Generating Natural Human Motion

Jessica Hodgins
Robotics Institute and Computer Science
jkh@cs.cmu.edu
www.cs.cmu.edu/~jkh

Why Human Motion?

Computer animation

Interactive environments

Physical training

Robotics

Why Natural?

Computer animation

- Interactive environments
- Physical training
- Humanoid Robots

Examples

- Motion Capture
- Simulation
- Optimization
- Robot Control

Motion Capture → Natural?

Motion Capture

Motion Analysis

House of Moves

House of Moves

Human Motion Data

Vicon MX-40 camera system, 12 cameras

120fps at 4Mpixel resolution

4-9mm markers, 40-100+ ⇒ joint angles

http://mocap.cs.cmu.edu

But does it remain natural through modifications?

Motion Graphs

Re-sequence

Motion Capture Region

Virtual Environment

Re-sequence

Motion Capture Region

Virtual Environment

Unstructured Input Data

Connecting Transitions

Search (local) to Find Path

Motion Data for Rough Terrain

Comparison to Real Motion

Comparison to Real Motion

Physically Correct != Natural

Simulation of Human Motion

Simulation of Human Motion

All motion in this animation was generated using dynamic simulation.

Where do control laws come from?

observation

biomechanical literature

optimization

physical intuition

Optimization != Natural

Witkin and Kass SIGGRAPH 1988

But what happens with human characters?

50 to 60 dimensions

Pick few motions with similar behavior

Use principal component analysis to compute lowdimensional space

Optimize in low-dimensional space

Basis and two generated motions

Controlling Robots to be Natural?

Body attitude

Hopping height

Mimicking people

ASIMO

Sarcos Humanoid

Sarcos Humanoid: Pushes

Sarcos Humanoid: Human Data

Sarcos Humanoid

Sarcos Humanoid

