
Simulation (last lecture and this one)

How used in games?
Dynamics
Collisions—simple

Collisions—harder

detection
bounding boxes
response

Controllers
Mocap + simulation
User control
What is the future?

Credits

Demos, slides, figures from
Michiel van de Panne (UBC)
Michael Mandel’s talk at GDC (CMU alum)
Victor Zordan (UC Riverside)
UNC for collision detection
Petros Faloutsos (UCLA)
Gamasutra
other web sources as noted

Collision Detection

Not just points against planes (as last
time)

Bad collision detection has spoiled games
Body parts embedded in walls
Bullets that shouldn’t have collided or should have

Modern games have WAY too many
polygons to do a naïve n^2 triangle
against triangle test

When to test?

Check for intersection with some time step
But here testing at time t1 and t2 won’t work –

we missed the intersection point (tunneling)

http://www.gamespp.com/algorithms/AdvancedCollisionDetectionTechniques1.html

What are our options?

Swept volume: Expensive to calculate (2D
poly moving in 3D -> 3D swept volume)

http://www.gamespp.com/algorithms/AdvancedCollisionDetectionTechniques1.html

What are our options?

Multi-sampling: Subdivide time in half, check
for intersections, repeat

Not a guarantee unless you have a bound or
test for the object’s velocity

Sampling rate should allow
the object to travel less
than one radius between
tests

http://www.gamespp.com/algorithms/AdvancedCollisionDetectionTechniques1.html

What are our options?

Multi-sampling:
Actually a bit more complicated—checking
linear velocity is not enough.

http://www.gamespp.com/algorithms/AdvancedCollisionDetectionTechniques1.html

What about the actual test?

Testing the polygons in one object against
all those in another object is too expensive

Use bounding boxes or spheres.
Cheap: d^2 > dx^2 + dy^2 +dz^2
Not a very tight fit
But this has been done as the

actual test and probably still is

http://www.gamespp.com/algorithms/AdvancedCollisionDetectionTechniques1.html

Culling with bounding spheres

A better idea: use bounding shapes just to
cull not for the final test

http://www.gamespp.com/algorithms/AdvancedCollisionDetectionTechniques1.html

Culling with AABB

Axis-aligned Bounding Boxes
Why axis-aligned? For speed of test:

If ((p.x >= b.minX && p.x <= b.maxX) && …

But have to recompute on each frame

http://www.gamespp.com/algorithms/AdvancedCollisionDetectionTechniques1.html

Culling with AABB

Axis-aligned Bounding Boxes
But have to recompute on each frame
Can cheat by rotating/translating the bbox

http://www.gamasutra.com/features/20000203/lander_02.htm

Culling with OBB

Oriented Bounding Boxes
Tighter fit
Expensive to compute the box (preprocessing)
More expensive to test (at run time)

http://www.gamasutra.com/features/20000203/lander_02.htm

OOBs

Compute mean of the distribution of vertices
Calculate the covariance matrix
Use eigenvectors of the covariance matrix to

align the box with the geometry

http://www.gamespp.com/algorithms/AdvancedCollisionDetectionTechniques1.html

OOB Trees

Split the box along its longest axis and repeat
Stop when leaves are triangles or planar

polygons (or perhaps earlier)
A bit expensive but a precomputation step

http://www.gamespp.com/algorithms/AdvancedCollisionDetectionTechniques1.html

What kind of BB to pick?

Depends on the objects and scene
What shapes are moving?
How are they moving?
What is it colliding with? Vertical walls? Arbitrary

shaped objects?
Deformable objects?
What level of accuracy is required for good game play?

Remember that the graphics card may
change the rules too…

http://www.gamespp.com/algorithms/AdvancedCollisionDetectionTechniques1.html

Detecting collisions between polygons

http://www.gamespp.com/algorithms/AdvancedCollisionDetectionTechniques1.html
http://www.harveycartel.org/metanet/tutorials/tutorialA.html (demo)

A separating axis exists -> the objects
do not intersect

A sufficient set of axes to test
in 2D for convex objects

Detecting collisions between polygons

http://www.gamasutra.com/features/20000203/lander_02.htm

a

c

b

Test each vertex of one poly against the lines of the other.
If they are ALL on one side of any of the lines, the polys are not colliding.
Store this separating edge for next time for efficiency.
Similar in 3D but with a plane not a line.

Detecting collisions between polygons

http://www.gamasutra.com/features/20000203/lander_02.htm

Similar in 3D but with planes instead of lines.
But none of the faces may be a separating plane even if one exists!
Now need to test planes formed by edge from one object and vertex from
another. If none of these separate then we have a collision. Save the
plane for next time!

What has to collide with what?

Everything with everything—expensive
Can divide objects into stationary (walls)

and moving (characters, balls, etc.)
Build a spatial tree (octree) for stationary

objects
Cull further based on knowledge about

the game – assume bullets won’t collide
with each other?

http://www.gamespp.com/algorithms/AdvancedCollisionDetectionTechniques1.html

Trees

Plane test is easy:
ax+by+cz+d > 0
Point on positive

side of plane

Ax+by+cz+d < 0
Point on negative

side of plane

Open problems and new ideas

Use the graphics hardware (UNC) to detect
collisions – algorithm animation

Open problems and new ideas

Use the graphics hardware (UNC) to detect
collisions—results

Open problems and new ideas

Deformable objects?
all this goes out the window
precompute expected deformations?

Doug James – graphics.cs.cmu.edu

Collision Response

• Forces/accelerations: penalty method
– Springs to push objects out of collisions

• Velocities: impulse-based
– Instantaneous change in velocity to prevent collision

• Projection: positions
– Teleportation to remove collision (shortest distance)

• All of the above require more info than that
two objects are colliding – direction of
collision, etc.

• Destroy one or both of the objects…

Projection

• Teleportation to remove collision
• Shortest distance?
• Direction that it entered?

Projection

• Teleportation to remove collision
• Shortest distance?
• Direction that it entered?
• Not so easy in the general case

Impulse-based

Instantaneous change in velocity

Acceleration or Penalty Methods

Each contact is classified as a collision or a resting contact
if (relative velocity * normal > [magic threshold]) collision
otherwise, resting contact

Two linear potentials are created. One acts along normal to
repel objects, the other acts on the tangent plane to
represent friction.

Nonlinear force along contact normal is approximated by a
piecewise cubic spline

Friction cone is approximated by a piecewise cubic patch

Original Slides from David Wu

Equations

Resting contact normal force:
– Fn = L* (K*deltaz + kd * deltazd)
– Deltaz is velocity into the surface

Collision normal force:
– kd is 0
– K is large

in both cases:
– L is a piecewise cubic spline that smoothly interpolates (e.g.

with continuity of G2)
• 0 when |f| <= 0
• 1 when |f| >= [insert magic threshold]

continued

Friction forces:
– ff = L * k2*(velocity along the surface)
– L is a piecewise cubic spline that smoothly

interpolates (e.g. with continuity of G2)
• 0 when |f| <= [insert small magic threshold]
• 1 when |f| >= [insert big magic threshold]

L is smooth to not give the integrator fits

Back to simulation…

We can easily combine particles with springs
to get cloth or jello

What happens if you simulate this?

http://www.gamasutra.com/features/20000208/lander_pfv.htm

Back to simulation…

Instead use this…

http://www.gamasutra.com/features/20000208/lander_pfv.htm

Control

Much like springs and dampers of pure
simulation but now you (the controller) can
pick the setpoint!

