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Abstract

Latent semantic analysis (LSA), as one of the most pop-
ular unsupervised dimension reduction tools, has a wide
range of applications in text mining and information re-
trieval. The key idea of LSA is to learn a projection
matrix that maps the high dimensional vector space
representations of documents to a lower dimensional la-
tent space, i.e. so called latent topic space. In this pa-
per, we propose a new model called Sparse LSA, which
produces a sparse projection matrix via the `1 regu-
larization. Compared to the traditional LSA, Sparse
LSA selects only a small number of relevant words for
each topic and hence provides a compact representation
of topic-word relationships. Moreover, Sparse LSA is
computationally very efficient with much less memory
usage for storing the projection matrix. Furthermore,
we propose two important extensions of Sparse LSA:
group structured Sparse LSA and non-negative Sparse
LSA. We conduct experiments on several benchmark
datasets and compare Sparse LSA and its extensions
with several widely used methods, e.g. LSA, Sparse
Coding and LDA. Empirical results suggest that Sparse
LSA achieves similar performance gains to LSA, but is
more efficient in projection computation, storage, and
also well explain the topic-word relationships.

1 Introduction

Latent Semantic Analysis (LSA) [5], as one of the most
successful tools for learning the concepts or latent topics
from text, has widely been used for the dimension reduc-
tion purpose in information retrieval. More precisely,
given a document-term matrix X ∈ RN×M , where N
is the number of documents and M is the number of
words, and assuming that the number of latent top-
ics (the dimensionality of the latent space) is set as
D (D ≤ min{N,M}), LSA applies singular value de-
composition (SVD) to construct a low rank (with rank-
D) approximation of X: X ≈ USVT , where the col-
umn orthogonal matrices U ∈ RN×D (UTU = I) and
V ∈ RM×D (VTV = I) represent document and word
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embeddings into the latent space. S is a diagonal ma-
trix with the D largest singular values of X on the di-
agonal 1. Subsequently, the so-called projection matrix
defined as A = S−1VT provides a transformation map-
ping of documents from the word space to the latent
topic space, which is less noisy and considers word syn-
onymy (i.e. different words describing the same idea).
However, in LSA, each latent topic is represented by
all word features which sometimes makes it difficult to
precisely characterize the topic-word relationships.

In this paper, we introduce a scalable latent topic
model that we call “Sparse Latent Semantic Analysis”
(Sparse LSA). Different from the traditional LSA based
on SVD, we formulate a variant of LSA as an optimiza-
tion problem which minimizes the approximation error
under the orthogonality constraint of U. Based on this
formulation, we add the sparsity constraint of the pro-
jection matrix A via the `1 regularization as in the lasso
model [23]. By enforcing the sparsity on A, the model
has the ability to automatically select the most relevant
words for each latent topic. There are several important
features of Sparse LSA model:

1. It is intuitive that only a part of the vocabulary can
be relevant to a certain topic. By enforcing sparsity
of A such that each row (representing a latent
topic) only has a small number nonzero entries
(representing the most relevant words), Sparse LSA
can provide us a compact representation for topic-
word relationship that is easier to interpret.

2. With the adjustment of sparsity level in projection
matrix, we could control the granularity (“level-of-
details”) of the topics we are trying to discover,
e.g. more generic topics have more nonzero entries
in rows of A than specific topics.

3. Due to the sparsity of A, Sparse LSA provides
an efficient strategy both in the time cost of the
projection operation and in the storage cost of the
projection matrix when the dimensionality of latent
space D is large.

1Since it is easier to explain our Sparse LSA model in terms of
document-term matrix, for the purpose of consistency, we intro-
duce SVD based on the document-term matrix which is different
from standard notations using the term-document matrix.



4. Sparse LSA could project a document q into a
sparse vector representation q̂ where each entry of
q̂ corresponds to a latent topic. In other words,
we could know the topics that q belongs to directly
form the position of nonzero entries of q̂. Moreover,
sparse representation of projected documents will
save a lot of computational cost for the subsequent
retrieval tasks, e.g. ranking (considering computing
cosine similarity), text categorization, etc.

Furthermore, we propose two important extensions
based on Sparse LSA:

1. Group Structured Sparse LSA: we add group struc-
tured sparsity-inducing penalty as in [24] to select
the most relevant groups of features relevant to the
latent topic.

2. Non-negative Sparse LSA: we further enforce the
non-negativity constraint on the projection matrix
A. It could provide us a pseudo probability
distribution of each word given the topic, similar
as in Latent Dirichlet Allocation (LDA) [3].

We conduct experiments on four benchmark data
sets, with two on text categorization, one on breast
cancer gene function identification, and the last one
on topic-word relationship identification from NIPS
proceeding papers. We compare Sparse LSA and its
variants with several popular methods, e.g. LSA [5],
Sparse Coding [16] and LDA [3]. Empirical results
show clear advantages of our methods in terms of
computational cost, storage and the ability to generate
sensible topics and to select relevant words (or genes)
for the latent topics.

The rest of this paper is as follows. In Section 2, we
present the basic Sparse LSA model. In Section 3, we
extend Sparse LSA to group structured Sparse LSA and
non-negative Sparse LSA. Related work is discussed in
Section 4 and the empirical evaluation of the models is
in Section 5. We conclude the paper in Section 6.

2 Sparse LSA

2.1 Optimization Formulation of LSA We con-
sider N documents, where each document lies in an M -
dimensional feature space X , e.g. tf-idf [1] weights of the
vocabulary with the normalization to unit length. We
denote N documents by a matrix X = [X1, . . . , XM ] ∈
RN×M , where Xj ∈ RN is the j-th feature vector for all
the documents. For the dimension reduction purpose,
we aim to derive a mapping that projects input fea-
ture space into a D-dimensional latent space where D
is smaller than M . In the information retrieval content,
each latent dimension is also called an hidden “topic”.

Motivated by the latent factor analysis [9], we
assume that we have D uncorrelated latent variables
U1, . . . , UD, where each Ud ∈ RN has the unit length,
i.e. ‖Ud‖2 = 1. Here ‖ · ‖2 denotes the vector `2-norm.
For the notation simplicity, we put latent variables
U1, . . . , UD into a matrix: U = [U1, . . . , UD] ∈ RN×D.
Since latent variables are uncorrelated with the unit
length, we have UTU = I, where I is the identity
matrix. We also assume that each feature vector Xj can
be represented as a linear expansion in latent variables
U1, . . . , UD:

(2.1) Xj =
D∑

d=1

adjUd + εj ,

or simply X = UA + ε, where A = [adj ] ∈ RD×M
gives the mapping from the latent space to the input
feature space and ε is the zero mean noise. Our goal is
to compute the so-called projection matrix A.

We can achieve this by solving the following opti-
mization problem which minimizes the rank-D approx-
imation error subject to the orthogonality constraint of
U:

minU,A
1
2
‖X−UA‖2F(2.2)

subject to: UTU = I,

where ‖ · ‖F denotes the matrix Frobenius norm. The
constraint UTU = I is according to the uncorrelated
property among latent variables.

At the optimum of Eq. (2.2), UA leads to the best
rank-D approximation of the data X. In general, larger
the D is, the better the reconstruction performance.
However, larger D requires more computational cost
and large amount memory for storing A. This is the
issue that we will address in the next section.

After obtaining A, given a new document q ∈ RM ,
its representation in the lower dimensional latent space
can be computed as:

(2.3) q̂ = Aq.

2.2 Sparse LSA As discussed in the introduction,
one notable advantage of sparse LSA is due to its
good interpretability in topic-word relationship. Sparse
LSA automatically selects the most relevant words for
each latent topic and hence provides us a clear and
compact representation of the topic-word relationship.
Moreover, for a new document q, if the words in q has
no intersection with the relevant words of d-th topic
(nonzero entries in Ad, the d-th row of A), the d-th
element of q̂, Adq, will become zero. In other words,
the sparse latent representation of q̂ clearly indicates
the topics that q belongs to.



Another benefit of learning sparse A is to save com-
putational cost and storage requirements when D is
large. In traditional LSA, the topics with larger sin-
gular values will cover a broader range of concepts than
the ones with smaller singular values. For example, the
first few topics with largest singular values are often
too general to have specific meanings. As singular val-
ues decrease, the topics become more and more spe-
cific. Therefore, we might want to enlarge the number
of latent topics D to have a reasonable coverage of the
topics. However, given a large corpus with millions of
documents, a larger D will greatly increase the compu-
tational cost of projection operations in traditional LSA.
In contrary, for Sparse LSA, projecting documents via a
highly sparse projection matrix will be computationally
much more efficient; and it will take much less memory
for storing A when D is large.

The illustration of Sparse LSA from a matrix fac-
torization perspective is presented in Figure 1(a). An
example of topic-word relationship is shown in Figure
1(b). Note that a latent topic (“law” in this case) is
only related to a limited number of words.

In order to obtain a sparse A, inspired by the lasso
model in [23], we add an entry-wise `1-norm of A as the
regularization term to the loss function and formulate
the Sparse LSA model as:

minU,A
1
2
‖X−UA‖2F + λ‖A‖1(2.4)

subject to: UTU = I,

where ‖A‖1 =
∑D
d=1

∑M
j=1 |adj | is the entry-wise `1-

norm of A and λ is the positive regularization parameter
which controls the density (the number of nonzero
entries) of A. In general, a larger λ leads to a sparser A.
On the other hand, a too sparse A will miss some useful
topic-word relationships which harms the reconstruction
performance. Therefore, in practice, we need to try to
select larger λ to obtain a more sparse A while still
achieving good reconstruction performance. We will
show the effectiveness of λ in more details in Section
5.

2.3 Optimization Algorithm In this section, we
propose an efficient optimization algorithm to solve
Eq. (2.4). Although the optimization problem is
non-convex, fixing one variable (either U or A), the
objective function with respect to the other is convex.
Therefore, a natural approach to solve Eq. (2.4) is by
the alternating approach:

1. When U is fixed, let Aj denote the j-th column of
A; the optimization problem with respect to A:

min
A

1
2
‖X−UA‖+ λ‖A‖1,

(a)

(b)

Figure 1: Illustration of Sparse LSA (a) View of Matrix
Factorization, white cells in A indicates the zero entries
(b) View of document-topic-term relationship.

can be decomposed in to M independent ones:
(2.5)

min
Aj

1
2
‖Xj −UAj‖22 + λ‖Aj‖1; j = 1, . . . ,M.

Each subproblem is a standard lasso problem where
Xj can be viewed as the response and U as the
design matrix. To solve Eq. (2.5), we can directly
apply the state-of-the-art lasso solver in [7] which
is essentially a coordinate descent approach.

2. When A is fixed, the optimization problem is
equivalent to:

minU
1
2
‖X−UA‖2F(2.6)

subject to: UTU = I.

The objective function in Eq. (2.6) can be further
written as:

1
2
‖X−UA‖2F

=
1
2

tr((X−UA)T (X−UA))

= −tr(ATUTX) +
1
2

tr(XTX) +
1
2

tr(ATUTUA)

= −tr(ATUTX) +
1
2

tr(XTX) +
1
2

tr(ATA),

where the last equality is according to the con-
straint that UTU = I. By the fact that



tr(ATUTX) ≡ tr(UTXAT ), the optimization
problem in Eq. (2.6) is equivalent to

maxU tr(UTXAT )(2.7)
subject to: UTU = I.

Let V = XAT . In fact, V is the latent topic
representations of the documents X. Assuming
that V is full column rank, i.e. with rank(V) = D,
Eq. (2.7) has the closed form solution as shown in
the next theorem:

Theorem 2.1. Suppose the singular value decom-
position (SVD) of V is V = P∆Q, the optimal
solution to Eq. (2.7) is U = PQ.

The proof of the theorem is presented in appendix.
Since N is much larger than D, in most cases, V is
full column rank. If it is not, we may approximate
V by a full column rank matrix Ṽ = P∆̃Q. Here
∆̃dd = ∆dd if ∆dd 6= 0; otherwise ∆̃dd = δ, where
δ is a very small positive number. In the later
context, for the simplicity purpose, we assume that
V is always full column rank.

It is worthy to note that since D is usually much
smaller than the vocabulary size M , the computa-
tional cost of SVD of V ∈ RN×D is much cheaper
than SVD of X ∈ RN×M in LSA.

As for the starting point, any A0 or U0 stratifying
(U0)TU0 = I can be adopted. We suggest a very simple
initialization strategy for U0 as following:

(2.8) U0 =
(

ID
0

)
,

where ID the D by D identity matrix. It is easy to
verify that (U0)TU0 = I.

The optimization procedure can be summarized in
Algorithm 1.

As for the stopping criteria, let ‖ · ‖∞ denote the
matrix entry-wise `∞-norm, for the two consecutive
iterations t and t+1, we compute the maximum change
for all entries in U and A: ‖U(t+1) − U(t)‖∞ and
‖A(t+1)−A(t)‖∞; and stop the optimization procedure
when both quantities are less than the prefixed constant
τ . In our experiments, we set τ = 0.01.

3 Extension of Sparse LSA

In this section, we propose two important extensions of
Sparse LSA model.

3.1 Group Structured Sparse LSA Although
entry-wise `1-norm regularization leads to the sparse

Algorithm 1 Optimization Algorithm for Sparse LSA
Input: X, the dimensionality of the latent space D,
regularization parameter λ

Initialization:U0 =
(

ID
0

)
,

Iterate until convergence of U and A:

1. Compute A by solving M lasso problems as in Eq.
(2.5)

2. Project X onto the latent space: V = XAT .

3. Compute the SVD of V: V = P∆Q and let
U = PQ.

Output: Sparse projection matrix A.

projection matrix A, it does not take advantage of any
prior knowledge on the structure of the input features
(e.g. words). When the features are naturally clustered
into groups, it is more meaningful to enforce the spar-
sity pattern at a group level instead of each individual
feature; so that we can learn which groups of features
are relevant to a latent topic. It has many potential ap-
plications in analyzing biological data. For example, in
the latent gene function identification, it is more mean-
ingful to determine which pathways (groups of genes
with similar function or near locations) are relevant to
a latent gene function (topic).

Inspired by the group lasso [24], we can encode the
group structure via a `1/`2 mixed norm regularization
of A in Sparse LSA. Formally, we assume that the set of
groups of input features G = {g1, . . . , g|G|} is defined as
a subset of the power set of {1, . . . ,M}, and is available
as prior knowledge. For the purpose of simplicity, we
assume that groups are non-overlapped. The group
structured Sparse LSA can be formulated as:

minU,A
1
2
‖X−UA‖2F + λ

D∑

d=1

∑

g∈G
wg‖Adg‖2(3.9)

subject to: UTU = I,

where Adg ∈ R|g| is the subvector of A for the latent
dimension d and the input features in group g; wg is the
predefined regularization weight each group g, λ is the
global regularization parameter; and ‖ · ‖2 is the vector
`2-norm which enforces all the features in group g for the
d-th latent topic, Adg, to achieve zeros simultaneously.
A simple strategy for setting wg is wg =

√
|g| as in [24]

so that the amount of penalization is adjusted by the
size of each group.

To solve Eq. (3.9), we can adopt the alternating
approach as described in Section 2.3. When A is



fixed, optimization with respect to U is the same as
Eq. (2.6) which can be solved by SVD as described
in Theorem 2.1. When U is fixed, the optimization
problem becomes:
(3.10)

minAf(A) ≡ 1
2
‖X−UA‖2F + λ

D∑

d=1

∑

g∈G
wg‖Adg‖2.

To solve Eq. (3.10), we propose an efficient block
coordinate descent algorithm: at each iteration, the
objective function is minimized with respect to Adg

while the other entries in A are held fixed.
More precisely, assume that now fix a particular

latent dimension d and a group g; we optimize f(A)
with respect to Adg. Denote the i-th row of U as U i

and the first part of f(A) as g(A) ≡ 1
2‖X−UA‖2F , the

gradient of g(A) over Adg is a |g| dimensional vector
where the j ∈ g-th element takes the following form:

(
∂g(A)
∂Adg

)

j∈g
=

N∑

i=1

uid((U i)TAj − xij).

To further write ∂g(A)
∂Adg

in the vector form, let Cd =
∑N
i=1 u

2
id and Bdg be the vector of length |g| such that:

(3.11) (Bdg)j∈g =
N∑

i=1

uid(xij −
∑

k 6=d
uikakj).

The vector form of ∂g(A)
∂Adg

can be written as:

∂g(A)
∂Adg

= CdAdg −Bdg.

Now we show that minimization of f(A) with
respect to Adg has a simple closed-form solution. Take
the subgradient of f(A) over Adg:

∂f(A)
∂Adg

=
∂g(A)
∂Adg

+
∂‖Adg‖2
∂Adg

(3.12)

= CdAdg −Bdg + λwg
∂‖Adg‖2
∂Adg

,

where
(3.13)

∂‖Adg‖2
∂Adg

=

{
Adg

‖Adg‖2 Adg 6= 0

{α ∈ R|g||‖α‖2 ≤ 1} Adg = 0

According to Theorem 3.1.15 in [18], A∗dg is the

optimal solution if an only if 0 ∈ ∂f(Adg)
∂Adg

at A∗dg.
Therefore, the closed-form solution of A∗dg can be given
in the following proposition.

Algorithm 2 Optimization for A with group structure
Input: X, U, the dimensionality of the latent space D,
the global regularization parameter λ, group structure
G, regularization weights of groups {wg}g∈G .

while A has not converged do
for d = 1, 2, . . . , D do

Compute Cd =
∑N
i=1 u

2
id

for all g ∈ G do
Compute Bdg according to Eq. (3.11)
if ‖Bdg‖2 > λwg then

Adg ← Bdg(‖Bdg‖2−λwg)
Cd‖Bdg‖2

else
Adg ← 0

end if
end for

end for
end while

Output: Sparse projection matrix A.

Proposition 3.1. The optimal A∗dg for the minimiza-
tion of f(A) with respect to Adg takes the following
form:

(3.14) A∗dg =

{
Bdg(‖Bdg‖2−λwg)

Cd‖Bdg‖2 ‖Bdg‖2 > λwg

0 ‖Bdg‖2 ≤ λwg
.

The proof is shown in the appendix.
The entire block coordinate descent for optimizing

A is summarized in Algorithm 2.

3.2 Non-negative Sparse LSA It is natural to
assume that each word has a non-negative contribution
to a specific topic, i.e. the projection matrix A should
be non-negative. In such a case, we may normalize each
row of A to 1:

ãdj =
adj∑M
j=1 adj

.

Since adj measures the relevance of the j-th word, wj ,
to the d-th topic td, from the probability perspective,
ãdj can be viewed as a pseudo probability of the word
wj given the topic td, P(wj |td). Similar to topic
modeling in the Bayesian framework such as LDA [3],
the non-negative Sparse LSA can also provide the most
relevant/likely words to a specific topic.

More formally, the non-negative Sparse LSA can be
formulated as the following optimization problem:

minU,A
1
2
‖X−UA‖2F + λ‖A‖1(3.15)

subject to: UTU = I, A ≥ 0.



According to the non-negativity constraint of A, |adj | =
adj and Eq. (3.15) is equivalent to:

minU,A
1
2
‖X−UA‖2F + λ

D∑

d=1

J∑

j=1

adj(3.16)

subject to: UTU = I, A ≥ 0.

We still apply the alternating approach to solve Eq.
(3.16). When A is fixed, the optimization with respect
to U is the same as that in Eq. (2.6). When U is
fixed, following in the same strategy as in Section 2.3,
the optimization over A can be decomposed in to M
independent subproblems, each one corresponds to a
column of A:

(3.17) min
Aj≥0

f(Aj) =
1
2
‖Xj −UAj‖+ λ

D∑

d=1

adj .

We still apply the coordinate descent method to
minimize f(Aj): we fix a dimension of the latent space
d; optimize f(Aj) with respect to adj while keep other
entries in f(Aj) fixed and iterate over d. More precisely,
for a fixed d, the gradient of f(Aj) with respect to adj :

(3.18)
∂f(Aj)
∂adj

= cdadj − bd + λ,

where cd =
∑N
i=1 u

2
id,

bd =
N∑

i=1

uid(xij −
∑

k 6=d
uikakj).

It is easy to verify that when bd > λ, setting adj = bd−λ
cd

will make ∂f(Aj)
∂adj

= 0. On the other hand, if bd ≤ λ,
∂f(Aj)
∂adj

≥ 0 for all adj ≥ 0, which further implies that
f(Aj) is a monotonic increasing function with adj and
the minimal is achieved when adj = 0. We summarize
the optimal solution a∗dj in the following proposition.

Proposition 3.2. The optimal a∗dj for the minimiza-
tion f(Aj) with respect to adj takes the following form:

(3.19) a∗dj =

{
bd−λ
cd

bd > λ

0 bd ≤ λ
.

4 Related Work

There exist numerous related works in a larger context
of the matrix factorization. Here, we briefly review
those work mostly related to us and point out the
difference from our model.

4.1 PCA Principal component analysis (PCA) [9],
which is closely related to LSA, has been widely applied
for the dimension reduction purpose. In the content
of information retrieval, PCA first center each docu-
ment by subtracting the sample mean. The resulting
document-term matrix is denoted as Y. PCA com-
putes the covariance matrix Σ = 1

NYTY and per-
forms SVD on Σ keeping only the first D eigenvalues:
Σ ≈ P∆D×DPT . For each centered document y, its
projected image is PTy. In recent years, many variants
of PCA, including kernel PCA [21], sparse PCA [26],
non-negative sparse PCA [25], robust PCA [14], have
been developed and successfully applied in many areas.

However, it is worthy to point out that the PCA
based dimension reduction techniques are not suitable
for the large text corpus due to the following two
reasons:

1. When using English words as features, the text
corpus represented as X is a highly sparse matrix
where each rows only has a small amount of nonzero
entries corresponding to the words appeared in the
document. However, by subtracting the sample
mean, the centered documents will become a dense
matrix which may not fit into memory since the
number of documents and words are both very
large.

2. PCA and its variants, e.g. sparse PCA, rely on the
fact that YTY can be fit into memory and SVD can
be performed on it. However, for large vocabulary
size M , it is very expensive to store M by M
matrix and computationally costly to perform SVD
on YTY.

In contrast with PCA and its variants (e.g. sparse
PCA), our method directly works on the original sparse
matrix without any standardization or utilizing the
covariance matrix, hence is more suitable for the text
learning task.

4.2 Sparse Coding Sparse coding, as another un-
supervised learning algorithm, learns basis functions
which capture higher-level features in the data and has
been successfully applied to image processing [19] and
speech recognition [8]. Although the original form of
sparse coding is formulated based on the term-document
matrix, for the easy of comparison, in our notations,
sparse coding [16] can be modeled as:

minU,A
1
2
‖X−UA‖2F + λ‖U‖1(4.20)

subject to: ‖Aj‖22 ≤ c, j = 1, . . .M,

where c is a predefined constant, A is called dictionary
in sparse coding context; and U are the coefficients.



Instead of projecting the data via A as our method,
sparse coding directly use U as the projected image of
X. Given a new data q, its projected image in the latent
space can be computed by solving the following lasso
type of problem:

(4.21) min
bq

1
2
‖q −AT q̂‖+ λ‖q̂‖1.

In the text learning, one drawback is that since the
dictionary A is dense, it is hard to characterize the
topic-word relationships from A. Another drawback is
that for each new document, the projection operation
in Eq. (4.21) is computationally very expensive.

4.3 LDA Based on the LSA, probabilistic LSA [10]
was proposed to provide the probabilistic modeling, and
further Latent Dirichlet Allocation (LDA) [3] provides a
Bayesian treatment of the generative process. One great
advantage of LDA is that it can provide the distribution
of words given a topic and hence rank the words for
a topic. The non-negative Sparse LSA proposed in
Section 3.2 can also provide the most relevant words to
a topic and can be roughly viewed as a discriminative
version of LDA. However, when the number of latent
topics D is very large, LDA performs poorly and the
posterior distribution is almost the same as prior. On
the other hand, when using smaller D, the documents
in the latent topic space generated by LDA are not
discriminative for the classification or categorization
task. In contrast, as we show in experiments, our
method greatly outperforms LDA in the classification
task while providing reasonable ranking of the words
for a given topic.

4.4 Matrix Factorization Our basic model is also
closely related to matrix factorization which finds the
low-rank factor matrices U, A for the given matrix X
such that the approximation error ‖X−UA‖2F is mini-
mized. Important extensions of matrix factorization in-
clude non-negative matrix factorization [15], which en-
forces the non-negativity constraint to X, U and A;
probabilistic matrix factorization [20], which handles
the missing values of X and becomes one of the most ef-
fective algorithms in collaborative filtering; sparse non-
negative matrix factorization [11, 13], which enforces
sparseness constraint on either U or A; and orthogo-
nal non-negative matrix factorization [6], which enforces
the non-negativity and orthogonality constraints simul-
taneously on U and/or A and studies its relationship
to clustering.

As compared to sparse non-negative matrix factor-
ization [11, 13], we add orthogonality constraint to the
U matrix, i.e. UTU = I, which enforces the soft clus-

tering effect of the documents. More specifically, each
dimension of the latent space (columns of U) can be
viewed as a cluster and the value that a document has
on that dimension as its fractional membership in the
cluster. The orthogonality constraint tries to cluster
the documents into different latent topics. As compared
to orthogonal non-negative matrix factorization [6], in-
stead of enforcing both non-negativity and orthogonal-
ity constraints, we only enforce orthogonality constraint
on U, which further leads to a closed-form solution for
optimizing U as shown in Theorem 2.1. In summary,
based on the basic matrix factorization, we combine the
orthogonality and sparseness constraints into a unified
framework and use it for the purpose of semantic analy-
sis. Another difference between Sparse LSA and matrix
factorization is that, instead of treating A as factor ma-
trix, we use A as the projection matrix.

5 Experimental Results

In this section, we conduct several experiments on real
world datasets to test the effectiveness of Sparse LSA
and its extensions.

5.1 Text Classification Performance In this sub-
section, we consider the text classification performance
after we project the text data into the latent space. We
use two widely adopted text classification corpora, 20
Newsgroups (20NG) dataset 2 and RCV1 [17]. For the
20NG, we classify the postings from two newsgroups
alt.atheism and talk.religion.misc using the tf-idf of the
vocabulary as features. For RCV1, we remove the words
appearing fewer than 10 times and standard stopwords;
pre-process the data according to [2] 3; and convert it
into a 53 classes classification task. More statistics of
the data are shown in Table 1.

We evaluate different dimension reduction tech-
niques based on the classification performance of linear
SVM classifier. Specifically, we consider

1. Traditional LSA;
2. Sparse Coding with the code from [16] and the reg-

ularization parameter is chosen by cross-validation
on train set;

3. LDA with the code from [3];
4. Sparse LSA;
5. Non-negative Sparse LSA (NN Sparse LSA).

After projecting the documents to the latent space,
we randomly split the documents into training/testing

2See http://people.csail.mit.edu/jrennie/20Newsgroups/
3See http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/

datasets/multiclass.html#rcv1.multiclass



Table 1: The statistics of the experimental datasets
20NG RCV1

No. of Samples 1425 15,564
No. of Words 17,390 7,413
No. of Classes 2 53
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Figure 2: Classification accuracy vs the dimensionality
of latent space for (a) 20NG; (b) RCV1.

Table 2: Density of A (%)
(a) 20NG

Dimension 10 50 100 500 1000

Sparse LSA 1.48 0.80 0.74 0.32 0.18
NN Sparse LSA 1.44 0.72 0.55 0.31 0.17
Other Methods 100 100 100 100 100

(b) RCV1

Dimension 10 50 100 500 1000

Sparse LSA 13.52 7.46 7.40 2.71 1.13
NN Sparse LSA 11.65 4.97 0.40 1.91 0.79
Other Methods 100 100 100 100 100

set with the ratio 2 : 1 and perform the linear SVM
using the package LIBSVM [4] with the regularization
parameter Csvm ∈ {1e−4, . . . , 1e+4} selected by 5-fold
cross-validation.

Firstly, following the traditional way of comparing
different dimension reduction methods, we vary the di-
mensionality of the latent space and plot the classifi-
cation accuracy in Figure 2. For Sparse LSA and NN
Sparse LSA, the regularization parameter λ is fixed to
be 0.05 and the corresponding densities (proportion of
nonzero entries) of A are shown in Table 2.

It can be seen that the performances of LSA and

10
−2

10
−1

10
0

10
1

10
2

10
3

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Effective Dimension

C
la

ss
ifi

ca
tio

n
 A

cc
u

ra
cy

 

 

Sparse LSA+SVM
NN Sparse LSA+SVM
LSA+SVM
Sparse Coding+SVM
LDA+SVM

10
−1

10
0

10
1

10
2

10
3

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Effective Dimension

C
la

s
s
if
ic

a
ti
o

n
 A

c
c
u

ra
c
y

 

 

Sparse LSA+SVM
NN Sparse LSA+SVM
LSA+SVM
Sparse Coding+SVM
LDA+SVM

(a) (b)

Figure 3: Classification Accuracy vs effective dimension
for (a) 20NG (b) RCV1

Sparse Coding are comparable. Sparse Coding is
slightly worse than LSA for 20NG while slightly bet-
ter for RCV1. When the dimensionality of latent space
is small, Sparse LSA is slightly worse than LSA. It is
expectable since the number of parameters in the pro-
jection matrix is already very few, sparse model may
miss important topic-word relationships. In contrast,
for higher dimensional latent space, Sparse LSA shows
its advantage in the sense that it can achieve similar
classification performance with a highly sparse model
(see Table 2). A sparse A will further save both compu-
tational and storage cost as shown in the next section.
NN Sparse LSA achieves similar classification perfor-
mance as Sparse LSA with a more sparse A. LDA per-
forms not well for the classification task, which is also
expectable since LDA is a generative model designed for
the better interpretability instead of dimension reduc-
tion performance 4.

Since Sparse LSA has fewer effective parameters
(nonzero entries) in projection matrix, for more fair
comparisons, we introduce a concept called effective
dimension which has been widely adopted in sparse
learning. We define the effective dimension of A to
be #nz(A)

M , where #nz(A) is the number of nonzero
entries of A and M is the vocabulary size 5. For
other methods, including LSA, Sparse Coding, LDA,
the effective dimension is just the dimensionality of
the latent space since all the parameters affects the
projection operation. In other words, we compare the
classification performance of different methods based on
the same number of learned nonzero parameters for the
projection.

4For RCV1 using LDA, when the dimensionality of the latent
space exceeds 100, the classification performance is very poor
(nearly random guess). Therefore, we omit the result here.

5Effective dimension might be less than 1 if #nz(A) < M .



Table 3: Computational Efficiency and Storage
(a) 20NG

Proj. Time (ms) Storage (MB)

Sparse LSA 0.25 (4.05E-2) 0.6314

NN Sparse LSA 0.22 (2.78E-2) 0.6041

LSA 31.6 (1.10) 132.68

Sparse Coding 1711.1 (323.9) 132.68

Density of Proj. Doc. (%) Acc. (%)

Sparse LSA 35.81 (15.39) 93.01 (1.17)

NN Sparse LSA 35.44 (15.17) 93.00 (1.14)

LSA 100 (0) 93.89 (0.58)

Sparse Coding 86.94 (3.63) 90.54 (1.55)

(b) RCV1

Proj. Time (ms) Storage (MB)

Sparse LSA 0.59 (7.36E-2) 1.3374

NN Sparse LSA 0.46 (6.66E-2) 0.9537

LSA 13.2 (0.78) 113.17

Sparse Coding 370.5 (23.3) 113.17

Density of Proj. Doc. (%) Acc. (%)

Sparse LSA 55.38 (11.77) 88.88 (0.43)

NN Sparse LSA 46.47 (11.90) 88.97 (0.49)

LSA 100 (0) 89.38 (0.58)

Sparse Coding 83.88 (2.11) 88.79 (1.55)

The result is shown in Figure 3. For Sparse LSA
and NN Sparse LSA, we fix the number of latent topics
to be D = 1000 and vary the value of regularization
parameter λ from large number (0.5) to small one (0)
to achieve different #nz(A), i.e. different effective
dimensions. As we can see, Sparse LSA and NN Sparse
LSA greatly outperform other methods in the sense that
they achieve good classification accuracy even for highly
sparse models. In practice, we should try to find a λ
which could lead to a sparser model while still achieving
reasonably good dimension reduction performance.

In summary, Sparse LSA and NN Sparse LSA
show their advantages when the dimensionality of latent
space is large. They can achieve good classification
performance with only a small amount of nonzero
parameters in the projection matrix.

5.2 Efficiency and Storage In this section, we fix
the number of the latent topics to be 1000, regulariza-
tion parameter λ = 0.05 and report the projection time,
storage and the density of the projected documents for

different methods in Table 36. The Proj. time is com-
puted as the CPU time for the projection operation and
the density of projected documents is the proportion
of nonzero entries of q̂ = Aq for a document q. Both
quantities are computed for 1000 randomly selected doc-
uments in the corpus. Storage is the memory for storing
the A matrix.

For Sparse LSA and NN Sparse LSA, although the
classification accuracy is slightly worse (below 1%), the
projection time and memory usage are smaller by orders
of magnitude than LSA and Sparse Coding. In practice,
if we may need to project millions of documents, e.g.
web-scale data, into the latent space in a timely fashion
(online setting), Sparse LSA and NN Sparse LSA will
greatly cut computational cost. Moreover, given a new
document q, using Sparse LSA or NN Sparse LSA, the
projected document will also be a sparse vector.

5.3 Topic-word Relationship In this section, we
qualitatively show that the topic-word relationship
learned by NN Sparse LSA as compared to LDA. We
use the benchmark data: NIPS proceeding papers7 from
1988 through 1999 of 1714 articles, with a vocabulary
13,649 words. We vary the λ for NN Sparse LSA so that
each topic has at least ten words. The top ten words
for the top 7 topics 8 are listed in Table 4.

It is very clear that NN Sparse LSA captures
different hot topics in machine learning community in
1990s, including neural network, reinforcement learning,
mixture model, theory, signal processing and computer
vision. For the ease of comparison, we also list the top 7
topics for LDA as in Table 5. Although LDA also gives
the representative words, the topics learned by LDA are
not very discriminative in the sense that all the topics
seems to be closely related to neural network.

5.4 Gene Function Identification with Gene
Groups Information For text retrieval task, it is
not obvious to identify the separated group structures
among words. Instead, one important application for
the group structured Sparse LSA is in gene-set identifi-
cations associated to hidden functional structures inside
cells. Genes could be naturally separated into groups ac-
cording to their functions or locations, known as path-
ways. We use a benchmark breast cancer dataset from
[12], which includes a set of cancer tumor examples and
each example is represented by a vector of real values,

6“Proj.”, “Doc”, “ACC.” are abbreviations for “projec-
tion/projected”, “document” and “classification accuracy”, re-
spectively.

7Available at http://cs.nyu.edu/∼roweis/data/
8We use D = 10. However, due to the space limit, we report

the top 7 topics.



Table 4: Topic-word learned by NN Sparse LSA

Topic 1 Topic 2 Topic 3 Topic 4

network learning network model
neural reinforcement learning data
networks algorithm data models
system function neural parameters
neurons rule training mixture
neuron control set likelihood
input learn function distribution
output weight model gaussian
time action input em
systems policy networks variables
Topic 5 Topic 6 Topic 7

function input image
functions output images
approximation inputs recognition
linear chip visual
basis analog object
threshold circuit system
theorem signal feature
loss current figure
time action input
systems policy networks

e.g. the quantities of different genes found in the data
example. Essentially, group structured Sparse LSA an-
alyzes relationships between the cancer examples and
genes they contain by discovering a set of “hidden gene
functions” (i.e. topics in text case) related to the cancer
and the gene groups. And it is of great interest for biol-
ogists to determine which sets of gene groups, instead of
individual genes, associate to the same latent functions
relevant to a certain disease.

Specifically, the benchmark cancer data consists
of gene expression values from 8141 genes in 295
breast cancer examples (78 metastatic and 217 non-
metastatic). Based each gene’s associated “biological
process” class in the standard “gene ontology” database
[22], we split these 8141 genes into 1689 non-overlapped
groups, which we use as group structures in applying
group structured Sparse LSA.

We set the parameter λ = 1.2 and select the first
three projected “functional” components which are rele-
vant to 45 gene groups totally. The selected gene groups
make a lot of sense with respect to their association with
the breast cancer disease. For instance, 12 gene groups
are relevant to the second hidden “function”. One se-

Table 5: Topic-word learned by LDA

Topic 1 Topic 2 Topic 3 Topic 4
learning figure algorithm single
data model method general
model output networks sets
training neurons process time
information vector learning maximum
number networks input paper
algorithm state based rates
performance layer function features
linear system error estimated
input order parameter neural
Topic 5 Topic 6 Topic 7

rate algorithms function
unit set neural
data problem hidden
time weight networks
estimation temporal recognition
node prior output
set obtain visual
input parameter noise
neural neural parameters
properties simulated references

lected group covering 10 gene variables involves in the
so called “cell cycle M phase”. The cell cycle is a vital
process by which a single-celled fertilized egg develops
into a mature organism, or by which hair, skin, blood
cells, and some internal organs are renewed. Cancer is
a disease where regulation of the cell cycle goes wrong
and normal cell growth and behavior is lost. When
the cells multiply uncontrollably, there forms a tumor.
Thus, the association of this important process to can-
cer seems very reasonable. Other chosen groups involve
functional enrichments of “cytoskeleton organization”,
“regulation of programmed cell death” or “microtubule-
based process”, etc. Clearly this hidden function (the
2nd projection) space involves the critical “cell cycle”
components relevant to important regulatory changes
leading to characteristic cell grow and death. With sim-
ilar analyses, we found that the first projection maps to
the space of “immune system” processes (e.g. response
to hormone stimulus ) and the third hidden function fac-
tor involves in the “extracellular matrix space” among
which gene products are not uniformly attached to the
cell surface.

Alternatively, we also perform the dimension reduc-



tion on this cancer data using the basic Sparse LSA
without considering the group structures among genes.
The resulting functional components could not be ana-
lyzed as clear and as easy as the group structured Sparse
LSA case. The reason of the difficulty is that the dis-
covered gene functions are quite large gene groups (i.e.
more than 100 genes involved). They represent rela-
tively high level biological processes which are essential
for cells in any case, but not necessarily limited to the
certain cancer disease this data set is about. It is hard
to argue the relationship between such a large amount
of genes to the target “breast cancer” cause.

6 Conclusion

In this paper, we introduce a new model called Sparse
Latent Semantic Analysis, which enforces the sparsity
on the projection matrix based on LSA using the
`1 regularization. Sparse LSA could provide a more
compact and precise projection by selecting only a small
number of relevant words for each latent topic. We
further propose two important extensions of Sparse
LSA, group structured LSA and non-negative Sparse
LSA. A simple yet efficient alternating algorithm is
adopted to learn the sparse projection matrix for all
these models. We conduct experiments on several real-
world datasets to illustrate the advantages of our model
from different perspectives. In the future, we plan to
improve the scalability of Sparse LSA. One possible
direction is to utilize the online learning scheme to learn
web-scale datasets.
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7 Appendix

7.1 Proof of Theorem 2.1 The vector form of
optimization problem in Eq. (2.7) is:

minU −
D∑

d=1

(Ud)TVd(7.22)

subject to: (Ud)TUd = 1, d = 1, . . . , D(7.23)
(Uk)TUl = 0 k 6= l(7.24)

Associate the Lagrangian multipliers θdd to the con-
straints in (7.23) and θkl to the constraints (7.24). Sup-
pose U∗ is the optimal solution to Eq. (7.22), according
to the KKT condition, we have

(7.25)
∂L

∂Ud
|U=U∗= 0, d = 1, . . . , D,

where

L = −
D∑

d=1

(Ud)TVd+
D∑

d=1

θdd((Ud)TUd−1)+
∑

k 6=l
θkl(Uk)TUl.

And Eq. (7.25) gives

Vd =
D∑

k=1

θdkU
∗
k , d = 1, . . . D

or simply V = U∗Θ, where Θkl = θlk. According the
symmetry that (Uk)TUl = (Ul)TUk, Θ is a symmetric
matrix. Since U∗ and V are all full column rank, Θ
is invertible. By the assumption that V = P∆Q with
PTP = QQT = I, U∗ = VΘ−1 = P∆QΘ−1. So we
only need to obtain Θ to get the optimal U∗.

To compute Θ, plugging U∗ = P∆QΘ−1 and
V = P∆Q back into the original optimization problem
in Eq. (2.7), the objective now becomes:

tr((U∗)TV) = tr(Θ−1QT∆PTP∆Q)(7.26)
= tr(Θ−1QT∆2Q)
= tr(QΘ−1QT∆2)

Define R ≡ QΘ−1QT , Eq. (7.26) becomes:

tr((U∗)TV) = tr(R∆2) =
D∑

d=1

rddδ
2
dd.

According to the constraint that (U∗)TU∗ = I:

I = QIQT = Q(U∗)TU∗QT(7.27)
= QΘ−1QT∆PTP∆QΘ−1QT

= RT∆2R

From Eq. (7.27), for any d, we have
∑D
k=1 r

2
dkδ

2
kk = 1

which further implies that:

(7.28) r2
ddδ

2
dd ≤

D∑

k=1

r2
dkδ

2
kk = 1.

Therefore we have rddδdd ≤ 1 and upper bound of the
objective value is:

tr((U∗)TV) =
D∑

d=1

rddδ
2
dd ≤

D∑

d=1

δdd,

The equality holds if and only if for any d = 1, . . . , D,
Eq. (7.28) holds as equality which further implies R is
diagonal and R = ∆−1.

According to the definition of R, QΘ−1 = RQ =
∆−1Q and the optimal solution

U∗ = P∆QΘ−1 = P∆∆−1Q = PQ.

7.2 Proof of Proposition 3.1 According to Theo-
rem 3.1.15 in [18], Adg is the optimal solution if an only
if

(7.29) 0 ∈ ∂f(Adg)
∂Adg

= CdAdg −Bdg + λwg
∂‖Adg‖2
∂Adg

.

Assume Adg 6= 0, plugging ∂‖Adg‖2
∂Adg

= Adg

‖Adg‖2 into
Eq. (7.29), we have:

(7.30) Adg(Cd + λwg
1

‖Adg‖2 ) = Bdg

Taking the vector `2-norm on both side of Eq. (7.30):

(7.31) ‖Adg‖2 =
‖Bdg‖2 − λwg

Cd
.

Since Adg 6= 0, ‖Adg‖2 should be a positive real value,
which requires that ‖Bdg‖2 > λwg. Plugging Eq. (7.31)
back into Eq. (7.30), we obtain that if the condition
‖Bdg‖2 > λwg holds:

Adg =
Bdg(‖Bdg‖2 − λwg)

Cd‖Bdg‖2 .

On the other hand, if ‖Bdg‖2 ≤ λwg, plugging Adg = 0
into Eq. (7.29), we obtain that ∂‖Adg‖2

∂Adg
= Bdg

λwg
. It is

easy to verify that Bdg
λwg

is a valid subgraident of ‖Adg‖2
when Adg = 0 since ‖Bdg‖2 ≤ λwg.


