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INTRODUCTION

A protein family{ is a set of evolutionarily related proteins

descended from a common ancestor, generally having similar

sequences, three dimensional structures, and functions. By examin-

ing the statistical patterns of sequence conservation and diversity

within a protein family, we can gain insights into the constraints

that determine structure and function. These statistical patterns are

often learned from multiple sequence alignments (MSA) and then

encoded using probabilistic graphical models (e.g., Refs. 1–5). The

well-known database PFAM,4 for example, contains more than 11,000

profile Hidden Markov Models (HMM)6 learned from MSAs. The

popularity of generative graphical models is due in part to the fact

that they can be used to perform important tasks such as structure

and function classification (e.g., Refs. 2,5) and to design new pro-

tein sequences (e.g., Ref. 7). Unfortunately, existing methods for

learning graphical models from MSAs either make unnecessarily

strong assumptions about the nature of the underlying distribution

over protein sequences, or else use greedy algorithms that are often

sub-optimal. The aim of this work is to introduce a new algorithm

that addresses these two issues simultaneously and to demonstrate

the superior performance of the resulting models.

A graphical model encodes a probability distribution over protein

sequences in terms of a graph and a set of functions. The nodes of

the graph correspond to the columns of the MSA and the edges

specify the conditional independencies between the columns. Each

node is associated with a local function that encodes the column-

specific conservation statistics. Similarly, each edge is associated

with a function that encodes the correlated mutation statistics

between pairs of residues.

ySivaraman Balakrishnan and Hetunandan Kamisetty contributed equally to this work.
{In this article the expression protein family is synonymous with domain family.

Grant sponsor: NSF; Grant number: IIS-0905193. Microsoft Research. Use of the OpenCloud

cluster for our experiments was generously provided by the Parallel Data Lab at Carnegie Mellon,

which is supported, in part, by the NSF, under award CCF-1019104, and the Gordon and Betty

Moore Foundation, in the eScience project.

*Correspondence to: Christopher James Langmead, 5000 Forbes Ave., Pittsburgh, PA 15213.

E-mail: cjl@cs.cmu.edu.

Received 16 August 2010; Revised 10 October 2010; Accepted 26 October 2010

Published online 11 November 2010 in Wiley Online Library (wileyonlinelibrary.com).

DOI: 10.1002/prot.22934

ABSTRACT

We introduce a new approach to learning statisti-

cal models from multiple sequence alignments

(MSA) of proteins. Our method, called GREMLIN

(Generative REgularized ModeLs of proteINs),

learns an undirected probabilistic graphical

model of the amino acid composition within the

MSA. The resulting model encodes both the posi-

tion-specific conservation statistics and the corre-

lated mutation statistics between sequential and

long-range pairs of residues. Existing techniques

for learning graphical models from MSA either

make strong, and often inappropriate assump-

tions about the conditional independencies within

the MSA (e.g., Hidden Markov Models), or else

use suboptimal algorithms to learn the parame-

ters of the model. In contrast, GREMLIN makes no

a priori assumptions about the conditional inde-

pendencies within the MSA. We formulate and

solve a convex optimization problem, thus guar-

anteeing that we find a globally optimal model at

convergence. The resulting model is also genera-

tive, allowing for the design of new protein

sequences that have the same statistical properties

as those in the MSA. We perform a detailed anal-

ysis of covariation statistics on the extensively

studied WW and PDZ domains and show that

our method out-performs an existing algorithm

for learning undirected probabilistic graphical

models from MSA. We then apply our approach

to 71 additional families from the PFAM database

and demonstrate that the resulting models signifi-

cantly out-perform Hidden Markov Models in

terms of predictive accuracy.
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The task of learning a graphical model from an MSA

can be divided into two subproblems: (i) learning the to-

pology of the graph (i.e., the set of edges), and (ii) estimat-

ing the parameters of the functions. The first problem is

especially challenging because the number of unique topol-

ogies on a graph consisting of n nodes is O(2n
2

). For that

reason, it is common to simply impose a topology on the

graph, and then focus on parameter estimation. An HMM,

for example, has a simple topology where each column is

connected to its immediate neighbors. That is, the model

assumes each column is conditionally independent of the

rest of the MSA, given its sequential neighbors. This

assumption dramatically reduces the complexity of learn-

ing the model but is not well justified biologically. In par-

ticular, it has been shown by Ranganathan and workers

that it is necessary to model correlated mutations between

nonadjacent residues.8–10

Thomas et al.11 demonstrated that correlated muta-

tions between nonadjacent residues can be efficiently

modeled using a different kind of graphical model

known as a Markov Random Field (MRF). However,

when using MRFs one must first identify the conditional

independencies within the MSA. That is, one must learn

the topology of the model. Thomas and colleagues

address that problem using a greedy algorithm, which we

will refer to as the GMRC method, that adds edges

between nodes with high mutual information.11–14

Unfortunately, their algorithm provides no guarantees as

to the optimality of the resulting model.

The algorithm presented in this article, called GREMLIN

(Generative REgularized ModeLs of proteINs), solves the

same problem as Ref. 11 but does so using a method

with strong theoretical guarantees. In particular, our

algorithm is consistent, that is it is guaranteed to yield

the true model as the data increases, and it has low sam-

ple-complexity, that is it requires less data to identify the

true model than any other known approach. GREMLIN

also employs regularization to penalize complex models

and thus reduce the tendency to over-fit the data. Finally,

our algorithm is also computationally efficient and easily

parallelizable. We demonstrate GREMLIN by performing a

detailed analysis on the well-studied WW and PDZ

domains and demonstrate that it produces models with

higher predictive accuracy than those produced using the

GMRC algorithm. We then apply GREMLIN to 71 other

families from the PFAM database and show that our algo-

rithm produces models with consistently higher predic-

tive accuracy than profile HMMs.

MATERIALS AND METHODS

In what follows, we describe our approach to learning the

statistical patterns within a given multiple sequence align-

ment. The resulting model is a probability distribution over

amino acid sequences for a particular domain family.

Modeling domain families with Markov
random fields

Let Xi be a finite discrete random variable representing

the amino-acid composition at position i of the MSA of

the domain family taking values in {1. . .k} where the

number of states, k, is 21 (20 amino acids with one addi-

tional state corresponding to a gap). Let X 5 {X1,X2,..Xp}

be the multivariate random variable describing the amino

acid composition of an MSA of length p. Our goal is to

model P(X), the amino-acid composition of the domain

family.

Unfortunately, P(X) is a distribution over a space of
size kp, rendering the explicit modeling of the joint dis-
tribution computationally intractable for naturally
occurring domains. However, by exploiting the proper-
ties of the distribution, one can significantly decrease
the number of parameters required to represent this dis-
tribution. To see the kinds of properties that we can
exploit, let us consider a toy domain family represented
by an MSA as shown in Figure 1(A). A close examina-
tion of the MSA reveals the following statistical proper-
ties of its composition: (i) the Tyrosine (Y) at position
2 is conserved across the family; (ii) positions 1 and 4
are coevolving – sequences with a (S) at position 1
have a Histidine (H) at position 4, while sequences
with a Phenylalanine (F) at position 1 have a Trypto-
phan (W) at position 4; (iii) the remaining positions
appear to evolve independently of each other. In proba-
bilistic terms we say that X1, X3 are covarying, and that
the remaining Xi’s are statistically independent. We can
therefore encode the joint distribution over all positions
in the MSA by storing one joint distribution P(X1, X4),
and the univariate distributions P(Xi), for the remaining
positions (since they are all statistically independent of
every other variable).

The ability to factor the full joint distribution, P(X),

in this fashion has an important consequence in terms

of space complexity. Namely, we can reduce the space

requirements from 217 to 212 1 7 * 21 parameters.

This drastic reduction in space complexity translates to

a corresponding reduction in time complexity for com-

putations over the distribution. While this simple exam-

ple utilizes independencies in the distribution; this kind

of reduction is possible in the more general case of

conditional independencies. A probabilistic graphical

model (PGM) exploits these (conditional) independence

properties to store the joint probability distribution

using a small number of parameters.

Intuitively, a PGM stores the joint distribution of a

multivariate random variable in a graph; while any

distribution can be modeled by a PGM with a complete

graph, exploiting the conditional independencies in the

distribution leads to a PGM with a (structurally) sparser

graph. Following Ref. 12, we use a specific type

of probabilistic graphical model called a Markov

Random Field (MRF). In its commonly defined form
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with pair-wise log-linear potentials, a Markov Random

Field (MRF) can be formally defined as a tuple

M ¼ ðX; E;U;WÞ where (X; E) is an undirected graph

over the random variables. X represents the set of verti-

ces and E is the set of edges of the graph. The graph

succinctly represents conditional independencies through

its Markov properties, which state for instance that each

node is independent of all other nodes given its neigh-

bors. Thus, graph separation in (X; E) implies condi-

tional independence. F, C are a set of node and edge

potentials, respectively, usually chosen to be log-linear

functions of the form:

/s ¼ ½evs1evs2 . . . evsk �; wst ¼
ew

st
11 ew

st
12 . . . ew

st
1k

ew
st
21 ew

st
22 . . . ew

st
2k

. . .
ew

st
k1 ew

st
k2 . . . ew

st
kk

2
664

3
775 ð1Þ

where s is a position in the MSA, and (s, t) is an edge

between the positions s and t in the MSA. /s is a (k 3 1)

vector and wst is a (k 3 k) matrix. For future notational

simplicity we further define

vs ¼ ½vs1vs2 . . . vsk� wst ¼
wst
11 wst

12 . . . wst
1k

wst
21 wst

22 . . . wst
2k

. . .
wst
k1 wst

k2 . . . wst
kk

2
664

3
775 ð2Þ

where vs is a (k 3 1) vector and wst is a (k 3 k) matrix. v

5 {vs|s 5 1. . .p} and w ¼ fwst jðs; tÞ 2 Eg are node and

edge ‘‘weights.’’ v is a collection of p, (k 3 1) vectors and w

is a collection of p, (k 3 k) matrices.

The probability of a particular sequence x 5
{x1, x2,. . .,xp} according to M is defined as:

PMðXÞ ¼ 1

Z

Y
s2V

/sðXsÞ
Y

ðs;tÞ2E
wstðXs;XtÞ ð3Þ

where Z, the so-called partition function, is a normaliz-
ing constant defined as a sum over all possible assign-
ments to X.

Z ¼
X
X2X

Y
s2V

/sðXsÞ
Y

ðs;tÞ2E
wstðXs;XtÞ ð4Þ

The structure of the MRF for the MSA shown in Figure

1(A,B). The edge between variables X1 and X4 reflects the

statistical coupling between those positions in the MSA.

Structure learning with L1 regularization

In the previous section we outlined how an MRF can
parsimoniously model the probability distribution P(X).
In this section we consider the problem of learning the
MRF from an MSA.
Equation (3) describes the probability of a sequence x

for a specific model M. Given a set of independent

sequences X ¼ fX1;X2;X3; . . . ;Xng, the log-likelihood

of the model parameters H ¼ ðE; v;wÞ is then:

llðHÞ ¼ 1

n

X
Xi2X

X
s2V

log/sðXi
s Þ þ

X
ðs;tÞ2E

logwstðXi
s ;X

i
t Þ

2
4

3
5

� log Z ð5Þ
where the term in the braces is the unnormalized likeli-

hood of each sequence, and Z is the global partition func-

tion. The problem of learning the structure and parameters

of the MRF is now simply that of maximizing ll(Y).

Figure 1
(A) A multiple sequence alignment (MSA) for a hypothetical domain family. (B) The Markov Random Field encoding the conservation in and the

coupling in the MSA. The edge between random variables X1 and X4 reflects the coupling between positions 1 and 4 in the MSA. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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MLEðuÞ ¼ max
H

llðHÞ ð6Þ
This maximum likelihood estimate (MLE) is guaran-

teed to recover the true parameters as the amount of

data increases. However, this formulation suffers from

two significant shortcomings: (i) the likelihood involves

the computation of the global partition function which is

computationally intractable and requires O(kp) time to

compute, and (ii) in the absence of infinite data, the

MLE can significantly over-fit the training data due to

the potentially large number of parameters in the model.

An overview of our approach to surmount these short-

comings is as follows: first, we approximate the likelihood

of the data with an objective function that is easier to com-

pute, yet retains the optimality property of MLE men-

tioned earlier. To avoid over-fitting and learning densely

connected structures, we then add a regularization term

that penalizes complex models to the likelihood objective.

The specific regularization we use is particularly attractive

because it has high statistical efficiency.

The general regularized learning problem is then for-

mulated as:

max
H

pllðHÞ � RðHÞ ð7Þ

where the pseudo log-likelihood pll(Y) is an approxima-

tion to the exact log-likelihood and R(Y) is a regulariza-

tion term that penalizes complex models.

While this method can be used to jointly estimate both

the structure E and the parameters v, w, it will be conven-

ient to divide the learning problem into two parts: (i)

structure learning — which learns the edges of the graph,

and (ii) and parameter estimation — learning v, w given

the structure of the graph. We will use a regularization

penalty in the structure learning phase that focuses on

identifying the correct set of edges. In the parameter esti-

mation phase, we use these edges and learn v and w using

a different regularization penalty that focuses on estimat-

ing v and w accurately. We note that once the set of edges

has been fixed, the parameter estimation problem can be

solved efficiently. Thus, we will focus on the problem of

learning the edges or, equivalently, the set of conditional

independencies within the model.

Pseudo likelihood

The log-likelihood as defined in Eq. (5) is smooth, dif-

ferentiable, and concave. However, maximizing the log-

likelihood requires computing the global partition func-

tion Z and its derivatives, which in general can take up

to OðkpÞ time. While approximations to the partition

function based on Loopy Belief Propagation15 have been

proposed as an alternative, such approximations can lead

to inconsistent estimates.

Instead of approximating the true-likelihood using approx-

imate inference techniques, we use a different approximation

based on a pseudo-likelihood proposed by Ref. 16 and used

by Refs. 17 and 18. The pseudo-likelihood is defined as:

pllðHÞ ¼ 1

n

X
Xi2X

Xp
j¼1

logðPðXi
j jXi

�jÞÞ ¼
1

n

X
Xi2X

Xp
j¼1

3 log/jðXi
j Þ þ

X
k2V 0

j

logwjkðXi
j ;X

i
kÞ � logZj

2
4

3
5

where Xj
i is the residue at the jth position in the ith

sequence of our MSA, X2j
i denotes the ‘‘Markov blanket’’

of Xj
i, and Zj is a local normalization constant for each

node in the MRF. The set Vj
0 is the set of all vertices which

connect to vertex j in the PGM. The only difference
between the likelihood and pseudo-likelihood is the
replacement of a global partition function with local parti-
tion functions (which are sums over possible assignments
to single nodes rather than a sum over all assignments to
all nodes of the sequence). This difference makes the
pseudo-likelihood significantly easier to compute in gen-
eral graphical models.

The pseudo-likelihood retains the concavity of the
original problem, and this approximation makes the
problem tractable. Moreover, this approximation is
known to yield a consistent estimate of the parameters
under fairly general conditions if the generating distribu-
tion is in fact a pairwise MRF defined by a graph over
X.19 That is, under these conditions, as the number of
samples increases, parameter estimates using pseudo-like-
lihood converge to the true parameters.

L1 regularization

The study of convex approximations to the complexity

and goodness of fit metrics has received considerable

attention recently.15,17,18,20 Of these, those based on L1
regularization are the most interesting because of their

strong theoretical guarantees. In particular methods based

on L1 regularization exhibit consistency in both parameters

and structure (i.e., as the number of samples increases we

are guaranteed to find the true model), and high statistical

efficiency (i.e., the number of samples needed to achieve

this guarantee is small). See Ref. 21 for a recent review of

L1-regularization. Our algorithm uses L1-regularization for

both structure learning and parameter estimation.

For the specific case of block-L1 regularization, R(Y)

usually takes the form:

RðHÞ ¼ knode
Xp
s¼1

kvsk22 þ kedge
Xp
s¼1

Xp
t¼sþ1

kwstk2 ð8Þ

where knode and kedge are regularization parameters that

determine how strongly we penalize higher (absolute)

weights. The value of knode and kedge control the trade-

off between the log-likelihood term and the regulariza-

tion term in our objective function.
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The regularization described above groups all the pa-

rameters that describe an edge together in a block. The

second term in Eq. (8) is the sum of the L2 norms of

each block. Since the L2 norm is always positive, our reg-

ularization is exactly equivalent to penalizing the L1
norm of the vector of norms of each block with the pen-

alty increasing with higher values of kedge. It is important

to distinguish the block-L1 regularization on the edge

weights from the more traditional L2 regularization on

the node weights where we sum the squares of the L2
norms.

The L1 norm is known to encourage sparsity (by set-

ting parameters to be exactly zero), and the block L1
norm we have described earlier encourages group sparsity

(where groups of parameters are set to zero). Since, each

group corresponds to all the parameters of a single edge,

using the block L1 norm leads to what we refer to as

structural sparsity (i.e., sparsity in the edges). In contrast,

the L2 regularization also penalizes high absolute weights,

but does not usually set any weights to zero, and thus

does not encourage sparsity.

Optimizing regularized pseudo-likelihood

In the previous two sections we described an objective

function, and then a tractable and consistent approxima-

tion to it, given a set of weights (equivalently, potentials).

However, to solve this problem we still need to be able to

find the set of weights that maximizes the likelihood under

the block-regularization form of Eq. (7). We note that the

objective function associated with block-L1 regularization

is no longer smooth. In particular, its derivative with

respect to any parameter is discontinuous at the point

where the group containing the parameter is 0. We there-

fore consider an equivalent formulation where the nondif-

ferentiable part of the objective is converted into a con-

straint making the new objective function differentiable.

max
H;a

pllðHÞ � knode
Xp
s¼1

kvsk22 � kedge
Xp
s¼1

Xp
t¼sþ1

ast

subject to : 8ð1 � s < t � pÞ : ast � kwstk2

where the constraints hold with equality at the optimal

(Y, a). Intuitively, ast behaves as a differentiable proxy for

the nondifferentiable kwstk2, making it possible to solve

the problem using techniques from smooth convex optimi-

zation. Since the constraints hold with equality at the opti-

mal solution (i.e., ast 5 kwstk2), the solutions and there-

fore, the formulations are identical.

We solve this reformulation through the use of pro-

jected gradients. We first ignore the constraints, compute

the gradient of the objective, and take a step in this

direction. If the step results in any of the constraints

being violated we solve an alternative (and simpler) Eu-

clidean projection problem:

min
H0a0

����� H0

a0

� �
� H

a

#" �����
2

2

subject to : 8ð1 � s < t � pÞ : ast � kwstk2

which finds the closest parameter vector to the vector

obtained by taking the gradient step (in Euclidean dis-

tance), which satisfies the original constraints. In this

case the projection problem can be solved extremely effi-

ciently (in linear time) using an algorithm described in

Ref. 18. Methods based on projected gradients are guar-

anteed to converge to a stationary point,22 and convexity

ensures that this stationary point is globally optimal.

To scale the method to significantly larger domains, we

can subdivide the structure learning problem into two

steps. In the first step, each node is considered separately

to identify its neighbors. This may lead to an asymmetric

adjacency matrix, and so in the second step the adjacency

matrix is made symmetric. This two-step approach to

structure learning has been extensively compared to the

single step approach by Ref. 20 and has been found to have

almost identical performance. The two-step approach

however has several computational advantages. The prob-

lem of learning the neighbors of a node is exactly equiva-

lent to solving a logistic regression problem with block-L1
regularization, and this problem can be solved quickly and

with low memory requirements. Additionally, the problem

of estimating the graph can now be trivially parallelized

across nodes of the graph since these logistic regression

problems are completely decoupled. Parameter learning of

the graph with just L2 regularization can then be solved

extremely efficiently using quasi-Newton methods.23

RESULTS

The probabilistic framework defined in the ‘‘Modeling

domain families with Markov random fields’’ section and

the optimization objectives and algorithms defined in the

‘‘Structure learning with L1 regularization’’ section constitute

a method for learning a graphical model from a given MSA.

The optimization framework has two major penalty parame-

ters that can be varied (kv, ke). To understand the effects of

these parameters, we first evaluated GREMLIN on artificial

protein families whose sequence records were generated

from known, randomly generated models. This lets us evalu-

ate the success of the various components of GREMLIN in a

controlled setting where the ground truth was known.

Our experiments involve comparing the performance

of ranking edges and learning a graph structure using

a variety of techniques, including: (i) our algorithm,

GREMLIN; and (ii) the greedy algorithm of Refs. 11 and

12, denoted GMRC method. We also compare our perfor-

mance with the Profile Hidden Markov Models6 used

by Ref. 4.
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We note that the GMRC method only considers edges that

meet certain coupling criteria (see Refs. 11 and 12 for

details). In particular, we found that it returns sparse graphs

(fewer than 100 edges), regardless of choice of run-time pa-

rameters. GREMLIN, in contrast, returns a full spectrum from

disconnected to completely connected graphs depending on

the choice of the regularization parameter. In our experi-

ments, we use our parameter estimation code on their

graphs, and compare ourselves to the best graph they return.

In the remainder of this section, we demonstrate that

GREMLIN significantly out-performs other algorithms. In

particular, we show that GREMLIN achieves higher good-

ness of fit to the test set, and has lower prediction error

than the GMRC method — even when we learn models of

similar sparsity. Finally, we show that GREMLIN also sig-

nificantly out performs profile HMM-based models for

71 real protein families, in terms of goodness of fit.

These results demonstrate that the use of block-regular-

ized structure learning algorithms can result in higher-

quality MRFs than those learnt by the GMRC method, and

that MRFs produce higher quality models than HMMs.

Simulations

We generated 32-node graphs. Each node had a cardinality

of 21 states, and each edge was included with probability q. Ten
different values of q varying from 0.01 and 0.45 were used; for

each value of q, twenty different graphs were generated result-

ing in a total of 200 graphs. For each edge that was included in

a graph, edge and node weights were drawn from a Normal

distribution (weights � Nð0; 1Þ). Since each edge involves

sampling 441 weights from this distribution, the edges

tend to have many small weights and a few large ones. This

reflects the observation that in positions with known cor-

related mutations, a few favorable pairs of amino acids are

usually much more frequent than most other pairs. When

we sample from our simulated graphs using these parame-

ters, we therefore tend to generate such sequences.

For each of these 200 graphical models, we then sampled

1000 sequences using a Gibbs sampler with a burn-in of

10,000 samples and discarding 1000 samples between each

accepted sequence. These 1000 sequences were then parti-

tioned into two sets: a training set containing 500 sequen-

ces and a held-out set of 500 sequences used to test the

model. The training set was then used to train a model

using the block regularization norm.

We first test our accuracy on structure learning. We

measure accuracy by the F-score which is defined as

F-score ¼ 2 � precision � recall
precisionþ recall

Precision and recall are in turn defined in terms of the

number of true positives (tp), false positives (fp) and

false negatives (fn) as precision ¼ tp
tpþfp

and recall ¼ tp
tpþfn

.

Since the structure of the model directly depends only

on the regularization weight on the edges, the structures

were learnt for each norm and each training set with differ-

ent values of ke (between 1 and 500), keeping kv fixed at 1.

Figure 2(A) compares our structure learning method

with the algorithm in Ref. 12. We evaluate their method

over a wide range of parameter settings and select the best

model. Figure 2(A) shows that our method significantly

Figure 2
(A) Edge occurrence probability q versus F-score for the structure learning methods we propose, and the method proposed in.12 (B) L2 norm of

the error in the estimated parameters as a function of the weight of the regularization in stage two. The inset shows the case when no

regularization is used in stage two. The much higher parameter estimation error in this case highlights the need for regularization in both stages.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

S. Balakrishnan et al.

1066 PROTEINS



out-performs their method for all values of q. We see that

over all settings our best model has an average F-score of

at least 0.63. We conclude that we are able to infer accurate

structures given the proper choice of settings.

Figure 2(B) shows the error in our parameter estimates

given the true graph as a function of q. We also find that

parameter estimation is reasonably robust to the choice

of the regularization weights, as long as the regularization

weights are nonzero.

Figure 3(A) shows a qualitative analysis of edges

missed by each method (we consider all simulated graphs

and the best learnt graph of each method). We divide the

missed edges into three groups (weak, intermediate and

strong) based on their true L2 norm. We see again that

the three norms perform comparably, significantly out-

performing the GMRC method in all three groups.

Finally, Figure 3(B) shows the sensitivity of our struc-

ture learning algorithms to the size of training set. In

particular, we see that for the simulated graphs around

400 sequences results in us learning very accurate struc-

tures. However, as few as 50 sequences are enough to

infer reasonable structures.

Evaluating structure and parameters jointly

In a simulated setting, structure and parameter estimates

can be compared against known ground truth. However, for

real domain families we need other evaluation methods. We

evaluate the structure and parameters for real domain fami-

lies by measuring the imputation error of the learnt models.

Informally, the imputation error measures the probability of

not being able to ‘‘generate’’ a complete sequence, given an

incomplete one. The imputation error of a column is meas-

ured by erasing it in the test MSA, and then computing the

probability that the true (known) residues would be pre-

dicted by the learnt model. This probability is calculated by

performing inference on the erased column, conditioned on

the rest of the MSA. The imputation error of a model is the

average of its imputation error over columns.

Using imputation error directly for model selection
generally gives us models that are too dense. Intuitively,
once we have identified the true model, adding extra
edges decreases the imputation error by a very small
amount, probably a reflection of the finite-sample bias.
We evaluated the modified Akaike information criteria
(AIC) and Bayesian information criteria (BIC) for model
selection due to their theoretically appealing properties.
In the finite sample case we find that BIC performs well
when the true graph is sparse, while AIC performs well
when the true graph is dense. We discuss the information
criteria in detail in the Supporting Information, and pro-
vide some general suggestions for their use. Unfortu-
nately, neither method performs well over the entire
range of graphs. For this reason, we considered an
approach to model selection based on finite sample error
control. We chose to control the false discovery rate
(FDR) in the following way. Consider permuting the
each column of the MSA independently (and randomly).
Intuitively, the true graph is now a graph with no edges.
Thus, one approach to selecting the regularization pa-
rameter is to find the value that yields no edges on the
permuted MSA. A more robust method, which we use, is
to use the average regularization parameter obtained
from multiple random permutations as in Ref. 24. In the
results that follow we use 20 random permutations.

Figure 3
(A) Qualitative grouping of edges missed by GREMLIN and the GMRC method (B) Sensitivity of structure learning to size of training set. [Color figure
can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Given the success of GREMLIN on simulated data, and

equipped with a method for model selection described ear-

lier, we proceed to apply GREMLIN to real protein MSAs.

We consider the WW and PDZ families in some detail

since the extensive literature on these families allows us to

draw meaningful conclusions about the learnt models.

A generative model for the WW domain

The WW domain family (Pfam id: PF003974) is a small

protein interaction module with two highly conserved

tryptophans that adopts a curved three-stranded b-sheet
structure with a binding site for proline-containing

peptides. In Refs. 9 and 10 the authors determine, using

Statistical Coupling Analysis (SCA), that the residues can

be divided into two clusters: the first cluster contains a set

of 8 strongly coupled residues and the second cluster

contains everything else. Based on this finding, the

authors then designed 44 sequences that satisfy coevolu-

tion constraints of the first cluster, of which 12 actually

fold in vitro. An alternative set of control sequences, which

did not satisfy the constraints, failed to fold.

We first constructed an MSA by starting with the PFAM

alignment and removing sequences to construct a non-

redundant alignment (no pair of sequences was greater

than 80% similar). This resulted in an MSA with 700

sequences of which two thirds were used as a training set

and the rest were used as a test set. Each sequence in the

alignment had 30 positions. The training set was used to

learn the model, for multiple values of ke. Given the

structure of the graph, parameters were learned using

kv 5 1, ke 5 1. The learnt model is presented in Figure 4.

Figure 5 compares the imputation errors of our

approach (in red and yellow) with the GMRC method of

Ref. 12 and Profile HMMs.6 The model in red was learnt

using ke selected by performing a permutation study.

Since this model had more edges than the model learnt

by GMRC, we used a higher ke to learn a model that had

fewer edges than the GMRC model. The x-intercept was

based on a loose lower bound on the error and was esti-

mated by computing the imputation error on the test-

data of a completely connected model learnt on the test

data. Due to over-fitting, this is likely to be a very loose

estimate of the lower bound. We find that our imputa-

tion errors are lower than the methods we compare to

(even at comparable levels of sparsity).

To see which residues are affected by these edges, we

construct a ‘‘coupling profile’’ [Fig. 4(C)]. We construct

a shuffled MSA by taking the natural MSA and randomly

permuting the amino acids within the same position

(column of MSA) for each position. The new MSA now

contains no coevolving residues but has the same conser-

vation profile as the original MSA. To build a coupling

profile, we calculate the difference in the imputation

error of sequences in a held-out test set and the shuffled

MSA. Intuitively, having a high imputation error differ-

ence means that the position was indeed coevolving with

some other positions in the MSA.

We also performed a retrospective analysis of the artifi-

cial sequences designed by Ref. 10. We attempt to distin-

guish sequences that folded from those that didn’t.

Although this is a discriminative test (folded or not) of a

generative model, we nevertheless achieve a high AUC of

0.87 (the ROC curve is shown and described in the Sup-

porting Information). We therefore postulate that the

additional constraints we identify are indeed critical to the

stability of the WW fold. In comparing our AUC to the

published results of12 (AUC of 0.82) and the Profile HMM

(AUC of 0.83) we see that we are able to better distinguish

artificial sequences that fold from those that don’t.

Allosteric regulation in the PDZ domain

The PDZ domain is a family of small, evolutionarily

well represented protein binding motifs. The domain is

most commonly found in signaling proteins and helps to

anchor transmembrane proteins to the cytoskeleton and

hold together signaling complexes. The PDZ domain is

also interesting because it is considered an allosteric pro-

tein. The domain, and its members have been studied

extensively, in multiple studies, using a wide range of

techniques ranging from computational approaches based

on statistical coupling8 and Molecular Dynamics simula-

tions,26 to NMR based experimental studies27.

We use the MSA from Ref. 8. The MSA is an alignment

of 240 nonredundant sequences, with 92 positions. We

chose a random subsample with two-thirds of the sequen-

ces as the training set and use the rest as a test set. Using

this training set, we learnt generative models for each of

the block regularizers, and choosing the smallest value of

ke that gave zero edges for 20 permuted MSAs as

explained previously. The resulting model had 112 edges

(Fig. 6). Figure 5 summarizes the imputation errors on

the PDZ domain. We again observe that the model we

learn is denser than that learnt by GMRC and has lower

imputation error. However, even at comparable sparsity

GREMLIN out-performs the Profile HMM and GMRC.

The SCA based approach of Ref. 8 identified a set of

residues that were coupled to a residue near the active site

(HIS-70) including a residue at a distal site on the other

end of the protein (GLY-49 in this case). Since the SCA

approach can only determine the presence of a dependence

but cannot distinguish between direct and indirect cou-

plings, only a cluster of residues was identified. Our model

also identifies this interaction, but more importantly, it

determines that this interaction is mediated by ALA-74 with

position 74 directly interacting with both these positions.

By providing such a list of sparse interactions our model

can provide a small list of hypotheses to an experimentalist

looking for possible mechanisms of such allosteric behavior.

In addition to the pathway between HIS-70 and GLY-49,

we also identify residues not on the pathway that are con-
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nected to other parts of the protein including, for example,

ASN-61 of the protein. This position is connected to ALA-88

and VAL-60 in our model, and does not appear in the net-

work suggested by Ref. 8, but has been implicated by NMR

experiments27 as being dynamically linked to the active site.

From our studies on the PDZ and WW families we

find that GREMLIN produces higher quality models than

GMRC and profile HMMs, and identifies richer sets of

interactions. In the following section we consider the

application of GREMLIN to a larger subset of the PFAM

database. Since the greedy algorithm of GMRC does not

scale to large families, our experiments are restricted to

comparing the performance of GREMLIN with that of pro-

file HMMs.

Figure 4
WW domain model. Edges returned by GREMLIN overlayed on a circle (A) and on the structure (B) of the WW domain of transcription elongation

factor 1 (PDB id: 2DK7).25 (C) Coupling profile (see text).
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Large-scale analysis of families from Pfam

We selected all protein families from PFAM4 that had at

least 300 sequences in their seed alignment. We restricted

ourselves to such families because the seed alignments are

manually curated before depositing and are therefore

expected to have higher quality than the whole alignments.

We pre-processed these alignments to remove redundant

sequences (sequence similarity >80%) to generate non-

redundant alignments. From each alignment, we then

removed columns that had gaps in more than half the

sequences, and then removed sequences in the alignment

that had insertions at more than 10% of these columns.

Finally, we removed sequences that had more than 20%

gaps in their alignment. If this post-processing resulted in

an alignment with less than 300 sequences, it was dropped

from our analysis. 71 families remained at the end of this

process. These families varied greatly in their length with

the shortest family having 15 positions and the longest hav-

ing more than 450 positions and the median length being

78 positions. Figure 7 shows the distribution of lengths.

For each of these families, we created a random parti-

tion of the alignment into training (with 2/3 of the

sequences) and test (with 1/3 of the sequences) align-

ments and trained an MRF using our algorithm. As men-

tioned earlier, we chose ke by performing 20 random

permutations of each column and choosing the smallest

ke that gave zero edges on all 20 permutations. As a

baseline comparison, we also trained a profile-HMM

using the Bioinformatics toolkit in Matlab on the train-

ing alignments. We then used the learnt models to

impute the composition of each position of the test MSA

and computed the overall and per-position imputation

errors for both models. Due to space constraints, we pro-

vide the models and detailed analyses for each family on

a supporting website (details in appendix) and focus on

overall trends in the rest of this section.

Figure 8 shows the histograms of the distance between

residues connected by an edge and the degree of the

nodes. Approximately 30% of the edges are between resi-

dues that are more than 10 Å of each other in the crystal

structure. That is, GREMLIN learns edges that are different

than those that would be obtained from a contact map.

Despite the presence of long-range edges, GREMLIN does

learn a sparse graph; most nodes have degree less than 5,

and the majority have 1 or fewer edges.

Figure 9(A) shows a boxplot demonstrating the effect

of incorporating coevolution information according to

our model. The y-axis shows the decrease in the per-

position imputation error when moving from a profile-

HMM model to the corresponding MRF, while the x-axis

bins this improvement according to the number of edges

in the MRF at that position. In each box, the central red

line is the median, the edges of the box are the 25th and

75th percentiles, the whiskers extend to the most extreme

data points not considered outliers, and outliers are plot-

ted individually with red ‘‘1’’ marks. As the figure

shows, moving from a profile-HMM model to an MRF

never hurts: for positions with 0 edges, there is no differ-

ence in imputation; for positions with at least one edge,

the MRF model always results in lower error. While this

is not completely surprising given that the MRF has

more parameters and is therefore more expressive, it is

not obvious that these parameters can be learnt from

such little data. Our results demonstrate that this is

indeed possible. While there are individual variations

within each box, the median improvement in imputation

error shows a clear linear relationship to the number of

neighbors of the position in the model. This linear effect

falls off towards the right in the high-degree vertices

where the relationship is sublinear. Figure 9(B) shows the

effect of this behavior on the improvement in overall im-

putation error across all positions for a family.

Computational efficiency

In this subsection we briefly discuss the computational

efficiency of GREMLIN. The efficiency of GREMLIN was

measured based on the running time (i.e., CPU seconds

until a solution to the convex optimization problem is

found). GREMLIN was run on a 64 node cluster. Each

node had 16GB DRAM and 2xquad-cores (each with

2.8–3 GHZ), allowing us to run 512 jobs in parallel with

an average of 2GB RAM per job.

Figure 10 shows a plot of the running time for a given

ke on all the PFAM MSAs. Figure 10(A) plots the running

time for learning the neighbors of a position, against the

number of columns (positions) in the MSA (A) while

10-(B) plots it against number of rows (sequences) in

the training MSA. In both, the average running time per

Figure 5
Comparison of Imputation errors on WW and PDZ families. We

consider two variants of GREMLIN — with the regularization parameter

selected either to produce a model with a smaller number of edges than

GMRC (third bar in each group, shown in yellow) or to have zero edges

on 20 permuted MSAs (last bar, shown in red). The x-intercept was

chosed by estimating a lower bound on the imputation error as

described in the text. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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column is shown in red circles. While learning the neigh-

bors at a position, since GREMLIN is run in parallel for

each column of the MSA, the actual time to completion

for each protein depends on the maximum running time

across these columns. This number is shown in blue

squares. Figure 10(C) plots the running time for parame-

ter learning against the maximum running time to learn

the neighbors at a position. Recall that this task is per-

formed serially. As the figure demonstrates, GREMLIN

takes roughly similar amounts of time in its parallel stage

(neighborhood learning) as it does in its serial stage

(parameter learning).

The plots show that the running time has an increasing

trend as the size of the MSA increases (number of positions

and number of sequences). Also, the dependence of the run-

ning time on the number of columns is stronger than its

Figure 6
PDZ domain model. Edges returned by GREMLIN overlayed on a circle (A) and on the structure (B) of PDZ domain of PSD-95 (PDB id:1BE9). (C)

Coupling profile (see text). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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dependence on the number of rows. This is consistent with

the analysis in Ref. 17 which shows that a similar algorithm

for structure learning with a pure L1 penalty has a computa-

tional complexity that scales as Oðmaxðn; pÞp3Þ, where n

corresponds to the number of rows and p to the number

of columns in the MSA.

DISCUSSION

Related work

The study of coevolving residues in proteins has been

a problem of much interest due to its wide utility. Much

of the early work focused on detecting such pairs to pre-

dict contacts in a protein in the absence of a solved

structure28,29 and to perform fold recognition. The pio-

neering work of Ref. 8 used an approach to determine

probabilistic dependencies they call SCA and observed

that analyzing such patterns could provide insights into

the allosteric behavior of the proteins and be used to

design new sequences.9 Others have since developed sim-

ilar methods.30–32 By focusing on covariation or proba-

bilistic dependencies between residues, such methods

conflate direct and indirect influences and can lead to

incorrect estimates. In contrast, Ref. 12 developed an

algorithm for learning a Markov Random Field over

sequences. Their constraint-based algorithm proceeds by

identifying conditional independencies and adding edges

in a greedy fashion. However, the algorithm can provide

no guarantees on the correctness of the networks it

learns. They then extended this approach to incorporate

interaction data to learn models over pairs of interacting

proteins13 and also develop a sampling algorithm for

protein design using such models.14 More recently,

Ref. 33 uses a similar approach to determine residue con-

tacts at a protein–protein interface. Their method uses a

gradient descent approach using Loopy Belief Propaga-

tion to approximate likelihoods. Additionally, their algo-

rithm does not regularize the model and may therefore

be prone to over-fitting. In contrast, we use a Pseudo-

Likelihood as our objective function thereby avoiding

problems of convergence that Loopy BP based methods

can face and regularize the model using block regulariza-

tion to prevent over-fitting.

Block regularization is most similar in spirit to the

group Lasso34 and the multitask Lasso.35 Lasso36 is the

problem of finding a linear predictor, by minimizing the

squared loss of the predictor with an L1 penalty. It is well

Figure 7
Histogram of MSA lengths of the 73 PFAM families in our study.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 8
(A) Histogram of the distance in crystal structure. (B) Degree distribution across all proteins. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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known that the shrinkage properties of the L1 penalty

lead to sparse predictors. The group Lasso extends this

idea by grouping the weights of some features of the pre-

dictor using an L2 norm,34 show that this leads to sparse

selection of groups. The multitask Lasso solves the prob-

lem of multiple separate (but similar) regression prob-

lems by grouping the weight of a single feature across the

multiple tasks. Intuitively, we solve a problem similar to

a group Lasso, replacing the squared loss with an approx-

imation to the negative log-likelihood, where we group

all the feature weights of an edge in an undirected graph-

ical model. Thus, sparse selection of groups gives our

graphs the property of structural sparsity.

Lee et al.15 introduced structure learning in MRFs

with a pure L1 penalty, but do not go further to explore

block regularization. They also use a different approxima-

tion to the likelihood term, using Loopy Belief Propaga-

tion. Schmidt et al.18 apply block-regularized structure

learning to the problem of detecting abnormalities in

heart motion. They also developed an efficient algorithm

for tractably solving the convex structure learning prob-

lem based on projected gradients.

Figure 9
(A) Boxplot displaying the effect of coupling on improvement in imputation error at a position when compared to a profile-HMM. The median
imputation error shows a near-linear decrease as the number of neighbors learnt by the model increases. (B) Improvement in overall imputation

error across all positions for each family. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Mutual information performs poorly in the
structure learning task

One of the key advantages of a graphical model based

approach to modeling protein families is that the graph

reveals which interactions are direct and which are indi-

Figure 10
(A) Number of Positions in the MSA versus runtime of Neighborhood

learning (in seconds) (B) Number of sequences in the MSA versus

runtime of Neighborhood learning (C) Runtime of Neighborhood

learning versus runtime of Parameter learning. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
Figure 11
(A) Adjacency matrix of a Boltzmann distribution colored by edge strength. (B)

Mutual Information between positions induced by this Boltzman distribution.

While the mutual information of the strongest edges is highest; a large fraction

of the edges have MI comparable to many noninteractions. (C) Shows the weak

ability of MI to distinguish between edges and indirect interactions in contrast

to GREMLIN. AUC using MI: 0.71; AUC using GREMLIN: 0.98. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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rect. One might assume that alternative quantities, like

Mutual Information, might yield similar results. We now

demonstrate with an example that a simple Mutual In-

formation based metric cannot distinguish well between

direct and indirect interactions. Figure 11(A) shows the

adjacency matrix of a Probabilistic Graphical Model. The

elements of the matrix are color-coded by the strength of

their interaction: blue represents the weakest interaction

(of strength 0, i.e., a noninteraction) and red the strong-

est interaction in this distribution. Figure 11(B) shows

the mutual information induced between the variables by

this distribution as measured from 500 sequences

sampled from the graphical model (the diagonal elements

of the mutual information matrix have been omitted to

highlight the information between different positions).

While it may appear visually that (B) shares a lot of

structure with (A), it isn’t actually the case. In particular,

the edges with the highest mutual information indeed

tend to be direct interactions; however a large fraction of

the direct interactions might not have high MI. This is

demonstrated in Figure 11(C) where MI is used as a met-

ric to classify edges into direct and indirect interactions.

The blue line shows the ROC curve using MI as a metric

and has only moderate discriminatory power for this

task (AUC: 0.71). In contrast, our approach, shown in

red, is much more successful at discriminating between

direct and indirect interactions: the AUC of our approach

is a near-perfect 0.98.

Influence of phylogeny

One limitation associated with a sequence-only

approach to learning a statistical model for a domain

family is that the correlations observed in the MSA can

be inflated due to phylogeny.37,38 A pair of coincident

mutations at the root of the tree can appear as a signifi-

cant dependency even though they correspond to just

once coincident mutation event. To test if this was the

case with the WW domain, we constructed a phyloge-

netic tree from the MSA using Junes-Cantor measure of

sequence dissimilarity. In the case of WW, this resulted

in a tree with two clear subtrees, corresponding to two

distinct (nearly equal-sized) clusters in sequence space.

Since each subtree had a number of sequences, we re-

Figure 12
F-scores of structures learnt by using L1-L2 norm The figure shows the

average and standard deviation of the F-score across 20 different graphs as

a function of q, the probability of edge-occurrence. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 13
Graph density versus the rank correlation for ranking and selection using (A) BIC (B) AIC. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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learnt MRFs for each subtree separately. The resulting

models for each subtree did not vary significantly from

our original models — a case that would have occurred

if there were coincident mutations at the root that lead

to spurious dependencies. Indeed the only difference

between the models was in the C-terminal end was an

edge between positions 1 and 2 that was present in

sequences from the first subtree but was absent in the

second subtree. This occurred because in the second sub-

tree, these positions were completely conserved due to

which our model was not able to determine the depend-

ency between them. While this does not eliminate the

possibility of confounding due to phylogeny, we have

reason to believe that our dependencies are robust to sig-

nificant phylogenetic confounding in this family. A simi-

lar analysis for the PDZ domain, found 3 subtrees, and

again we found that the strongest dependencies were

consistent across models learnt on each subtree sepa-

rately. Nevertheless, we believe that incorporating phylo-

genetic information into our method is an important

direction for future research.

CONCLUSION

In this article, we have proposed a new algorithm for

discovering and modeling the statistical patterns con-

tained in a given MSA. Overall, we find that by employ-

ing sound probabilistic modeling and convex structure

(and parameter) learning, we are able to find a good bal-

ance between structural sparsity (simplicity) and good-

ness of fit. One of the key advantages of a graphical

model approach is that the graph reveals the direct and

indirect constraints that can further our understanding

of protein function and regulation.

MRFs are generative models, and can therefore be

used design new protein sequences via sampling and in-

ference. However, we expect that the utility of our model

in the context of protein design could be greatly

enhanced by incorporating structure based information

which explicitly models the physical constraints of the

protein. We have previously shown in Ref. 39 that it is

possible to construct MRFs that integrate both sequence

and structure information. We believe an interesting

direction for future work is to apply structure learning to

MSAs enhanced with physical constraints (e.g., interac-

tions energies) in the form of informative priors or as

edge features. The learning algorithm would then select

the type of constraint (i.e., sequence vs structure) that

best explains the covariation in the MSA.

Finally, we note that there are a number of other ways

to incorporate phylogenetic information directly into our

model. For example, given a phylogenetic clustering of

sequences, we can incorporate a single additional node in

the graphical model reflecting the cluster to which the

sequence belongs. This would allow us to distinguish

functional coupling from coupling caused due to phylo-

genetic variations.

SUPPLEMENTAL MATERIAL

Comparison of structures learnt at different
regularization levels

Figure 12 shows our performance in predicting the

true structure by using L1–L2 (Fig. 12). The accuracy is

measured using the F-score (the harmonic mean of preci-

sion and recall) of the edge set. We observe that for all

settings of q GREMLIN learns fairly accurate graphs at

some value of ke.

Model selection using information criteria

We consider modifications to two widely used model

selection strategies. The Bayesian Information Criterion

(BIC),40 is used to select parsimonious models and is

known to be asymptotically consistent in selecting the

true model. The Akaike Information Criterion (AIC),41

typically selects denser models than the BIC, but is

known to be asymptotically consistent in selecting the

model with lowest predictive error (risk). In general, they

do not however select the same model.42

We use the following definitions:

pseudo-BICðkÞ ¼ �2pllðkÞ þ logðnÞdfðkÞ
pseudo-AICðkÞ ¼ �2pllðkÞ þ 2dfðkÞ

Where we use the pseudo log-likelihood approximation

to the log-likelihood. While it may be expected that

using the pseudo log-likelihood instead of the true log-

Figure 14
Receiver operating characteristic (ROC) curve of GREMLIN for the task of

distinguishing artificial WW sequences that fold from those that don’t.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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likelihood may in fact lead to inconsistent selection a

somewhat surprising result43 shows that in the case of

BIC using pseudo log-likelihood is in fact also consistent

for model selection. Although we aren’t aware of the

result, we expect a similar result to hold for the risk

consistency of the pseudo-AIC.

We evaluate the likelihood on the training sample to

score the different models. n is the number of training

sequences.

Estimating the degrees of freedom of a general estima-

tor is quite hard in practice. This has lead to use of vari-

ous heuristics in practice. For the LASSO estimator

which uses a pure-L1 penalty, it is known that the num-

ber of non-zeros in the regression vector is a good esti-

mate of the degrees of freedom. A natural extension

when using a block-L1 penalty is the number of non-zero

blocks (i.e. edges). Since this does not differentiate

between weak and strong edges, we used the block-L1

norm as an estimate of the degress of freedom. In our

simulations, we find that choice often results in good

model selection.

Figure 13 shows the performance of the two model

selection strategies at different sparsity levels. We evaluate

the performance by learning several graphs (at different

levels of regularization) and comparing the Spearman

rank-correlation between the F-score of the graphs and

their rank. We can clearly see that when the true graph is

sparse the modified BIC has a high rank-correlation,

whereas when the true graph is dense the modified AIC

does well, with neither method providing reliable model

selection for all graphs.

Receiver operating characteristic curve

We consider the task of distinguishing artificial

sequences that were found to take the WW fold from

those that did not. All sequences and their labels (folded

in vivo or not) are from Ref. 10. The ROC curve (Figure

14) is obtained by varying a threshold on scores (we use

the unnormalized likelihood as the score). Sequences

above the threshold are predicted to fold. For each

threshold we calculate the sensitivity and specificity and

show the resulting curve.

Supporting website

Details of the models for the 71 protein families along

with analyses of coupling profiles are provided on our

supporting website: http://www.cs.cmu.edu/~cjl/gremlin/.
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