
Kinematics and Orientations

Hierarchies
Forward Kinematics
Transformations (review)
Euler angles
Quaternions
Yaw and evaluation function

for assignment 2

Building a character

Just translate, rotate, and
scale each body part to
get the right size,
shape, position, and
orientation.

Looks great--until you try
to make it move.

The Right Control Knobs
As soon as you want to change

something, the model falls apart
Reason: the thing you’re modeling is

constrained but your model doesn’t
know it

What we need:
some sort of representation of structure
a set of “control knobs” (parameters) that make it easy

to move our stick person through legal
configurations

Key is to structure the transformations
in the right way: using a hierarchy

Making an Articulated Model

• A minimal 2-D jointed object:
– Two pieces, A (“forearm”) and B (“upper arm”)
– Attach point q on B to point r on A (“elbow”)
– Desired control knobs:

• T: shoulder position (point at which p winds up)
• u: shoulder angle (A and B rotate together about p)
• v: elbow angle (A rotates about r, which stays attached to q)

AAr BB qp
BBp

AAr
q

T

Making an Arm, step 1

• Start with A and B in their untransformed
configurations (B is hiding behind A)

• First apply a series of transformations to A,
leaving B where it is…

AAr

Making an Arm, step 2

• Translate by -r, bringing r to the origin
• B is now peeking out from behind A

BB qp
AAr

AAr

Making an Arm, step 3

Next, we rotate A by v (the “elbow” angle)

BB qp AAr
BB qp
AAr

Making an Arm, step 4

Translate A by q, bringing r and q together to form
the elbow joint

We can regard q as the origin of the lower arm
coordinate system, and regard A as being in
this coordinate system.

BB qp AArBB qp AAr

Making an Arm, step 5

From now on, each transformation applies to both
A and B (This is important!)

First, translate by -p, bringing p to the origin
A and B both move together, so the elbow doesn’t

separate

BB qp AArBB qp AAr

Making an Arm, step 6

Then, we rotate by u, the “shoulder” angle
Again, A and B rotate together

BBp

AAr

BB qp AAr

Making an Arm, step 7

Finally, translate by T, bringing the arm where we
want it

p is at origin of upper arm coordinate system

BB
q

p
AAr

BB
q

p

AAr

Transformation Hierarchy
• The build-an-arm sequence,

represented as a tree
• Interpretation:

– Leaves are geometric primitives
– Internal nodes are transformations
– Transformations apply to everything under

them

Trans -r

Rot v

Trans q

A

Trans -p

Rot u

Trans T

B

Control Knob
Primitive
Structural

Transformation Hierarchy
Another point of view:
• The shoulder coordinate

transformation moves everything
below it with respect to the shoulder:
– B
– A and its transformation

• The elbow coordinate transformation
moves A with respect to the shoulder
coordinate transform

Trans -r

Rot v

Trans q

A

Trans -p

Rot u

Trans T

B

Shoulder coordinate xform
Elbow coordinate xform
Primitive

A Schematic Humanoid
• Each node represents

– rotation(s)
– geometric primitive(s)
– structural transformations

• The root can be
anywhere. We chose the
pelvis (can re-root)

• Control knob for each
joint angle, plus global
position and orientation
for the root

• This is how amc file in 2nd

assignment works

hip

torso

headl. arm2

l. arm1 r. arm1

r. arm2

l. leg1

l. leg2

r. leg1

r. leg 2shoulder

neck

What Hierarchies Can and Can’t Do
Advantages:

Reasonable control knobs
Maintains structural constraints

Disadvantages:
Doesn’t always give the “right” control knobs trivially

e.g. hand or foot position - re-rooting may help

Can’t do closed kinematic chains easily (keep hand on
hip)

Missing other constraints: do not walk through walls

So What Have We Done?
Forward Kinematics

Given the model and the joint angles, where is the end
effector? Compute this so you know where to draw
primitives

Inverse Kinematics
Given a desired location of the end effector, what are the

required joint angles to put it there? Required to place
the end effector near to an object in the real world.

Kinematics is easy, IK is hard because of redundancy.

Kinematics and Orientations

• Hierarchies
• Forward Kinematics
• Transformations (review)
• Euler angles
• Quaternions
• Washing out yaw

for assignment 2

Interpolation

Trivial for translation: t=k * t1 + (1-k) * t2
Easy for rotation in 1D
Not so easy for 3D rotation

Gimbal Lock

Gimbal

y

z
x

A Gimbal is a hardware implementation of Euler angles
(used for mounting gyroscopes, expensive globes)

Gimbal lock is a basic problem with representing 3-D
rotations using Euler angles

y

z
x

Locked Gimbal

Interpolating Rotations

• Q: What kind of a compound rotation do
you get by successively turning about
each of the three axes of the rotation at
a constant rate?

• A: not the one you want.

2-angle (θ-φ) rotation
(unit sphere)

Interpolating rotations means moving on n-D sphere

Quaternion Interpolation
We can think of rotations as lying on an n-D unit sphere

1-angle (θ) rotation
(unit circle)

θ1

θ2

2-angle (θ-φ) rotation
(unit sphere)

Washing out Yaw

Amc file format in Euler angles
You want roll and pitch + delta yaw not roll, pitch,

yaw
Convert to yaw, roll, pitch Euler angles

http://vered.rose.utoronto.ca/people/david_dir/GEMS/GEMS.html

Compute delta yaw between frames
Re-animate by incrementing yaw by delta yaw.

Compute new rotation matrix.
Compute delta x,z and increment to animate

Evaluation function?

Lots of possibilities here:
joint angles
weighted joint angles (visually big ones)
root height, roll, pitch
scattered points (a la Kovar and Gleicher)
contact state
what else?

