Simulation (next two lectures)

How used in games?
Dynamics
Collisions—simple
Controllers
Collisions—harder
Mocap + simulation
What is the future?

Credits

Many slides from Witkin and Baraff
SIGGRAPH course (ptr on class page)

Examples and demos from

Michiel van de Panne (UBC)
Michael Mandel’s talk at GDC (CMU alum)
Victor Zordan (UC Riverside)

How IS simulation used In
games?

Vehicle dynamics
Ponytalls

Simple bouncing
objects

Ragdoll physics
What else?

How IS simulation used In
games?

Vehicle dynamics
Ponytalls

Simple bouncing
objects

Ragdoll physics
What else?

Demo of Ragdoll Physics in ODE

10.00 FP5

What do you need?

Path from model -> dynamic parameters
Dynamic equations

Control (internal forces/torques)?
Collisions (external forces/torgues)

User control

Dynamic System

e Mass
e Moment of Inertia
e Location of Joints

From there it Is just a compile step...

Mass

 Need volume of shape
e Assumption about density

High accuracy may not
matter here?

Moment of Inertia

Inertia Tensor for Stmple Shapes

Lo, I.=1,=1/12m (3r2 +L?)
Z
I y Izz.n—lrz
X 2
X

Moment of Inertia
e Brian Mirtich

— Fast and accurate computation of polyhedral
mass properties, JGT 1996

lllustration on blackboard

Parallel Axis Theorem

Allows assembly of
parts that will always
move together

Software Requirements

Link: mass, moment of inertia

Joints: DOF, distance from COM of links
Code for the equations of motion

Hooks for applying forces, torques

Joint limits

Linked Rigid Bodies

what can we simulate?

open loop joints

rotary joints (1,2,3d)

’

closed loop

telescoping joints

#

Linked Rigid Bodies

Two approaches:

Treat each link separately and
apply constraints to keep joints
together

Only allow legal DOFs (recursive
forward algorithms)

Software Options

SDFast
ODE

Novodex
Others??

Particles—Equations of Motion

Just one particle

Particle systems

~orces, gravity, springs
Digression for integration
Simple collisions

A Newtonian Particle

* Differential equation: f = ma
* Forces can depend on:

— Position, Velocity, Time

. f(x,x,t)

> m

Second Order Equations

r . Not Iin our standard form
= (X,X,t) for differential equations
m because it has 2nd
derivatives

{X =V Add a new variable to get

v = fim a pair of coupled 1t

order equations

Phase Space

Concatenate x and v to make
a vector of length 6: position
In phase space

Velocity in phase space:
another vector of length 6

Vanilla 1st order differential
equation

Particle Structure

Solver Interface

)
-
&
e
9p)
>
)
QO
O
o
©
al

Solver Interface

Dim(State)

Get/SctState Diffeq Solver

Deriv Eval

Evaluation Loop

Clear forces
Loop over particles, zero force accumulators

Calculate forces (haven'’t talked about these)
Sum all forces into accumulators

Gather

Loop over particles, copying v and f/m into destination
array

Particle Systems, with forces

‘| 1

A list of force
objects to invoke

m

Forces

Constant—qgravity

Position/Time dependent—wind fields
Velocity dependent—drag
N-ary—springs

Gravity

Force Law:

f

ar

Particle system

av =mG f

Viscous Drag

Force Law:

Particle system

7

fdm g = 'kdra gV

‘p—>f S—E = p—>v!

Damped
Spring

Force Law:

AV-AX \| A
f,=-k([Ax|-1) +k A
1 { (1ax]-r) Ax])} [AX| [Particle system

f2 — 'fl 1

X

A\

f

m

Tl 1 Deriv Eval Loop

al T, -

/“

Solver Interface

You are
Here o,

Digression for integration:
a differential equation

x = f(x,t)

* x(t): a moving point.

* f(x,t): x's velocity.

fIs function not force here (sorry)

Vector Field

The differential
equation

x = f(x,t)
defines a vector
field over x.

Integrating along the curve

Start Here

Pick any starting point,
and follow the vectors.

But how to use those vectors to follow the curve?

Euler's Method

* Simplest numerical
solution method

* Discrete time steps

* Bigger steps, bigger
errors.

RYEEN
x(t+ At) = x(t) + At {(x,1)

Problem 1: Inaccuracy

Error turns x(t) from a
circle into the spiral of
your choice.

>
=
m
Qv
Jd
)
=
Al
-
@
O
®
-
al

The Midpoint Method

Ax = At f(x,t)
b. Evaluate f at the midpoint

g =1 X+AX t+At)
Il’ll 2

c. Take a step using the
midpoint value

x(t+ At) = x(t) + At f g

More Methods

Euler's method is 15t order
The midpoint method is 2" order

Just the tip of the iceberg — see
Numerical Recipes for more

Helpful hints (from Witkin/Baraff course)

— Don’t use Euler’'s method (you will anyway)
— Use an adaptive time step

Simple Collisions

Later: rigid body collision and
contact

For now, just simple point-
plane collisions

Normal and Tangential Components

Collision Detection

(X -P)N<e
N-V <0

* Within € of the wall.
* Heading 1n.

Collision Response

Conditions for Contact

(X -P)N
N-V

* On the wall
* Moving along the wall
* Pushing against the wall

Contact Force

F,:FT

The wall pushes back,
cancelling the normal
component of F.

What did we skip?

e Equations of motion for rigid bodies

e Collision detection of interesting shapes
(not just points and planes)

e Controllers

— Don't just want ragdolls—not all characters that
fall are dead, even in videogames!

What’s coming on Wednesday

e Collision detection

e Controllers

e Combining mocap and simulation
o User control of characters

