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Abstract

This paper introduces a model to generate “emo-
tional” animation from “neutral” human motion. Us-
ing techniques from signal processing, our method
calculates certain emotional transformswhich are then
applied to existing motions of articulated figures in
order to produce the same motions, but with an emo-
tional quality such as angry or sad. These transforms
capture the difference between a neutral and emo-
tional movement with respect to two components:
speed (timing), and spatial amplitude (range) of a
movement.

Since the transforms are applied as global oper-
ations, they provide a convenient and efficient way to
adapt motion-captured, simulated or keyframed an-
imation of articulated figures to different situations
and characters.

Keywords: human figure animation, motion capture,
motion control, digital signal processing.

Introduction

In recent years, human animation has played
an increasing role in such areas as advertising, en-
tertainment, education, scientific visualization and
simulation. However, while many motion generation
methods have been published, human animation is
still in its infancy especially in the representation of
expression, personality and emotion when compared
to real human movement. Much of the difficulty in
animating human motion can be attributed to the

many degrees of freedom that must be controlled
even for simplified models. Another challenge in ani-
mating human movement is the fact that humans are
very sensitive observers of each others’ motion, in the
sense that we can easily detect erroneous movement
(“it simply doesn’t look right”), although we often
find it much more difficult to isolate the factor which
causes the movement to look incorrect.

Motion capture techniques have come to the res-
cue since they preserve the distinctive “signature” of
the real movement. However, motion capture has
the disadvantage that special equipment is required
and current systems allow for only limited editing ca-
pabilities to adapt a movement once it is captured;
this requires the whole data capture process to be
repeated if a motion sequence slightly different from
an already captured one is desired.

In this paper, a method to produce emotional
animation from neutral, expressionless motion is pro-
posed. This method can be divided into two parts:
identification of certain emotional transforms by sig-
nal processing techniques and application to a “neu-
tral” human motion to generate the same movement,
but with an emotional trait. For example, if we apply
the “angry” transform T4 to an animated sequence
of a person drinking from a cup, the result will be an
angry person drinking.

Our approach modifies existing animation data
of articulated figures and therefore makes the use
of motion-capture, procedural, physically-based and
keyframe techniques more meaningful and useful. By



applying elementary techniques from signal process-
ing, a high-level interface to producing emotional an-
imation is achieved. This approach is related to sev-
eral other research efforts: Unuma et al. [1, 2] ap-
ply Fourier transformations to data on human walk-
ing for animation purposes. Through Fourier ex-
pansions of the joint angles, a basic ‘walking’ fac-
tor and a ‘qualitative’ factor like “brisk” or “fast”
are extracted. These factors are then used to gen-
erate new movements by interpolation and extrap-
olation in the frequency domain, such that now a
walk can be changed continuously from normal to
brisk walking, or a walk can be changed smoothly
into a run. Litwinowicz uses recursive filters to pro-
duce “lag, drag, and wiggle” effects to keyframed
two-dimensional animated motion in a system called
Inkwell [4]. Bruderlin and Williams [5] introduce a
number of signal processing techniques for human
figure animation which support various animation
effects such as applying multiresolution filtering to
exaggerate a movement, or automatically aligning
two movements in time via non-linear timewarping.
They also apply displacement mapping to conveniently
edit motion-captured data. A similar technique called
motion warping was proposed by Witkin and Popovic
1

[6].

For the purpose of animating “emotions”", an
emotion is considered to be a kind of secondary move-
ment which piggybacks on top of a primary move-
ment (see [10] for a discussion on primary/secondary
movement, and [11] for a categorization for gestures).
In this paper, we are mainly concerned with body
movement, neglecting facial expression and speech
which are also important factors in convincingly an-
imating emotions in human characters. However, as
explained in the next section, our technique is general
in the sense that no matter what emotional motion is
provided in calculating the emotional transform, the
“difference” between the emotional and neutral mo-
tion is convincingly applied to a new, neutral move-
ment.

In Section , our approach to generate emotional
animation is described in more detail. Section dis-
cusses how the emotional transforms are derived and

!Whereas the study of human emotions has lead to some
consensus over a definition about what constitutes an emo-
tion — environmental and psychological events influence brain
processes that actively modulate clearly observable behaviors
[7] — several models exist on how to classify emotions into
angriness, sadness, happyness, fear, etc. [7, 8]. Research also
indicates that there are significant cultural differences in how
emotions are expressed and perceived [9].

applied to new neutral movement. Results and ex-
amples are given in Section , and conclusions and
future work are addressed in Section .

Basic Approach
Our technique to animate human emotions in-

volves the following steps:

1. capture the motion of human subjects performed
with different emotions, such as angry, sad,
neutral;

2. for each emotion, calculate an emotional trans-
form which is the “difference” between the neu-
tral and emotional movement;

3. apply this emotional transform to a new, neu-
tral movement.

We used an optical motion capture system (OP-
TOTRAK [12]) to record the movements as shown
in Figure 1. In an experimental setup, subjects were
asked to perform two motions with different emotions
as well as in a neutral manner: “pick up the glass of
water, drink from it, and put it back onto the table”,
and “knock at the door three times”. A script was
presented to each subject to provide situational con-
text to each emotion?. Each emotion was recorded
three times. Six infrared emitting diodes (IRED’s)
were attached to the subjects’ head, shoulder, elbow,
wrist and hand. The system tracked the locations of
each TRED? by three calibrated cameras while cal-
culating the absolute positions in space over time.
From the six positions of the IRED’s, nine rotational
degrees of freedom (joint angles) were calculated in
order to animate a human figure: two for sternum,
three for the shoulder, one for the elbow and three
for the wrist.

Steps two and three above address the main fo-
cus of this paper: how to abstract and represent the
difference between a neutral and an emotional cap-
tured motion, so that it can be applied to a new
movement to make it emotional. After careful anal-
ysis of the motion-captured data, we identified two
components which vary noticeably over the various
emotions: speed (timing) and spatial amplitude (range)
of the motion. Figure 2 illustrates these variations in

2A total of ten emotions or moods were captured — neu-
tral, angry, sad, happy, fearful, tired, strong, weak, excited
and relaxed — although for the analysis here we concentrate
on just neutral, angry and sad.

3A sampling rate of 120 Hz was chosen; accuracy was
within 0.5mm.
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Figure 2: Knocking with different emotions.

the motion-captured data of the knocking movement;
the joint angles of the elbow show significant differ-
ences in time and amplitude for the neutral, angry
and sad motion, respectively.

As we explain in the next section, the speed
transform has been implemented as a non-linear time-
warping technique, and the spatial amplitude trans-
form is based on signal amplifying methods. Apply-
ing these transforms produces an emotional human
movement from a new, neutral movement. To ver-
ify our method, we applied the following procedure,
examples of which are presented in section :

1. calculate the angry and sad transforms from
captured drinking data.

R

cup down

—
—

hand to cup cup to mouth hand back

Figure 3: Basic periods for drinking motion.

2. apply the angry and sad transforms to neutral,
captured drinking data and compare with cap-
tured angry and sad data.

3. apply the angry and sad transforms (calculated
from drinking data) to neutral knocking data
and compare with captured angry and sad knock-
ing data.

Algorithm

This section focuses on how the transforms for
speed (section ) and spatial amplitude () are derived
from existing motion-captured data, and then ap-
plied to a new neutral movement. In order to pro-
vide a general technique which works with different
motion data, we first subdivide both the neutral and
emotional captured data into units of motion, called
“basic periods”. These periods are bounded by the
time when the velocity of the wrist change its direc-
tion, or they lie between the extrema which separate
extension and flexion in a joint . For example, for
the drinking motion we used to derive the emotional
transforms the basic periods are “hand to a cup, cup
to mouth, cup down, hand back” as shown in Fig-
ure 3.

Transform of Speed

The first step to obtain the speed transform is
to calculate the absolute speed of the end effector
which is the wrist point in our case for the drinking
motion (where speed is defined along the trajectory
of the wrist) for both neutral and emotional motion
data (see Figure 4).

After determining the basic periods as defined
above, one of them is selected and integrated along
the trajectory. For the drinking motion the period
with the longest duration was selected (“cup down”).
The calculated data can now be represented as:

5= fu(t) = / v (7)ldr (1)

4The basic periods can also be specified directly by the user
based on the joint angle or velocity trajectories.
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Figure 4: Algorithm to obtain speed transform.

5= fu(t) = f v (r)ldr ; 2)

where ¢t is the time, s the position along the trajec-
tory, v(t) the 3D velocity vector of the wrist and the
subscript N and E denote “neutral” and “emotional
”? respectively. These data are normalized along the
trajectory as follows, where t.,4 is the duration of
the basic period:

. tend
= fr(0) = v,z @/ [ low,x(ldr . ()
0
The distribution of frames p(3) is calculated by

dt n
n = (4)
4 fy, 5(f7(9)
where 7 is the number of frames per second; pn($)
and pg(3) are used as templates when applying the
transform.

The first step in applying the speed transform
to a new, neutral movement is the calculation of the
distribution of its frames, followed by a division into
“basic periods” as illustrated in Figure 6.

For each basic period, the following calculation
steps are then performed as shown in Figure 5: nor-
malize (scale) period in length; substitute the “emo-
tional” distribution of the frames for the neutral one;

pN,.E(3) =

for each "basic period":

- scale the distribution of frames
and keep the scale factor;

o000 0 ©° o © 00
- substitute emotional data for neutral data;
1
"neutralfeseeesse o o o 1e0ee

"emotional™*®*® * *

- rescale the "emotional” distribution of
frames with the scale factor.
[ X I ] ® o oo

e e

Figure 5: Application of speed transform.

divide the new motion data into "basic periods"

90 6 © © 000000 O O ® 000 MO 00

Figure 6: Keyframe distribution of new motion data.

re-scale basic period (inverse of initial normaliza-
tion).

This warped frame distribution is used as a cor-
respondence table in the “emotional” joint angle cal-
culations. Figure 7 gives an example: the emotional
joint angle of the 5th frame is obtained by interpo-
lating between the 6th and 7th frame in the original
data, because the emotional 5th frame corresponds
to the 6.8th frame in the original data.

Transform of Spatial Amplitude

The transform of spatial amplitude is obtained
by applying the algorithm described below:

for both neutral and angry motion, divide the
joints into four categories corresponding to the levels
of hierarchy of the articulated figure. This division is
necessary because the range of motion for the joints
are substantially different in each category. Figure 8
shows which joint belongs to which category. For



6.8th frame in original data

oo o o ® ®©c00e0e o0 © oo moece oo

neutral

emotional me e e c ee ee e © © coccece oo

5th frame in warped data

Figure 7: Generation of joint angle data.
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Figure 8: Joint categories.

example, the sternum belongs to the category one,
and a knee belongs to category three®.
Each category represents a multi-dimensional
space which is defined by its joint angles and time
t. Let us define these multi-dimensional spaces by
~,,g(t), where i (1 < i < 4) denotes the corre-

sponding category. For example, the multi-dimensional

space for category one has 35 degrees of freedom (34
joint angles plus time).

In order to extract the intensity of the spatial
amplitude from both “neutral” and “emotional” mo-
tion data, the factor dll‘vor g 1s defined as follows for
each basic period in turn:

dy,, 5 = maz(|0l,, 5(t) -
{0, 5(tmit)(1 = 1) + O, p(tena)t}]) ; (5)

where |---| is the Euclidean norm operation.
This calculation can be represented conceptually as
shown in Figure 9. A straight line is drawn from
the initial point to the end point of the current ba-
sic period for each category ¢ for both “neutral” and

5 Category one involves 34 joints; category two involves 26
joints; category three involves four joints; category four in-
volves 12 joints in our model of the human figure.
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Figure 9: Intensity factor of spatial amplitude d*.
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Figure 10: Transformation of spatial amplitude.

“emotional” motion data. The maximum distances
dﬁvwE between this straight line and the trajectory of
motion are calculated in this space, and can be con-
sidered as intensities of spatial amplitude for each
neutral and emotional motion.

The spatial amplitude transform is now applied
to a new, neutral motion, 83 (t), where j is the
corresponding basic period. This results in a new,
emotional motion, 8%/ (t), defined by

gen

0% (1) = g1 () +
dN

di —di, . ) g .
%{O%ME(tgnit)(l —t)+ 0%, 5(tna)t} - (6)
The basic idea of this amplitude transform is
nonlinear-magnification (see Figure 10); draw a straight
line from the initial point to the end point of each
basic period in the time-joint angles space of each
category. Magnification is performed on the distance

between this straight line and the trajectory of mo-
dg
dy

tion by the ratio for each category ¢ and each

basic period j.
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Figure 11: Comparison between generated and cap-
tured elbow joint-angles.

Results

Examples

After applying the angry and sad transforms de-
rived from the motion captured drinking motion to
the neutral, captured drinking data, we obtained a
close match with the “real” (motion-captured) angry
and sad drinking data. The same emotional trans-
forms were then applied to the motion of knocking at
a door. The resulting motions were compared to the
motion-captured angry and sad knocking movements
to verify the model. Figure 11 shows the elbow joint
angle during a knocking movement; it is seen that
the generated angry movement data is a good fit to
the real captured data.

The same emotional transforms have also been
applied to a plain, keyframed kicking motion which
produced believable emotional variations of the mo-
tion. Figure 12 shows snapshots of this kicking ani-
mation.

High Frequencies

Besides the speed and amplitude transforms, we
searched for other components in the joint angle sig-
nals which could produce a significant effect between
neutral and emotional signals. Initially, the frequency
content was also considered as an important aspect
of movement. However, results of frequency analysis
revealed that high frequency components in the data
are neglectable in both the “emotional” and “neu-
tral” signals. Figure 13 shows the power spectrum
of the wrist position; we can see that the signals do
not have major components above 10 Hz.

Thus, high frequencies in human motion can be
ignored for the purposes of animation where, in any
event, a sampling rate of 30 frames/sec or less does

-
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Figure 13: Power spectrum of wrist position data.
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data and original data.

not allow for accurate reproduction of higher fre-
quency components. Furthermore, what we can not
see in animation is not important: Figure 14 gives a
comparison between low-pass filtered data (applying
a Gaussian filter kernel of width five) and original
data plotted against time; there is no noticeable dif-
ference between the two signals.

Phase Shift

Rather than high frequencies which are often re-
garded as providing the realistic “signature” in hu-
man animation, we believe that movement phase shift
is a distinctive feature of real human motion. Phase
shift is the amount with which the movements of the
individual joints overlap®. Figures 15 and 16 show
the joint angle velocity over time for the neutral and
angry drinking data, where each signal is normal-
ized by its maximum value. The maximum velocity
timings show this phase shift clearly. Moreover, we
think that these phase shifts are different between
“neutral” and “angry” motion. More research will
be necessary to determine how such a phase shift
transform could be incorporated into our algorithm.

Conclusions and Future work

A model has been developed to produce “emo-
tional” animations from “neutral” human motion.
The method is based on signal processing techniques
which analyze experimental data of emotional hu-
man motion and extract the difference between emo-
tional and neutral movement. Two components are
isolated to define this difference, a speed and a spa-
tial amplitude transform. These two components are

6This has long been regarded as an important principle in
articulated figure animation [3].
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then applied to new, neutral movements to generate
“emotional” movements. In order to verify our the
approach, angry and sad transforms from a motion-
captured drinking sequence have been applied to a
neutral knocking motion. The calculated angry and
sad knocking motions came very close to the real,
captured angry and sad knocking motions. By es-
tablishing various categories for degrees of freedom
of the human figure, this method is general with re-
spect to employing an emotional transform derived,
say, for the arm to a motion of another body part.
Emotional kicking motions were generated by apply-
ing the drinking transform to the lower body.

By automating the generation of emotional ani-
mations our technique facilitates the reuse and adap-
tation of existing motions of articulated figures and
makes the use of motion libraries of keyframed, motion-
captured, simulated or procedurally generated move-
ments more meaningful. Also, since the computa-
tions for deriving the emotional transforms are done
off-line, this approach could well be useful in chang-
ing the emotions of virtual actors on the fly in real-
time environments.

We are currently investigating how this approach



can be extended in various ways. Besides emotions,
it is desirable to generate animations with different
personalities, cultures and genders. Also, we hope to
capture the difference in motion between an old man
and a young boy in a similar way. Furthermore, using
the same emotional transforms derived from human
drinking data to produce an angry walking sequence
of a dog, for instance, from the neutral motion would
be a practical generalization of our method.
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