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Abstract. We present a relational schema that stores the computations of a
shared query evaluation plan, and tools that search the common computations
between new queries and the schema, which are the two essential parts of the
Incremental Multiple Query Optimization (IMQO) framework we proposed to
allow the efficient construction of the optimal evaluation plan for multiple con-
tinuous queries.

1 Introduction

Multi-query optimization (MQO) [15], namely, finding the shared optimal query eval-
uation plan for multiple queries, has been widely studied, because sharing intermediate
results among multiple queries can lead to significant computation reduction. But as
NP-hard as it is, MQO usually has to employ heuristics to trade off between the op-
timality and the optimization time. MQO is particularly essential to stream databases
since they tend to run multiple long-lived continuous queries concurrently, and the cost
of finding the optimal plan will be amortized by continuous query evaluation. How-
ever, in reality, stream DB queries usually arrive at different times, as opposed to the
assumption of synchronous arrival based on which the traditional MQO conducts the
optimization as a one-shot operation. To cope with the query asynchrony and mitigate
the NP-hardness, we propose a new approach, Incremental Multi-Query Optimization,
by adding new query computation incrementally to the existing query plan with heuris-
tic local optimization.

IMQO takes 4 steps to generate the new query evaluation plan R∗, given the existing
plan R and a new query Q: 1. index R’s computations and store them in persistent data
structures R; 2. identify common computations C between Q and R by searching R; 3.
select the optimal sharing path P in R that computes C; and 4. expand R to R∗ with the
new computations Q − C that compute the final results for Q.

In this paper, we focus on the Index and Search (Steps 1 & 2) for selection-join-
projection (SJP) queries; this presents the most thoroughly investigated effort so far on
the most common query types (SJP). Previous work [11,10,9] discussed other query
types, the sharing strategies (Step 3), and the actual continuous query plan construc-
tion (Step 4). The constructed plan will match the stream data on the fly to produce
continuous query results.
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Algorithm 1. IMQO

Input: R, Q
Output: R∗

Procedure: 1. R ⇐ Index(R));

2. C ⇐ Search(Q,R);

3. P ⇐ SelectSharing(R, C);

4. R∗ ⇐ Expand(R,P, Q − C).

Fig. 1. IMQO Algorithm
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Fig. 2. Query Evaluation Plans

In our approach, the index and search are conducted on the relational schema that
stores the query plan information and is updated incrementally when new computation
is added into the plan. To design the schema, we need to consider: what types of plan
information should be indexed; and how to index them to permit efficient search?

For the first question, the answer depends on the plan structure. We adopt the one
widely used in traditional query optimization [14]; in particular, a plan is a directed
acyclic graph, constructed from the where-clause which is in conjunctive normal form
(CNF). As the results, the schema indexes literal predicates, disjunctions of literals (OR
predicate, or ORPred), the conjunctions of the disjunctions (Predicate Set, or PredSet),
and the plan topology. The tools search the equivalence and subsumption relationships
at the literal, ORPred, and PredSet layers, and the sharable nodes in the plan topology.
This covers the common SJP queries.

For the second question, our solution is modeling the computations using the ER
(Entity Relationship) approach and then transforming the ER model to the relational
model. This allows us to utilize the ER modeling power to analyze the query plan struc-
ture, and separate the scalability solution from information access logic. In particular,
the indexing and searching algorithms are realized with database updates and queries
to the relational system catalogs; and the efficiency of the catalog access is gained from
intrinsic database functionalities, such as primary key indexing on catalog tables.

We integrated the indexing schema and tools into ARGUS [9], a stream processing
system that was built upon the commercial DBMS Oracle to process multiple complex
continuous queries, and is under planning for insertion into government agency systems
RDEC (www.globalsecurity.org/military/agency/army/cecom-rdec.htm). Empirical evaluation
on ARGUS shows that with moderate acceptable cost, the schema leads to constructing
shared plans that achieve up to hundreds of times speed-up in query evaluation. Due to
space limit, see [9].

The proposed schema is general, being usable in stream DB systems, such as
STREAM [12], Aurora [1], and NiagaraCQ [5], with minor code change. Part of the
schema, in particular, the canonicalization, and the indexing and searching at the literal
and ORPred layers, can also be used to enhance the common computation identification
on flow-based stream processing architectures, such as TelegraphCQ.

In the remaining of the paper, we discuss the related work in Section 2, present
two query examples in Section 3 to illustrate the types of computations to be indexed,
present the schema design in Section 4, and conclude in Section 5.
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2 Related Work

In this section, we discuss the related work on query computation indexing and search-
ing that has been done in MQO [15], view-based query optimization (VQO)[13,2], and
stream databases [12]. The major difference is that our work employs the systematic
approach to analyze and model the computation and extensively expands the scope of
the previous work.

Two common approaches to query indexing in MQO and VQO are bottom-up query
graph search [6,3,16]. and top-down rule-based filtering[8]. The first approach performs
the common predicate search with one-by-one string match through one query graph af-
ter another. The second approach identifies the sharable views by filtering out irrelevant
ones with different fine-tuned tests, such as excluding the ones not containing all the
required columns and the ones with more restrict range predicates.

IMQO is different from MQO and VQO. MQO focuses on one-shot optimization
where queries are assumed to be available all at a time and usually uses query graph.
VQO identifies the optimal materialized views to speed up the query evaluation and uses
both approaches mentioned above. Therefore, MQO and VQO do not index plan struc-
ture. But IMQO indexes all materialized intermediate results across the entire shared
query plan, which allows full sharability search in an efficient way.

All the known stream database systems endorse computation sharing in certain ways.
But so far, most focus on the sharing strategy (Step 3), plan expansion (Step 4), and
engine support. NiagaraCQ [5] focused on the strategies of selecting optimal sharing
paths; Aurora [1] supported shared-plan construction with heuristic local optimization
with a procedural query language; TelegraphCQ [4] realized the sharing and compu-
tation expansion on a flow-based stream processing architecture; and STREAM [12]
implemented the stream processing architecture that supports shared plans.

To our knowledge, only NiagaraCQ and TelegraphCQ realized the computation in-
dexing and searching to support IMQO on declarative queries. They applied a simple
approach that identifies identical predicates and subsumptions on selection predicates
which must be in the form of Attribute op Constant.1 In contrast, our work sup-
ports full range of query predicates and allows equivalent ones in different format to be
identified.

3 Query Examples

In this section, we present two query examples to illustrate the types of computations.
The queries are formulated on the FedWire database (FED). FED contains one single
data stream, comprised of FedWire money transfer transaction records. A transaction,
identified by tranid, contains the transaction type type code, date tran date, amount
amount, originating bank sbank aba and account orig account, and receiving bank
rbank aba and account benef account. Consider a query Q1 on big money transfers
for financial fraud detections.

1 Subsumption is a containment relationship between predicates. The predicate p1 subsumes the
predicate p2, if p2 implies p1, denoted as p2 → p1; then p2 can be evaluated from the results
of p1, which reduces the amount of data to be processed.



342 C. Jin and J. Carbonell

Example 1. The query links big suspicious money transactions of type 1000 or 2000,
and generates an alarm whenever the receiver of a large transaction (over $1,000,000)
transfers at least half of the money further using an intermediate bank within 20 days.
The query can be formulated as a 3-way self-join on F , the transaction stream table:

SELECT r1.tranid, r2.tranid, r3.tranid AND r1.rbank aba = r2.sbank aba –p7
FROM F r1, F r2, F r3 AND r1.benef account = r2.orig account –p8
WHERE (r1.type code = 1000 OR AND r2.amount > 0.5 ∗ r1.amount –p9

r1.type code = 2000) –p1 AND r1.tran date <= r2.tran date –p10
AND r1.amount > 1000000 –p2 AND r2.tran date <= r1.tran date + 20 –p11
AND (r2.type code = 1000 OR AND r2.rbank aba = r3.sbank aba –p12

r2.type code = 2000) –p3 AND r2.benef account = r3.orig account –p13
AND r2.amount > 500000 –p4 AND r2.amount = r3.amount –p14
AND (r3.type code = 1000 OR AND r2.tran date <= r3.tran date –p15

r3.type code = 2000) –p5 AND r3.tran date <= r2.tran date + 20; –p16
AND r3.amount > 500000 –p6

We added two predicates p4 and p6 into the query. They can be inferred automatically
[11] from p2, p9, and p14, and their data filtering improves the performance.

A continuous query evaluation plan should materialize some intermediate results on
historical data, so they can be used to compute new results without repetitive compu-
tations over them (Rete-based query evaluation [11,5]). The materialized results can
also be used for sharing among multiple queries. An effective materialization strategy
is pushing down highly-selective selection predicates and materializing their results, so
joins can be efficiently evaluated from much less intermediate results upon new data
arrivals [7,5,11].

On the other hand, materialization should be used with caution because of the en-
tailed disk access cost. An effective heuristic to avoid unnecessary materialization is
grouping predicates based on the tables they reference and materializing the predi-
cate groups (PredSet) [11], instead of each single predicate. So we get the PredSets:
P1 = {p1, p2}, P2 = {p3, p4}, P3 = {p5, p6}, P4 = {p7, p8, p9, p10, p11}, and
P5 = {p12, p13, p14, p15, p16}.

Figure 2(a) shows the optimal plan to evaluate the query. We assume the selection
PredSets, P1, P2, and P3, are highly-selective, thus they are pushed down in the plan.
Since PredSets P2 and P3 are equivalent, they share the same node S1. P1 is subsumed
by P2 or P3, thus P1 can be evaluated from S1, instead of being evaluated from the
source node F , shown as node S2. The subsumption sharing is useful since it reduces
the amount of data to be processed to obtain S2. The results of P4 and P5 are also
materialized to facilitate the efficient joins. If we assume that P4 and P5 are equally
selective, then P4 is evaluated first, since the size of the input to P4 is less than that
of P5.

Consider the second query Q2. Q2 is similar to Q1 except that the time span is
10 days instead of 20 days. Thus predicates p11 and p16 are substituted by p17 =
{r2.tran date <= r1.tran date + 10} and p18 = {r3.tran date <= r2.tran date
+10}, respectively; and PredSets P4 and P5 are by P6 = {p7, p8, p9, p10, p17} and
P7 = {p12, p13, p14, p15, p18}.
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Since P6 and P7 are subsumed by P4 and P5 respectively, the final results of Q2 can
be evaluated from J2 with a selection PredSet P8 = {p17, p18}, shown in Figure 2(b)
as node J3.

From the examples, we see that the indexing schema should store several types of
plan information, including literals, ORPreds, PredSets, and the plan topologies, and
the searching tools should recognize the equivalence and subsumptions at the three
predicate layers, and their associations with the plan topologies.

4 Predicate Indexing Schema

We describe the computation indexing schema and searching algorithms in this section.
Firstly, we model the computations using the ER model methodology; then we present
the relevant problems and their solutions; and finally, we derive the relational model
from the first two steps.

4.1 ER Model for Plan Computations

We model the computations of a query evaluation plan as a 4-layer hierarchy. From top
to bottom, the layers are topology layer, PredSet layer, ORPred layer, and literal layer.

Figure 3 shows the hierarchy for the two nodes S1 and S2 in Figure 2. For the equiv-
alent PredSets P2 and P3, only P2 is shown. For the equivalent ORPreds p1 and p3, only
p3 is shown, while p1 is crossed out and dropped from the hierarchy. The dashed arrows
between PredSets and literal predicates indicate subsumptions at these two layers. And
the dashed arrow between nodes S1 and S2 indicates the direct topology connection
and sharability between them.

The hierarchy can be presented in an ER model, as shown in Figure 4. Before trans-
forming the ER model to the relational model, we address several issues in Sections
4.2-4.6, including rich syntax (equivalent predicates expressed differently), self-join
canonicalization, subsumption identification, and topology indexing. Then the solutions
are implemented in the final relational model, see Section 4.7.

S1

P2

S2

P1

p3 p4 p1 p2

ρ32 ρ4 ρ2ρ31 ρ11 ρ12

Fig. 3. Computation hierarchy. ρ11 = ρ31:
type code = 1000, ρ12 = ρ32: type code =
2000, {ρ2} = p2, {ρ4} = p4.
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4.2 Rich Syntax and Canonicalization

The first obstacle in the common computation identification is that semantically-
equivalent literals can be expressed in different syntactic forms. For example, t1.a <
t2.b can also be expressed as t2.b > t1.a. A simple string match can not identify such
equivalence. To solve the problem, we introduce a canonicalization procedure. It trans-
forms syntactically-different yet semantically-equivalent literal predicates into the same
pre-defined canonical form. Then the equivalence can be detected by exact string match.

But subsumption can still not be identified by the exact string match. For example,
t1.a > 5 subsumes t1.a ≥ 10. To address the problem, we apply a triple-string canon-
ical form. For a literal ρ, we use γ(ρ) to denote its operator, and use L(ρ) and R(ρ)
to denote its left-hand-side and right-hand-side expressions, respectively. So ρ can be
written as a triplet L(ρ)γ(ρ)R(ρ). By making L(ρ) a canonical expression of column
references without constant terms, and R(ρ) a canonical constant without any column
references, such as ρ : t1.a + 2 ∗ t2.b > 5, the subsumption can be identified by exact
string match on L(ρ), and comparisons on γ(ρ) and R(ρ). We apply recursive rules to
transform expressions to predefined canonical format; please see [9] for the details.

The time complexity of canonicalization is up to quadratic to the length of the predi-
cates because of sorting. But this is not considered a problem, since the canonicalization
is an one-time operation for just new queries, and the average predicate length is far less
than the extent that can slow down the process noticeably.

4.3 Self-join

To allow exact-string match for finding equivalence and subsumption, table references
in canonical forms should use true table name, not table alias. For example, p4 and
p6 in Q1 should be canonicalized as F.amount > 500000, so the equivalence can be
identified. This is all right for a selection predicate or join predicate on different tables,
but problematic for a self-join predicate.

For example, the self-join predicate r1.benef account = r2.orig account joins
two records. The specification of joining two records is clarified by different table
aliases r1 and r2. To retain the semantics of the self-join, we can not replace the ta-
ble aliases with their true table names. To avoid the ambiguity or information loss, we
introduce Standard Table Aliases (STA) to reference the tables. We assign T 1 to one
table alias and T 2 to the other. To support multi-way join predicates, we can use T 3,
T 4, and so on. In the search, we enumerate the STA assignments in the canonical form
to find the predicate match.

Self-joins also present problems in the PredSet and ORPred layers. For example, an
ORPred p contains two literal predicates, one is a selection predicate ρ1: F.c = 1000,
and the other a self-join predicate ρ2: T 1.a = T 2.b. The canonicalized ρ1 references
the table directly, and is not aware of the STA assignment. But when it appears in p, we
must identify its STA with respect to the self-join predicate ρ2. Therefore, ρ1’s STA,
T 1 or T 2, must be recorded when indexing p. Similar situation exists in PredSets where
some ORPreds are single-table selections while others are self-joins. Thus an ORPred
STA should be indexed in the PredSet in which it appears. The STA assignment must
be consistent in the three-layer hierarchy. In particular, a PredSet chooses one STA
assignment, and propagates it down to the ORPred layer and then the literal layer.
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A 2-way self-join condition, being a literal, ORPred, or PredSet, has two possible
STA assignments. And a k-way self-join has k! assignments. This means that a search
algorithm may try up to k! times to find a match. The factorial issue is intrinsic to self-
join matching, but may be addressed heuristically. In our implementation, supporting
2-way joins, the search on a self-join PredSet stops when it identifies an equivalent one
from the system catalogs. If both assignments lead to the identification of subsuming
PredSets, the one that has less results (indicating a stronger condition) is chosen.

4.4 Subsumption on Literals

As discussed in previous sections, subsumption is important in computation sharing. It
presents in all the three predicate layers. Given a new condition p, we want to identify
all conditions in the existing plan that either subsume or are subsumed by p. The former
directly leads to sharing, while the later can be used to re-optimize the plan.

In this subsection, we describe how subsumptions of comparison literal predicates
are detected from the triple-string canonical forms. When L(ρ1) = L(ρ2), the sub-
sumption between the two literals, ρ1 and ρ2, may exist. It is determined by the re-
lationships between γ(ρ1) and γ(ρ2), and between R(ρ1) and R(ρ2). For example,
ρ1 : t1.a < 1 → ρ2 : t1.a < 2, but the reverse is not true. We define a subsum-
able relationship between pairs of operators based on the order of the right-hand-side
expressions.

Definition 1. For two literal operators γ1 and γ2 and an order O, we say (γ1, γ2, O)
is a subsumable triple if following is true: for any pair of canonicalized literals ρ1 and
ρ2, such that ρ1 = L(ρ1)γ1R(ρ1), and ρ2 = L(ρ2)γ2R(ρ2), if L(ρ1) = L(ρ2) , and
O(R(ρ1), R(ρ2)) is true, then we have ρ1 → ρ2.

For example, (<, <, Increasing) is a subsumable triple (ρ1 : t1.a < 1→ρ2 : t1.a<2,
and O(1, 2) is true). Figure 5 shows the implemented subsumable triples. With this,
look-up queries can be formulated to retrieve the indexed subsumption literals in con-
stant time.

It can be shown that literal subsumptions identified this way have the following
property.

Theorem 1. If ρ → ρ1, ρ → ρ2, and the subsumptions are identifiable through the
subsumable triples, then either ρ1 → ρ2 or ρ2 → ρ1 is true.

4.5 Subsumption on ORPreds and PredSets

As discussed in previous sections, we want to identify subsumptions on ORPreds and
then on PredSets. This is proceeded from the subsumptions identified at the literals; and
the results identified on the PredSets are then used to find the sharable topologies.

Given the existing plan, R, we use RORPred and RPredSet to denote the set of all
ORPreds and the set of all PredSets in R, respectively. Given a new query Q, we use
P to denote a PredSet in Q, and use p to denote an ORPred in P , namely, p ∈ P , and
P ∈ Q.
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γ1 γ2 O γ1 γ2 O

> >= E < <= E

= >= E = <= E

> >= D > > D

>= >= D >= > D

= > D = >= D

< <= I < < I

<= <= I <= < I

= < I = <= I

Fig. 5. Subsumable Triples
(γ1, γ2, O). E is equal, D is
decreasing, and I is increasing.

Algorithm 2. Subsumed ORPreds

Input: p, R
Output: SubsumedSet(p)
Procedure: for each literal ρi ∈ p, 1 ≤ i ≤ l

Sρi ⇐ {pijk ⇒ {ρij} | ρi → ρij , ρij ∈ pijk,
pijk ∈ RORPred, 1 ≤ j ≤ s, 1 ≤ k ≤ m};

I ⇐ ∩Υ
l
i=1Sρi ;

SubsumedSet(p) ⇐ {};

for each key p′ ∈ keys(I)
if |elements(I, p′)| == |p|

SubsumedSet(p)+ ⇐ p′;

Fig. 6. Subsumption Algorithm

The problem of identifying subsumptions on ORPreds is as follows. Given an OR-
Pred p, such that p ∈ P , and P ∈ Q, we want to find all ORPreds p′ ∈ RORPred, such
that p is subsumed by, subsumes, or is equivalent to p′. Similarly, given the PredSet
P ∈ Q, we find all PredSets P ′ ∈ RPredSet, such that P is subsumed by, subsumes, or
is equivalent to P ′.

In the rest of this subsection, we focus on the algorithm, Subsumed ORPreds, which
finds all the ORPreds that subsume p. We use the algorithm as the example to de-
scribe the computation representation, data structure and its operation, and the algo-
rithm logic. We also cover other subsumption identification algorithms, which can be
realized by small modifications to Subsumed ORPreds. Finally, we discuss the algo-
rithm time complexity.

Representation. We assume that each ORPred p has l literals, {ρ1, · · ·, ρl}, each lit-
eral ρi is subsumed by s indexed literals, {ρi1, · · ·, ρis}, and each indexed literal ρij

appears in m non-equivalent ORPreds, {pij1, · · ·, pijm}, as shown in the left-hand-side
of Figure 7. l is related to typical types of queries registered into the system, and thus
can be viewed as a constant parameter. Similarly, we assume that each PredSet has k
ORPreds, each ORPred is subsumed by t indexed ORPreds, and each ORPred appears
in n different PredSets.

The algorithms assume non-redundant representations on ORPreds and PredSets. In
particular, for the ORPred case, the assumption says that given an ORPred p, either
indexed in R or in the new query Q, any literal ρ ∈ p does not subsume any other
literal ρ′ ∈ p. For example, if p = {ρ1 OR ρ2} is non-redundant, then neither ρ1 → ρ2

nor ρ2 → ρ1 holds. Non-redundant PredSet representation is defined similarly. The
assumption assures that all the subsumptions can be found with a single pass of the
l ∗ s ∗ m ORPreds or k ∗ t ∗ n PredSets, based on the Theorem 2.

Theorem 2. If the non-redundant assumption holds, then the s∗m ORPreds, {pijh|1 ≤
j ≤ s, 1 ≤ h ≤ m}, whose literals subsume ρi, are different to each other.
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Proof. By contradiction, assume there are j1, j2, h1, and h2, such that pij1h1 ≡ pij2h2 .
Then ρij1 ∈ pij1h1 , and ρij2 ∈ pij1h1 . According to Theorem 1, either ρij1 → ρij2 or
ρij2 → ρij1 holds, which contradicts to the non-redundant assumption.

Note that the ORPreds across different literal predicates, such as pi1j1k1 and pi2j2k2 ,
where i1 �= i2, could be legitimately equivalent, and potentially are the targeted re-
sults the algorithms look for. The similar property can also be proven on the PredSet
representations.

Corollary 1. If the non-redundant assumption holds, then s ∗ m ≤ |RORPred|, where
|RORPred| is the number of ORPreds in R.

The corollary follows from the theorem immediately. Generally, s ∗ m 	 |RORPred|,
since on average, ρi and its subsumed literals {ρi1, · · ·, ρis} present a narrow set of
semantics and only appear in a small portion of RORPred.

Data Structure. The algorithms use a data structure called 2-level hash set (2HSet)
built up for literals or ORPreds to record the subsumption relationships. A 2HSet S
is a set of sets, containing a set of hash keys, denoted as keys(S), and each hash key
p ∈ keys(S) pointing to a set of elements, denoted as elements(S, p). keys(S) and
all elements(S, p) are hashed for constant-time accesses. For Subsumed ORPreds, a
2HSet Sρi records the ORPred set {pijh|1 ≤ j ≤ s, 1 ≤ h ≤ m}, where each ORPred
pijh in the set contains a literal ρij that subsumes ρi ∈ p, as shown in Figure 7, where
keys(Sρi) = {pijh|1 ≤ j ≤ s, 1 ≤ h ≤ m}, and elements(Sρi, pijh) = {ρij}.

We define a binary operation Υ -intersection ∩Υ on 2HSets S1 and S2 to identify
the intersection of their hash key sets, which represents the common part between the
predicate conditions.

Definition 2. Given two 2-level hash sets S1 and S2, we say S is the Υ -intersection of
S1 and S2, denoted as S = S1 ∩Υ S2, if and only if following is true: S is a 2-level
hash set, keys(S) = keys(S1) ∩ keys(S2), and for ∀p ∈ keys(S), elements(S, p) =
elements(S1, p) ∪ elements(S2, p).

Υ -intersection preserves only the hash keys that appear in both S1 and S2. For any
preserved hash key p, its elements set is the union of p’s elements sets in S1 and
S2. Υ -intersection can be computed in the time of O(|keys(S)| ∗ L) where S is the
probing operand, either S1 or S2, in the implementation, and L is the average number of
elements in elements(S, p) for all p ∈ keys(S). In Figure 7, the time of Υ -intersecting
two 2HSets is O(s ∗ m).

Subsumption Algorithms. Subsumed ORPreds, as shown in Figure 6, finds all
ORPreds in RORPred that subsume p. It constructs all Sρi , 1 ≤ i ≤ l, Υ -intersects
them to generate the final 2-level hash set I , and checks which remaining ORPreds in I
subsume p. |elements(I, p′)| is the number of elements in elements(I, p′). And |p| is
the number of literals in p. The check condition |elements(I, p′)| = |p| means that if
each literal in p is subsumed by some literal in p′, then p is subsumed by p′.

A similar algorithm, Subsume ORPreds, finds all ORPreds in RORPred that p
subsumes. The two differences from Subsumed ORPreds are that the 2HSets are
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Fig. 7. ρi is subsumed by ρij , ρij ∈ pijk,
1 ≤ i ≤ l, 1 ≤ j ≤ s, 1 ≤ k ≤ m. The in-
formation can be stored in 2-level hash sets.

PredIndex PSetIndex SelectionTopology

ORPredID PredSetID Node

LPredID ORPredID DirectParent

LeftExpr STA DPredSetID

Operator JoinTopology SVOA
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Node1 DirectParent1 JVOA1

Node2 DirectParent2 JVOA2

STA DPredSetID JVOAPredSetID

UseSTA JVOA1 IsDISTINCT

JVOA2

JVOAPredSetID

IsDISTINCT

Fig. 8. System Catalogs

constructed from the literals that are subsumed by p’s literals, and the final check con-
dition is |elements(I, p′)| = |p′|, meaning that if each literal in p′ is subsumed by
some literal in p, then p′ is subsumed by p.

The algorithms can be easily extended to identify subsumptions at the PredSet layer.
In that case, the hash keys are the PredSet IDs and the elements are ORPred IDs. The
final check conditions dictate that a PredSet P is subsumed by another P ′ if P is
subsumed by all ORPreds in P ′. Identifying equivalence is easy given the identified
subsuming and subsumed 2HSets; it is the unique ORPred or PredSet that is in the
intersection of the two.

The algorithms guarantee that no redundant ORPreds or PredSets will be introduced
into indexing as long as the non-redundancy assumption holds on queries.

Time Complexity. The time complexity of the ORPred-layer algorithms is O(l∗s∗m),
and that of the PredSet-layer is O(k∗l∗s∗m+k∗t∗n) which includes the k calls of the
former. Note that t ∗ n ≤ |R| given the non-redundancy assumption. |R| is the number
of the searchable PredSets in R and the number of nodes in R. Generally, t ∗ n 	 |R|
since p usually appears only in a small portion of the indexed PredSets. Therefore, the
algorithm takes only a small portion of time O(k ∗ l ∗ |RORPred|+k ∗ |R|) to compute.

If the sharable PredSets are searched by matching PredSets and ORPreds one by one,
the searching will take the time of O(k2 ∗ l ∗ |R|) since k new ORPreds need to match
|R| ∗ k existing ORPreds and each match computes on l literal predicates. Although it
is also linear to |R|, the factor is larger and it will be much slower on large scales.

4.6 Topology Connection

PredSets are associated with nodes. Assume that PredSet P is associated with node
N , then P bears the topological connections between N and N ’s ancestor set {A}. In
particular, the results of N are obtained by evaluating P on {A}.
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The node N may be associated with multiple PredSets depending on the different
types of ancestors. We define three types of ancestors for each node, direct parents (DPar-
ents), selection very original ancestor (SVOA), and join very original ancestors (JVOA).

Definition 3. A node N ’s DParents are the set of nodes that have an edge pointing
to N .

Definition 4. A selection node N ’s SVOA is N ’s closest ancestor that is either a join
node or a base stream node. A join node or a base stream node N ’s SVOA is itself N .

Definition 5. A join node N ’s JVOAs are the closest ancestor nodes that are either
join nodes (but not N ) or base stream nodes. A selection node N ’s JVOAs are N ’s
SVOA’s JVOAs. And a base stream node’s JVOA is NULL.

We record all the three ancestor types and their associated PredSets. Each type plays
an important role. DParents is necessary and sufficient to construct the plan execution
code. SVOAs and JVOAs present local topological connections within and across one
join depth, respectively. Their presence allows a single lookup per join depth, avoiding
the chained search through DParents, to find the sharable computation.

4.7 Relational Model for Indexing

Now we convert the ER model to the relational model. A simplified version is shown
in Figure 8. We made three adjustments. First, only 2-way joins are supported. Sup-
porting multi-way joins requires a small amount of work to revise the indexing schema
and the searching tools, but requires much more work in sharing strategies. In particu-
lar, multi-way joins bring back the NP-hardness, and requires more advanced heuristic
optimization techniques. This will be a future work. Second, the relations that index
literal predicates and ORPreds are merged into one, PredIndex, based on the assump-
tion that ORPred are not frequent in queries. This allows a literal predicate to appear
multiple times in PredIndex if it belongs to different ORPreds. But this redundancy is
negligible given the assumption. The third adjustment is splitting the node topology in-
dexing relation (The Node entity in the ER model) to two, namely, SelectionTopology,
and JoinTopology, based on the observation that the topology connections on selection
nodes and on join nodes are quite different.

5 Conclusion and Future Work

As part of the IMQO framework, a comprehensive computation indexing schema and
a set of searching tools were presented. The schema stores shared plan computations
in relational system catalogs, and the tools search the common computations between
new queries and the system catalogs. We implemented the schema and tools on ARGUS
to support efficient processing of a large number of complex continuous queries. The
empirical evaluation on ARGUS demonstrated up to hundreds of times speed-up for
multiple query evaluation via the shared plan construction [9]. The techniques would
also be very useful in other IMQO-supported stream databases.

For future work, immediate extensions are supporting multi-way joins, local restruc-
turing upon new query arrivals, and adaptive local re-optimization upon dynamic con-



350 C. Jin and J. Carbonell

gestion detections. It is also interesting to support more advanced sharing strategies in
the IMQO setting, such as identifying the minimum cover of disjoint ranges and utiliz-
ing constraints, such as foreign key constraints [8].
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