Kinematics and Orientations

Hierarchies

Forward Kinematics
Transformations (review)
Euler angles
Quaternions

Yaw and evaluation
for assignment 2

Building a character

= Just translate, rotate, and
.‘ scale each body part to
get the right size,

I | \ shape, position, and
/

orientation.

Looks great--until you try
L to make it move.

The Right Control Knobs

P As soon as you want to change
‘ something, the model falls apart
=

e U Reason: the thing you're modeling Is
| constrained but your model doesn’t
Know It

What we need:

some sort of representation of structure

a set of “control knobs” (parameters) that make it easy
to move our stick person through legal
configurations

Key is to structure the transformations
In the right way: using a hierarchy

Making an Articulated Model

T

O

_pB o

A minimal 2-D jointed object:

— Two pieces, A (“forearm”) and B (“upper arm”)
— Attach point g on B to point r on A (“elbow”)

— Desired control knobs:
o T: shoulder position (point at which p winds up)
° U: shoulder angle (A and B rotate together about p)
° V. elbow angle (A rotates about r, which stays attached to q)

Making an Arm, step 1

e Start with A and B In their untransformed
configurations (B Is hiding behind A)

e First apply a series of transformations to A,
leaving B where it is...

Making an Arm, step 2

e Translate by -r, bringing r to the origin
* B Is now peeking out from behind A

Making an Arm, step 3

Next, we rotate A by v (the “elbow” angle)

Making an Arm, step 4

Translate A by g, bringing r and g together to form
the elbow joint

We can regard ¢ as the origin of the lower arm
coordinate system, and regard A as being in
this coordinate system.

Making an Arm, step 5

lnz-r -

From now on, each transformation applies to both
A and B (This is important!)

First, translate by -p, bringing p to the origin

A and B both move together, so the elbow doesn't
separate

Making an Arm, step 6

Then, we rotate by u, the “shoulder” angle
Again, A and B rotate together

Making an Arm, step 7

Finally, translate by T, bringing the arm where we
want it

p IS at origin of upper arm coordinate system

Transformation Hierarchy

Trans T e The build-an-arm sequence,
represented as a tree

* |nterpretation:

— Leaves are geometric primitives
— Internal nodes are transformations

— Transformations apply to everything under
them

Rot u

Control Knob
Primitive
Structural

Transformation Hierarchy

Another point of view:

 The shoulder coordinate
transformation moves everything
below it with respect to the shoulder:
- B
— A and its transformation
The elbow coordinate transformation
moves A with respect to the shoulder
coordinate transform

Trans T

Rot u

Shoulder coordinate xform

A Schematic Humanoid

 Each node represents
— rotation(s)
— geometric primitive(s)
— structural transformations
 The root can be
anywhere. We chose the

pelvis (can re-root)

Control knob for each
joint angle, plus global
position and orientation
for the root

This is how amc file in 2nd
assignment works

What Hierarchies Can and Can’t Do

Advantages:

Reasonable control knobs
Maintains structural constraints

Disadvantages:

Doesn’t always give the “right” control knobs trivially
e.g. hand or foot position - re-rooting may help

Can’t do closed kinematic chains easily (keep hand on
hip)
Missing other constraints: do not walk through walls

So What Have We Done?

Forward Kinematics

Given the model and the joint angles, where is the end
effector? Compute this so you know where to draw
primitives

Inverse Kinematics
Given a desired location of the end effector, what are the

required joint angles to put it there? Required to place
the end effector near to an object in the real world.

Kinematics and Orientations

Hierarchies

Forward Kinematics
Transformations (review)
Euler angles
Quaternions

Washing out yaw
for assignment 2 .

Transformations (Review)

Translation, scaling, and rotation:
P =T+P Translation
P’ =SP Scaling
P'=RP Rotation

treat all transformations the same so that they can be
easily combined (streamline software and hardware)

P 1s a point of the model
Transformation is for animation, viewing, modeling

P’ 1s where 1t should be drawn

Translation

new point in transformation o
matrix point 1n space

space

In the upper left 3x3 submatrix
1

-

cos @ —sin@

sin @ cosé@

0
0
10

cos@

—sin @

cos@

Rotation

0

0

sin @
0

cos 6
0

—sin @
cos@
0
0

Composite Transformations

* We can now treat transformations as a series of matrix
multiplications

P'=MM,MM,MM_P
M =M M,MM,MM,
P’ =MP

0 0 1]

Interpolation

Trivial for translation: t=k * t1 + (1-k) * t2
Easy for rotation in 1D
Not so easy for 3D rotation

Interpolating Rotations

The upper left 3x3 submatrix of a transformation matrix is the
rotation matrix

Maybe we can just interpolate the entries of that matrix to get
the inbetween rotations?

Problem:

— Rows and columns are orthonormal (unit length and
perpendicular to each other)

— Linear interpolation doesn’t maintain this property,
leading to nonsense for the inbetween rotations

Interpolating Rotation

Example:

—1interpolate linearly from a positive 90 degree
rotation about y to a negative 90 degree rotation
about y

0 0 1 0 0 ~1
1 0 0 1 0
—1 0 0 1 0 0

—4 L —4

Linearly interpolate each component and halfway between,
you get this... _ ;
. . No longer a rotation

0 matrix---not orthonormal

0] Makes no sense!

Orientation Representations

Direct interpolation of transformation matrices 1s not
acceptable...

Where does that leave us?

How best do we represent orientations of an object and
interpolate orientation to produce motion over time?

—Rotation Matrices
—Fixed Angle
—Euler Angle
—Axis Angle
—Quaternions

Fixed Angle Representation

» Angles used to rotate about fixed axes

* Orientations are specified by a set of 3 ordered
parameters that represent 3 ordered rotations about
fixed axes, 1.e. first about x, then y, then z

* Many possible orderings, don’t have to use all 3 axes,

but can’t do the same axis back to back

Euler Angles

* Same as fixed axis, except now, the axes move with
the object

* roll, pitch, yaw of an aircraft

* Euler Angle rotations about moving axes written in
reverse order are the same as the fixed axis rotations.

R.()R,(P)R.(3)P=R,(})R,(P)R ()P

Euler Fixed

}gﬁ\gﬁ@

Roll Pitch

Gimbal Lock

OF

oy

Gimbal Locked Gimbal

A Gimbal is a hardware implementation of Euler angles
(used for mounting gyroscopes, expensive globes)

Gimbal lock is a basic problem with representing 3-D
rotations using Euler angles

Gimbal Lock—Shown another way

* A 90 degree rotation about the y axis aligns the first
axi1s of rotation with the third.

JIR 7S

Rotx(0) Roty(90) Rotz(0)

* Incremental changes in x,z produce the same results
— lost a degree of freedom

Interpolating Rotations

e Q: What kind of a compound rotation do
you get by successively turning about
each of the three axes of the rotation at
a constant rate?

* A: not the one you want.

Example

* Especially a problem if interpolating say...

(0,90,0) . (90, 45, 90)

Just a 45 degree rotation from one orientation to the next,
so we expect 90, 22.5, 90, but get 45, 67.5, 45

y y y
X iﬂ « & . X
Z ¥ ¥

(0,90,0) (90, 45, 90)

Initial Orientation
(object space)

Axis Angle

Euler’s Rotation Theorem:
Any orientation can be represented by a 4-tuple

— angle, vector(x,y,z) where the angle is the amount
to rotate by and the vector 1s the axis to rotate
about

* Can interpolate the angle and axis separately
A

Axis Angle Interpolation

B=A XA,

(A o4,
44l
A, = Ry (k) 4,

0 =(-k)6, + k0,

¢ =cos”

Axis Angle

» Can interpolate the angle and axis separately
* No gimbal lock

* But, can’t efficiently compose rotations...must
convert to matrices first

Quaternions

* Good interpolation

* Can be multiplied (composed)
* No gimbal lock

Quaternions

* 4-tuple of real numbers
—S,X,Y,Z or [s,V]
—s 18 a scalar
—V 18 a vector

« Same information as axis/angle but in a different form

g =Rot,. , =|cos(6/2),sin(6/2)e(x,y,z)]

V.z)

Quaternion Math

Addition:
[Sl,v1]+[sz,v2] =[s;+5,,V, +V,]

Multiplication:

[51»"1]'[52}’2] =[s,-5, =V, °V, S5V, +58, W ><v2]]

Multiplication 1s not commutative but is associative
(Just like transformation matrices, as you would expect)

9.9, # 4,4,
(9.9,)9; = 4,(9,95)

Quaternion Math

A point in space is represented as [0, V]

[1,(0,0,0)] multiplicative identity

g~ =1/

where

q
q

)2) [S,—V]

=P+ x>+ + 2

g-q~ =[1,(0,0,0)] the unit length quaternion

(and multiplicative identity)

Quaternion Rotation
To rotate a vector, v using quaternions
—represent the vector as [0,v]
—represent the rotation as a quaternion, q

q = Rot, =[cos(6/2),sin(6/2)-(x,y,z)]

(x,y,2)

Vv =Rot,(v)=q-v-q"

Can compose rotations as well

Looks good so far...we can easily specify and compose
rotations!

Quaternion Interpolation

We can think of rotations as lying on an n-D unit sphere

N\

1-angle (0) rotation 2-angle (0-¢) rotation
(unit circle) (unit sphere)

Interpolating rotations means moving on n-D sphere

Quaternion Interpolation

Interpolating quaternions produces better results than Euler angles

A quaternion 1s a point on the 4-D unit sphere

— interpolating rotations requires a unit quaternion at each step - another point
on the 4-D sphere

— move with constant angular velocity along the great circle between the two
points

— Spherical Linear intERPolation (SLERPing)
Any rotation is given by 2 quaternions, so pick the shortest SLERP
To interpolate more than two points:

— solve a non-linear variational constrained optimization (numerically)

Further information: Ken Shoemake in the Siggraph '85
proceedings (Computer Graphics, V. 19, No. 3, P.245)

2-angle (0-¢) rotation
(unit sphere)

Quaternion Interpolation

 Direct linear interpolation does not work

— Linearly interpolated intermediate points are not uniformly spaced
when projected onto the circle

* Use a special interpolation technique

— Spherical linear interpolation
— viewed as interpolating over the surface of a sphere

slerp(ql,q2,u)
= ((sin((I=u)-60))/(sinB))-q, + (sin(u-0))/(sinb)- q,

* Normalize to regain unit quaternion

Two Representations of a Rotation
A quaternion and its negation [-s,-v| represent the same rotation:
—q=Rot_y_, .
=[cos(—8/2),s(-60/2) - —(x,y,z)]
=[cos(€@/2),—sn(8/2)-—(x,y,z)]
=[cos(@/2),smn(8/2)-(x,y,2)]
=Rot, . , »
=4
Have to go the short way around!
cos(6)=q,®q, =55, tVv, eV,

if cos(@) >0 = g, — ¢, shorter

else g, — —q, shorter

Quaternion Interpolation

* As in linear interpolation in Euclidean space, we can have first
order discontinuity

/—k Solution 1s to formulate a cubic curve
interpolation—see book for details

Quaternion Rotation
The rotation matrix corresponding to a quaternion,q, is

q = Rot,

(X,9,2)
=[cos(8/2),sin(0/2)-(x,y,z)]
= [S? a? b? C]

[1-2p%—2¢ 2ab+ 2sc 2ac —2sb
2ab—2sc¢ 1-2a* —2¢? 2bc + 2sc
2ac+ 2sb 2bc —2sa 1-2a* -2b"

Rotations in Reality

* We can convert to/from any of these representations
—but the mapping is not one-to-one

* Choose the best representation for the task
—1input: Euler angles
—interpolation: quaternions

—composing rotations: quaternions, orientation
matrix

—drawing: orientation matrix

Problems with Interpolation

 Splines don’t always do the right thing

* Classic problems

—Important constraints may break between keyframes
» feet sink through the floor
» hands pass through walls

—3D rotations
» Euler angles don’t always interpolate in a natural way
* Solutions:
—More keyframes!
—Quaternions help fix rotation problems

Washing out Yaw

Amc file format in Euler angles

You want roll and pitch + delta yaw not roll, pitch,
yaw

Convert to yaw, roll, pitch Euler angles
http://vered.rose.utoronto.ca/people/david dir/f GEMS/GEMS.html

Compute delta yaw between frames

Re-animate by incrementing yaw by delta yaw.
Compute new rotation matrix.

Compute delta x,z and increment to animate

Evaluation function?

Lots of possibilities here:
joint angles

weighted joint angles (visually big ones)
root height, roll, pitch

scattered points (a la Kovar and Gleicher)
contact state

what else?

