to blending

Pose controller uses search result as target joint
angles

Complex situations might be handled by more specialized
controllers
Can always finish it off with blending if necessary...

Avoids object interpenetrations and foot sliding...

Fixing the Transition

Adding Life to the falling motion

One Possibility: A Simple Pose ControllerOne Possibility: A Simple Pose Controller
Look at initial conditions of an impact and choose
initial desired reaction from a database of example
poses

This can work well, but might not be as This can work well, but might not be as
dynamic as wedynamic as we’’d like.d like.

May update desired pose as simulation evolves - still
totally data-driven (and artist directed)

Adding Life to the falling motion

highly effective motor control strategies hard to model

Reasonably approximate what humans do
during a full loss of balance

Possible Approach: Possible Approach:
Track predicted shoulder landing
locations with arms
Direction the body falls determines
which arms track

Idle Simulated Fall Get Up
Data-Driven Data-DrivenDynamics

QuickTime™ and a
 decompressor

are needed to see this picture.

Idle

Results

Idle Simulated Fall
and Roll

Get Up
Data-Driven Data-DrivenDynamics

Results: fall and roll

[Zordan et al. ‘04]

Physically Based Transitions Following
Impacts, With Motion Capture

Apply impact forces to sim

Search to find clip for after
interaction

Actively track the motion clip as
it transitions, to get the posture
in place with joint torques

Add global positions using
forces to position character

Physically Based Transitions

Internal torques mimic human reaction
External forces minimize error while not breaking the
physical engine

This method uses mocap while the interaction forces are still
active

Doesn’t guarantee a perfect match at the end, but hopefully
we can cover this up with blending!

QuickTime™ and a
DivX 5.0 decompressor

are needed to see this picture.

Games need to Games need to guaranteeguarantee robustnessrobustness

Start simple—pose controllers with artist predefined
reactions

Fake things (like balance control)

Consider simulating only some of the body

Specify only the DOFs necessary
Let the natural dynamics of the system guide the behavior

Games can sacrifice physical realism for
robustness/speed—know when using simulation is
appropriate!

Make the ground “stickier”
External balancing forces to keep the body upright

Making it Practical…

User Control

• High-level control of characters
– Velocity -> joystick—treat the character as a

cylinder and assume that there is code to make it
follow instructions (run, walk, turn, climbing stairs)

– Button pushes -> discrete actions (kick, punch)

• A few exceptions
– Olympic Decathlon on the Apple 2
– Motionplayground (demo coming)

• And some failures
– Trespasser

Novel user interaction

• http://www.cs.ubc.ca/~van/sssjava/java
demo.html

User Control

Are game controls the ultimate 3d interface?

Maybe for gamers…

Stan Melax: http://www.gamasutra.com/features/20010324/melax_pfv.htm

What is the future?

Why don’t we already have fully simulated
characters?

Will we ever?
What about a world that is “totally” live?

