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ABSTRACT

Recognizing and responding to human affect is important
in collaborative tasks in joint human-robot teams. In this
paper we present an integrated affect and cognition architec-
ture for HRI and report results from an experiment with this
architecture that shows that expressing affect and respond-
ing to human affect with affect expressions can significantly
improve team performance in a joint human-robot task.
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1. INTRODUCTION

Social robots that interact with humans have become an
important focus of research in robotics and human-computer
interaction (e.g., see [13] for a comprehensive overview).
As “human-robot interaction” (HRI) is being recognized
as an independent, interdisciplinary field of its own, a va-
riety of technological challenges need to be addressed by
the HRI community, from general communication issues (in-
cluding direct or mediated human-robot communication or
HRI interface), to modeling (e.g., cognitive modeling of hu-
man reasoning), to teamwork (e.g., architectures for joint
human-robot teams), and more (see the final report of the
DARPA/NSF Interdisciplinary Study on Human—Robot In-
teraction [7]). Questions such as how to interpret commands
given by humans, how to derive human intentions, how to
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recognize non-verbal cues including affect expressions or ges-
tures, and others will be critical to joint human-robot teams
that have to achieve a task together (e.g., for human-robot
teams as envisioned by NASA for future space missions [14],
but also elsewhere). We believe that understanding human
affect and reacting to it appropriately might not only be es-
sential for robots in some situations (e.g., in order to avoid
misunderstandings or to allow for more natural interactions
between robots and humans), but could potentially also im-
prove the task performance of a joint human-robot team.

In this paper we report results from a study that is in-
tended to measure and quantify the role of affect in human-
robot interactions and its impact on the task performance
in joint human-robot teams. Specifically, we investigate the
question whether expressing affect and responding to hu-
man affect with affect expressions in natural language can
facilitate task performance in mixed human-robot teams.

The rest of the paper is organized as follows. We start
with some background on affect in Al, followed by the
introduction of our DIARC architecture, which is a dis-
tributed architecture integrating affect, reflection and cogni-
tive mechanisms. We then present the details of the human-
robot team experiment, in which subjects had to command
the robot in natural language to accomplish a time-critical
task. We report both experimental results as well as re-
sults from a user questionnaires conducted before and after
the experiment. A subsequent analysis of our findings sug-
gests that affect can have several facilitatory roles, the most
important of which might be improvement of actual task
performance. Before concluding, we also summarize work
on affective robots that is related to different aspects of our
proposed architecture and study.

2. BACKGROUND

Affect is deeply intertwined with cognitive processing in
humans and is, consequently, an integral part of human com-
municative situations. Negative affect, for example, can bias
problem solving strategies in humans towards local, bottom-
up processing, whereas positive affect leads in many cases
to global, top-down approaches [2]. Affect is also crucially
involved in social control ranging from signaling emotional
states (e.g., pain) through facial expressions and gestures
[12] to perceptions of affective states that cause approval or
disapproval of one’s own or another agents’ actions (relative
to given norms). Many aspects of natural language commu-
nication cannot properly be understood without taking the
accompanying affect expressions into account.

While affect has been investigated to varying degrees since



the beginning of Al [25], affective computing has become
more prominent only since the publication of Picard’s semi-
nal work on the topic [26]. Since then various architectures
for affective robots have been proposed [38, 24, 20, 6, 22, 31,
29, 21]. These architectures differ in several respects and
can be categorized along several dimensions, for example, in
terms of the architecture schema within which they are de-
fined (e.g., a behavior-based approach like subsumption or
motor schemas vs. other approaches), the employed deliber-
ative components (if present), or whether natural language
processing is integrated.

More importantly in the present context, they also differ
with respect to the notion of affect and how affect is used in
the architecture: (1) how affect is (functionally) defined and
implemented, (2) how it can influence the robot’s behavior,
(3) where and how affect mechanisms are integrated into the
architecture, (4) whether affect in others (e.g., in humans)
can be perceived, (5) whether affect can be expressed (e.g.,
in the voice of the robot), and (6) whether affect can be
internally generated without perceptions.’

3. THEDIARC ARCHITECTURE

We believe that affect can play an important role in HRI
on both the interaction side (i.e., via affect recognition and
expression) as well as the architecture-internal side (e.g., see
[32] for different roles of emotions in agent architectures).
Hence, we have developed a robotic architecture called “DI-
ARC” (for “distributed integrated affect, reflection, and cog-
nition”) for HRI over the last several years that integrates
cognitive and affective mechanisms.? Figure 1 depicts a par-
tial view of the functional organization of the architecture,
showing only the components relevant to the experiment de-
scribed (see [36] for a more detailed overview). *

For space reasons, we will only describe the three compo-
nents of the architecture that are relevant to our experiment,
because they are involved in affect processing: the affective
action interpreter, affect recognition in spoken language, and
affective speech production.

3.1 TheAffective Action Interpreter

The “affective action interpreter” is a novel interpreter for
scripts that is used for natural language understanding as
well as action selection, action sequencing and action execu-
tion. For this purpose, scripts can be augmented by action

'In some cases, for example, affective states like emo-
tions are taken to be discrete and are architecturally rep-
resented by a corresponding number of components (e.g.,
neural network-like units with activations as in [38, 31, 21]),
whereas others construe them as continuous subspaces of
an n-dimensional space determined by some basic variables
such as Mehrabian’s PAD model: “pleasure”, “arousal”, and
“dominance” (e.g., [35, 3]).

2We will not be able to describe the distributed and re-
flective aspects of the architecture here; for the distribution
components see [36].

3The implementation builds on the ADE system available at
http://ade.sourceforge.net/. DIARC also makes heavy
use of pre-defined components developed by other research
teams (e.g., the OpenCV vision library for face detection
and various image processing functions, the SONIC speech
recognizer for spoken word recognition, the link parser for
natural language parsing, VerbNet mappings, and an en-
hanced version of “Thought Treasure” for natural language
understanding and production).
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primitives that are grounded in basic skills of the robot (the
bottom layer control structures are implemented as motor
schemas as in [1]). Scripts can be combined in hierarchical
and recursive ways, yielding complex behaviors from basic
behavioral primitives.

Action selection is accomplished via a prioritized goal
stack. The robot has high-level permanent goals that are
always present (e.g., “be polite”). In addition, transient
goals can be put on the goal stack as they are generated by
pre- and post-conditions in scripts. Each transient goal has
an expected time-to-completion and a wtility associated with
it, which reflects the benefit of completing the goal in time
and the cost of performing the required actions.

Each script goal can consist of multiple subgoals. A sub-
goal may be another script goal or an atomic action. In
general, a script’s subgoals are pushed onto the stack in or-
der; when one subgoal is accomplished, it is popped and the
next is pushed. Subgoals can also be conditional (e.g., the
outcome of an action can lead to one sequence of subgoals on
success and to another on failure). Unlike a normal stack,
the top of the prioritized goal stack is not always the most
recently pushed goal. Rather, the order of the goal stack
depends on the priority of each goal. A goal’s priority (P)
is essentially a measure (or function) of the importance (I)
of the goal to the robot and of the goal’s urgency (U).

Urgency is related to time. Each goal is allotted a fixed
amount of time (T4) when it is pushed onto the stack, within
which it has to complete.* The closer a goal is to timing out
(i.e., the smaller its remaining time Tr > 0), the greater
its urgency. Specifically, U TAT;TR. If reliable estimates
of remaining time to completion can be made for subgoals,
Tr can be computed as the difference between the time re-
maining to complete the task and the time remaining before
it times out. Otherwise, Tr is just the time remaining be-
fore timeout. The calculation of urgency is similar to [22,
18], which implement emotional states with fixed associated
action tendencies in a service robot as a function of two
time parameters (“time-to-refill” and “time-to-empty” plus
two constants). However, in our architecture, urgency alone
may or may not result in reprioritization of goals (and thus
changes in affective state); action selection depends also on
the importance of each explicitly represented goal.

The importance of the goal is based on the benefit of
achieving the goal (B) and the cost of performing the actions
required (C), along with the current positive and negative af-
fective mood states of the robot (Ap and Ay, respectively).?
Specifically, I = (B - Ap) — (C' - An), i.e., the importance
reflects some measure of expected utility if the intensity of
the positive and negative affective mood states are taken to
be self-generated “estimators” of future outlooks (e.g., pos-
itive moods in humans can lead to positive outlooks, top-
down problem solving, etc., whereas negative mood leads to
negative outlook, problem-focused search, etc.).> The mood

4T, is typically the “time-to-completion” associated with
the goal in the script, but can be modified by the action
interpreter based on context.

5The decision to model positive and negative affective states
repeatedly was based on psychological (e.g., [10]) and neu-
ropsychological (e.g., [9]) evidence indicating the represen-
tational independence of positive and negative affect.

5We are in the process of demonstrating the different effects
of positive and negative mood influence on action selection,
and thus behavior, in an independent study.
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Figure 1: A partial view of the proposed DIARC robotic architecture for HRI consisting of only those components
that were used in the experiment described in this paper. Boxes depict concurrently running components of varying

complexity and arrows indicate the information flow through the architecture.

Dashed items are related to the

simulated field sensor, and are not part of the architecture per se (see the experiment description).

states Ap and An themselves are computed based on the
failure or success of computations in various submodules.
Apy is increased based on failures to recognize words, in-
terruptions in motor actions, failure to complete goals, etc.,
while Ap is increased based on successful completion of some
computations (such as successful parses of sentences), com-
pletion of entire action sequences, or achievement of complex
goals. In addition, Ax can be increased by successful detec-
tion of certain negative properties (e.g., detection of stress
in people’s voices or detection of threatening stimuli such
as rapidly approaching objects). Conversely, Ap can be er-
roneously increased due to failures in detection of negative
properties (e.g., the completion of a complex delivery action
will result in an increase in Ap if the robot does not notice
that the object to be delivered was lost)—for a detailed ex-
position of the (complex) relationships between positive and
negative affective states see [37].

Both affective states are updated according to the fol-
lowing equation (based on [30]): Aact/At = trig — act -
(trig 4+ dec), where trig € 0,1 reflects the infusion of affect
(ie., 1 for success for Ap or failure for Ay, 0 otherwise)”,
act € [0, 1] is the level of activation, and dec € (0,1) is a de-
cay value that will reduce the activation level over time (in
the absence of any triggerings). Priority, then, is the prod-
uct of urgency and importance (P = U-I). The goal stack is
resorted periodically according to the priorities of its goals,
and the goal on the top is executed. Subgoals are always be

"Note that Ap and Ax are not complements. There are
actions that can be accomplished without positive affect be-
ing triggered (e.g., recognizing words). Similarly, there may
be action failures that do not trigger negative affect right
away (e.g., when the robot interrupts itself while speaking
to produce another more urgent sentence).
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higher in the goal stack than supergoals, by virtue of their
having less time to complete than the supergoal (everything
else being equal); subgoals are never allotted more time to
complete than the supergoal has remaining. This priority
mechanism allows the robot to focus on goals that are of
importance to its well-being (as determined by the affective
evaluation of the goals utilities and costs), while being able
to keep multiple other goals around and adapt their priority
dynamically based on environmental and internal changes.
One of the emergent effects of having too many high priority
goals with rapidly changing priorities on the goal stack is a
frequent reordering of the goal stack, which effectively leads
to “thrashing”, i.e., frequent switching of goals without be-
ing able to accomplish them, resulting in repeated failures
of goals, and what Sloman calls “perturbances” or “tertiary
emotions” [40].

3.2 Affect Detection in Spoken Language

We only describe the extraction of “stress” in a speaker’s
voice from the auditory stream (even though the algorithm
can be extended to detect other affective features), which
was used in the experiment. In [16], empirical studies show
that stress in the voice is marked by an increase in the mean
of the fundamental frequency (Fo) mean and intensity. Be-
cause the fundamental frequency is inversely proportional
to the pitch period, this means stress can be determined by
a decrease in the pitch period. For pitch period estimation,
the algorithm implemented in [11] was followed with slight
modifications. First, segments of 20 msec sampled at 16
KHz (320 samples) are selected and filtered using a lowpass
filter. After that, each speech sample z passes through a
three-level clipper f(z), which is defined as 1 if x > CL, -1
if £ < —CL, and 0 otherwise. CL is the clipping level of



the speech segment. Given the first 100 samples (x1) and
the last 100 samples (x2) of the segment, CL is defined as
0.68 * min(max(r1), max(xr2). The autocorrelation of the
clipped result is used to determine the pitch period [28].
The energy of the raw speech signal is calculated and if it
falls below an experimentally-determined threshold, the seg-
ment is considered “unvoiced” and no further action is taken.
Otherwise, if the end of the word is reached (as marked by
silence, or after 600 msec), the average frequency of that
word is computed and the word is marked as “stressed” if
the pitch is higher than the cumulative average pitch.®

While this method’s stress detection will be speaker-
dependent (because the average will be determined by the
speaker’s voice), the stressed /unstressed state of the speaker
will actually be independent of the voice; an external sys-
tem uses the ratio of stressed words to total words detected
over a period of time, and compares it to a threshold. If the
ratio exceeds the threshold, then the speaker is classified as
“stressed”, or “not stressed” otherwise.

This thresholding method is different from methods dis-
cussed in [27], because those methods are focused on learn-
ing schemes. Rather, it is similar to earlier systems (e.g.,
[23, 39]), which use general comparisons of properties of the
input speech signal to those of a “calm” state (in our case,
an increase in pitch correlating to stress). The advantage of
the employed system is that it is speaker-independent and
requires no training corpus nor specific underlying train-
ing algorithm (e.g., statistical learning algorithms as in [6],
[19], [27]). It only requires the speaker to speak naturally
(i.e. without stress) at the beginning of the program, so the
baseline can converge to a true representation of the user’s
neutral state. Afterwards, this baseline is locked so further
utterances can be measured for affect.

3.3 Affect Modulation of Speech

A modified version of the University of Edinburgh’s Fes-
tival system was used for speech synthesis. Based on [8],
an emotion filter was applied to the speech output of Fes-
tival, altering various speech parameters based on affective
state. In particular, we defined various degrees of inten-
sities of emotions for the four categories “sad”, “angry”,
“frightened”, and “happy”. For example, to give the robot
a “frightened” voice, the value and range of Fy were in-
creased to make the voice higher and allow more dramatic
pitch swings. To make the robot speak more quickly, the
speech rate was increased, and the silence between words
was decreased, causing the words to be spoken in a more
rapid succession. Finally, jitter was increased to create a
quivering effect in the voice. These follow the results of [16].

4. AFFECT-INDUCTION EXPERIMENT

While it seemed clear from the beginning that express-
ing affect (e.g., via facial expressions, voice, gestures, etc.)
would make robots more believable to human observers,
there was already some early recognition of the potential
utility of affective control for influencing the behavior of
people (e.g., [5]). The architecture in [4] extends prior work
[6] to include natural language processing and some higher

8While word lengths of 600 milliseconds may not generalize
to English as a whole, the chosen boundary is acceptable
for most current interactions with the robot—a more general
system would depend solely on word boundaries.
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level deliberative functions, most importantly, an implemen-
tation of “joint intention theory” (e.g., that allows the robot
to respond to human commands with gestures indicating a
new focus of attention, etc.). The system is intended to
study collaboration and learning of joint tasks, and so is
closely related to the current study. One difference is that
our robot lacks the ability to produce gestures beyond sim-
ple nodding and shaking by the pan-tilt unit, although it is
mobile and fully autonomous as opposed to the robot in [4].
Other studies with robots and simulated agents showed that
affect mechanisms can facilitate task performance of artifi-
cial agents and may be cheaper than other, more complex
non-affective mechanisms (e.g., [22, 34]).

Encouraged by recent findings from usability studies in
HRI about facilitatory effects of affect recognition (e.g., that
recognizing affect can help to improve speech recognition re-
sults [17]), we set out to test the main hypothesis that affect
expression based on internally generated affect or affect gen-
erated in response to affect in humans can help improve the
performance of mized human-robot teams on tasks that have
to be performed together.

To be able to test the hypothesis, a task with (at least)
the following characteristics is required:

e at least one robot and one human are needed for the
task and neither robot nor human can accomplish the
task alone

e robot and human have to exchange information in or-
der to accomplish the task (in our case via spoken nat-
ural language)®

e there is a performance measure (in our case time-to-
task-completion) that can be evaluated objectively on
task performance alone rather than being dependent
on subjective ratings

e the task must include aspects of human affect, which
can be influenced by the robot (in our case affective
modulation of robot speech output)

e these aspects of human affect (in our case stress) must
be triggerable (e.g., via cognitive tasks, time pressure,
etc.) before or during the task (in our case we induce
stress as described below via time pressure)

e a control condition is needed where the same aspects
of human affect are not influenced by the robot (in our
case no affective modulation of robot speech output)

Note that while the first three items are common to many
joint human-robot tasks, the second three are specific to
testing the utility of affect for task performance.

To keep the interaction as natural as possible (e.g., no
hand-held microphones or tethering to the robot), we let
subjects freely interact with the robot (even during training
phase we only suggested to them the kinds of commands the
system would understand without actually pointing to lim-
itations about what it would not understand). We also for-
feit any speaker-dependent adaptation of the employed voice

9This is necessary to exclude trivial “team tasks” such as
situations where the robot has to find a target while the
human has to solve a mathematical problem and the “joint
task” is accomplished if each individual subtask is accom-
plished.



recognition system (at the expense of the overall recogni-
tion rate) to keep training phase to a minimum.!® This was
partly possible because the task-specific vocabulary was very
small and thus the speaker-independent recognition rate ac-
ceptable.

4.1 TheTask

We decided on a task that is relevant to NASA’s en-
visioned future space explorations with joint robot-human
teams [14]. The task takes place against the backdrop of a
hypothetical space scenario. A mixed human-robot team on
a remote planet needs to determine the best location in the
vicinity of the base station for transmitting information to
the orbiting space craft. Unfortunately, the electromagnetic
field of the planet interferes with the transmitted signal and,
moreover, the interference changes over time. The goal of
the human-robot team is to find an appropriate position as
quickly as possible from which the data can be transmitted.
However, only the robot can detect the field strength, and
only in its current position. The specific goal of the human
is to steer the robot using natural language commands un-
til it has found a viable transmission location. Hence, each
member of the team has unique capabilities, and both are
required to complete the task. This is different from [29],
which is similar in spirit to this experiment (physiological
sensors are used to obtain an overall “anxiety level” in real
time, which is fed as input into a simple subsumption-based
robotic control architecture, where it can cause the robot to
interrupt its exploratory wandering behavior if it reaches a
certain threshold); however, in that case the robotic system
seems decoupled from the human and the two tasks per-
formed by the robot and the human are unrelated. Success
on the task is defined as completing a valid transmission
before the time limit is reached. Subjects are not informed
of the time constraint before the experiment; it is imposed
during the experiment to induce stress in the subject (see
below).

Experimental Setup: This envisioned space scenario is
simulated in a room of approximately 5m x 6m (see Figure
2). During the experiment, the robot maintains an internal
map of the area, with a set of six fixed points representing
locations of local peaks for potential transmissions.'! Each
peak has a strength Sp ranging between 200 and 500, de-
creasing proportionally with the distance of the robot from
the peak at a rate of one unit per cm. For overlapping
fields, the maximum is chosen. The location of these points
is unknown to the subjects, but the same across all subjects
(similarly, the initial location of the robot is the same across
all runs). Only two locations have sufficient Sp for trans-
mission. To learn about the field strength at the current
location (S¢), subjects request a reading from the robot.
The robot checks a “simulated field sensor,” which effec-
tively returns Sc for the current location. To successfully
transmit, Sc must be greater than 400 units.

Equipment: The robotic platform for the experiment is
a Pioneer ActivMedia Peoplebot (P2DXE) with a pan-tilt-

10Tn retrospect, we believe that our results might have been
even more pronounced had we used online speaker adapta-
tion during the training phase to improve the recognition.
Moreover, a wireless microphone could be attached to the
subject to reduce noise and further improve recognition.
1'Note that the map in this experiment is not a proper part
of the robot’s architecture.

230

zoom camera, a SICK laser range finder, two microphones,
two speakers, three sonar rings, and an onboard 850 MHz
Pentium III. In addition, it is equipped with two PC lap-
tops with 1.3 GHz and 2.0 GHz Pentium M processors. All
three run Linux with a 2.6.x kernel and are connected via
an internal wired ethernet; a single wireless interface on the
robot enables system access from outside the robot for the
purpose of starting and stopping operation. Obstacle detec-
tion and avoidance is performed on the onboard computer,
while speech recognition and production, action selection,
and subject affect recognition are performed on the laptops.

Method: For the purposes of this experiment, we employ
three test conditions: control, self, and other. The control
condition utilizes no affect expression. The robot’s voice re-
mains neutral throughout the task. In the self condition,
voice affect is modulated by the robot’s inner affect states.
Specifically, the stress internally generated by the urgency
of the top-most goal on the goal stack is expressed by in-
creasing the “fearfulness” of the robot’s voice as time passes.
In the other condition, voice affect is modulated whenever
stress is detected in the subject’s voice (i.e., negative af-
fect is triggered, leading to an increase in the activation
level of An, which, in turn, causes a modulation of the af-
fective speech output). Since our current affective speech
production system can only produce discrete modification
to voice output, the continuous affective states are mapped
onto discrete affective voices (depending on the intensity
levels of An), e.g., “half-frightened” and “frightened” to in-
dicate stress levels.

Procedure: Subjects are first asked to fill out a pre-
survey with five basic questions about their views on differ-
ent aspects of robots used for HRI (see Table 1). The same
five questions are also included on the post-survey to test
whether the experiment would have any influence on their
perceptions of interactive robots (similar to [18]). Then an
experimenter reads the “background story” (summarized in
the above task description). The subjects are told that their
goal is to control the robot to find a transmission location
as quickly as possible. Before attempting the actual task,
subjects go through a practice period during which they be-
come acquainted with the robot by interacting with it in
natural language. In particular, they are asked to help the
robot explore its environment using commands such as “go
forward”, “turn right”, “take a reading”, etc. During prac-
tice, the robot does not employ affective speech modulation.
This practice phase lasts at most ten minutes.

To ensure that subjects’ affective states will be altered
during the experiment, we artificially induce stress in sub-
jects by having the robot issue a battery warning: “I just
noticed that my battery level is somewhat low, <name>,
we have to hurry up.” After another minute, the robot is-
sues another warning: “<name>, my battery level is very
low, we have only one minute left.” When a total of three
minutes has elapsed, the robot indicates that its battery has
died and the task has failed. Subjects may not reach all of
these interaction points if they achieve transmission early
enough.

In both affective conditions, the robot’s voice remains
neutral for the first minute of the task. Thereafter, the
voice is modulated to express elevated stress starting with
the first battery warning in the self condition, and again
to express even more stress at the second battery warning.
Voice modulation remains elevated for all interactions (e.g.,
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field strength reports). In the other condition, the robot’s
voice only changes temporarily after the first minute, when
the affect recognition module detects stress in the subject’s
voice (otherwise the voice remains neutral). Note that it
is, therefore, possible that some subjects in this condition
will never hear a modulated voice if the robot never detects
stress (such subjects are classified as “control”, see also foot-
note 12). The performance of the team is measured in in
terms of the time it takes the team to find a valid trans-
mission location and transmit the data. Throughout the
experiment, the robot’s motion trajectory, speech produced
and detected, and the state of the affect recognition module
were recorded.

After the experimental run, subjects are asked to fill
out the post-survey, which, in addition to the 5 pre-survey
questions, also has questions about whether subjects felt
“stressed” at the beginning of the experiment and after the
robot announced that it was running low on battery power.

Participants: 24 subjects were recruited from the pool of
Computer Science and Engineering students and randomly
assigned to the three groups.'?

4.2 Results

First, we compared the results of two questions on the sur-
vey related to the stress that subjects experienced during
the experiment to make sure that affect induction in sub-
jects worked as expected: “How stressed did you feel at the
beginning of the task?” and “How stressed did you feel after

'2 Originally, seven subjects were assigned to each group, but
since some subjects in the “other” group ended up finishing
the task either before the robot was allowed to express affect
or without the robot having detected any stress, they were
added to the “control” category and 3 additional subjects
were recruited to be able to have about the same number of
“self” and “other” subjects without having too many “con-
trol” subjects.
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the robot announced for the first time that its batteries were
running low?” We found a high statistical difference in sub-
jects’ self-assessed stress levels before (1 = 3.70,0 = 2.01)
and after (1 = 5.67, 0 = 1.74) the robot had announced that
its battery was running low (F(1,22)=17.773,p<0.001). We
conducted an additional ANOVA to confirm that there was
no difference among the three groups with respect to the
change in self-reported stress levels (F(2,21)=0.8,p=0.451).

A 3-way ANOVA with affect (“control”, “self”, and
“other”) as independent and time (to task completion) as
dependent variable shows only a slight trend towards signif-
icance, but no significant effect (F(2,21)=2.508, p=0.106).
This is due to (1) the relatively small number of subjects
and (2) there is no “time penalty” for failing the task. Sub-
jects have only 180 seconds to complete the task (i.e., be-
fore the batteries fail). A subject “succeeds” when the team
locates a sufficiently high field strength and transmits be-
fore the time expires, and the performance time is the time
to transmission. When subjects fail, however, their perfor-
mance time is just slightly over 180 seconds, regardless of
how far they are from locating an appropriate transmission
position. With regard to (1), we get a significant effect if
we compare the combined affective to non-affective groups
(F(1,22)=4.882,p=0.038). With regard to (2), a logistic re-
gression showed a borderline significant difference between
all three groups if we use success as dependent dichotomous
variable divariable instead of time (p=0.0597) (we expect
the effect to become more pronounced with more subjects).
Hence, the results confirm our main hypothesis that the ex-
pression of affect (at the right time) both based on inter-
nally generated affect as well as affect generated in response
to affect in humans can improve the performance of mixed
human-robot teams on tasks that have to be performed to-
gether.

We also compared the five identical pre- and post-survey



Table 1: Comparison of pre- and post-survey questions for all three groups (from l=strongly disagree to

9=strongly agree).

Question Pre u(oc)  Post u(o)
Would you prefer robots that understand natural language over robots that can be

controlled via the keyboard? 6.21 (1.96) 6.46 (1.72)
Do you think it will be useful for robots to detect and react to emotions in humans? 5.54 (1.59) 6.25 (1.45)
Do you think it is a good idea for robots to have their own personality? 5.42 (1.91) 5.08 (1.77)
Do you think it will be useful for robots to have emotions and express them? 4.58 (1.82) 4.67 (1.76)
Do you think it is a good idea for robots to have their own goals and be somewhat

autonomous rather than fully controlled by people? 5.42 (2.41) 6.17 (2.36)

questions in order to determine whether the experience and
interaction with the robot had any influence on the sub-
ject’s views on basic questions about HRI (Table 1). We
conducted ANOVAs for all five questions with pre and af-
fect as independent, and post as dependent variable. In all
cases we found a significant effect of pre, but no significant
effects of affect. In particular, the experiment did not seem
to have any significant effects on whether subjects preferred
natural language as a means of interacting with the robot
(as opposed to the keyboard) and whether they thought that
it was a good idea for the robot to have a personality. How-
ever, for questions 2 and 5 we found significant interactions
between pre and affect indicating that subjects in the “self”
affect group changed their ratings more so than the other
groups. While the difference between pre- and post-survey
ratings is not significant in either case for the “self” group
(= 5.00,0 = 1.73 vs. u = 6.72,0 = 0.95 for question 2,
and p = 4.71,0 = 2.36 vs. p = 6.57,0 = 1.52 for ques-
tion 5), this is only due to the small number of subjects in
that group (N=7) and we expect this difference to become
significant with a larger number of subjects. Interestingly,
subjects’ views on question 4 did not change based on the
experiment, which suggests that for them “detecting human
emotions and to reacting to them” is separate from “having
emotions and expressing them.” A more extensive analy-
sis of these and additional questions on pre/post survey is
omitted for space reasons and is discussed elsewhere [33].

5. CONCLUSIONS

In this paper, we have proposed an architecture for HRI
tasks involving joint human-robot teams, which can detect,
generate, and express affect in novel ways. Since we share
the belief of [15] that “peer-to-peer HRI will enable more
effective and productive human-robot teams for space ex-
ploration”, our research attempts to elucidate the poten-
tially facilitatory roles of affect recognition and expression
for task performance in joint human-robot teams. As we
have demonstrated in the HRI experiment, in which success
critically depended on collaboration between human and
robot, it is not only critical to recognize human non-verbal,
affective cues to improve the interaction between robots
and people, but affect generated by mechanisms within the
robot’s architecture can actually improve the task perfor-
mance of joint human-robot teams. And while these are
clearly early results, we believe that they nevertheless point
towards the potential of affect-aware and affect-generating
architectures for HRI as an important direction for future
research in human-robot collaboration.
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