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Abstract

Example-Based Machine Translation (EBMT) retrieves pre-translated phrases from a sentence-aligned bilin-
gual training corpus to translate new input sentences. EBMT uses long pre-translated phrases effectively but
is subject to disfluencies at phrasal translation boundaries. We address this problem by introducing a novel
method that exploits overlapping phrasal translations and the increased confidence in translation accuracy
they imply. We specify an efficient algorithm for producing translations using overlap. Finally, our empir-
ical analysis indicates that this approach produces higher quality translations than the standard method of
EBMT in a peak-to-peak comparison.
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1 Introduction

Corpus-Based Machine Translation (MT), including Statistical MT (SMT) (Brown et al., 1990; Brown et al.,
1993; Yamada and Knight, 2002) and Example-Based MT (EBMT) (Nagao, 1984; Nirenburg et al., 1994;
Sumita and Iida, 1991; Veale and Way, 1997; Brown, 2001), use a sentence-aligned bilingual corpus to train
translation models. The former relies on word and n-gram statistics to seek themost probable translation,
and the latter relies on finding translated maximal-length phrases that combine to form a translation. Each
method has its strengths and weaknesses:EBMT can exploit long translated phrases but does not combine
phrasal translations well, whereas SMT combines word and short n-gram translations well but cannot exploit
long pre-translated phrases. This paper addresses in part the major shortcoming ofEBMT: how to better
combine phrasal translations. When standardEBMT approaches find several long n-grams with known
translations in the sentence being translated, they can only exploit these if thefragments are non-overlapping.
We have developed a method of combining overlapping fragments whose translations are consistent. This
method, which we call “maximal left-overlap compositionalEBMT” or for short “maximal overlapEBMT”,
forms a translation more likely to be accurate than sequentially-abutting translated fragments. Although
we had previously experimented with one-word overlap atEBMT fragment boundaries, then-word overlap
version is clearly more powerful.

This paper is organized as follows. First, we give a presentation and illustration of the maximal overlap
EBMT method. Then we describe the scoring method for incorporating overlap intotheEBMT lattice search
and the new lattice search algorithm. Finally, we present results that clearly demonstrate the power of
overlapEBMT on the Hansard Corpus.

2 Maximal Overlap Method

When theEBMT engine is given a sentence for translation, it outputs a list of source fragments (contiguous
portions) from the input sentence and candidate translations obtained from its alignment of the example
translations it was originally given. Each source/target fragment pair has its own alignment score, and
we refer to a pair as simply a fragment below (specifying source or targetas necessary). A method that
uses overlap must balance the fragment scores obtained from theEBMT engine with the amount of overlap
between these fragments as well as other possible factors (e.g., fragment length).

Table 1 shows an excerpt from anEBMT translation lattice. After theEBMT engine retrieves fragments
from its parallel training corpus, translation proceeds by finding a path through the translation lattice that
combines the fragments in some manner. Traditionally, such combination procedures have required the
source fragments to have no overlap. Our method stems from the motivation that when both the source
and target of two adjacent fragments overlap, then there is an increasedlikelihood their combination is an
accurate translation.1

In the example in Table 1, the standard combination procedure yields a syntactically coherent but se-
mantically incorrect translation. The result is a sentence where the use of “that” implies a referent, and thus,
the statement is interpreted as: “A specific condition is not required to start afull investigation.” The com-
bination procedure that uses overlap produces a translation with the correct semantics: “It is the speaker’s
opinion that a full investigation is not necessary.” This is a direct result of considering overlap in the frag-
ments. The reason is that the “il” in the context of “qu’il...nécessaire de” should never be translated as a word
with a referent. Thus, a training set with correct translations will never contain a fragment that begins like
Fragment 2 and extends all the way to “de”. However, when overlappingfragments are used, an example
of the initial portion of the phrase (Fragment 1) and an example continuing withthe idiomatic “qu’il soit”

1Sometimes there is no opportunity to exploit overlap when translating a sentence, because the full sentence and its translation
occur verbatim in the training corpus. One such amusing example is: “Thegovernment does not know what it is doing.”
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Input: Je doute qu’il soit ńecessaire de lancer une enquête compl̀ete pour l’instant.

Fragment

1 Je doute qu’il
I do not think it is

2 Je doute qu’il soit
I doubt whether that will be

3 qu’il soit nécessaire de
not think it is necessary to

4 nécessaire de lancer
necessary to start

5 une enqûete compl̀ete
a full investigation

6 pour l’instant.
for the moment.

Human reference translation:
“I do not think it is necessary to launch a full inquiry at thistime.”

Standard EBMT translation combines fragments 2, 4, 5, and 6,to produce the output:
“I doubt whetherthatwill be necessary to start a full investigation for the moment.”

EBMT translation with overlap combines fragments 1, 3, 4, 5,and 6, to produce the output:
“I do not think it is necessary to start a full investigation for the moment.”

Table 1: A Portion of anEBMT Translation Lattice. In order to combine fragments with overlap, they must
match in both the source and target language. Thus, Fragments 1 and 3 canbe combined while 2 and 3
cannot. The full translation lattice for this example has approximately 60 fragments.

(Fragment 3) can be combined to produce an accurate translation. In general, both syntactic and semantic
problems can occur when overlap is not considered.

2.1 The EBMT Engine

Similar to (Frederking et al., 1994), theEBMT system that we used for our experiments was originally
intended to act as one engine in a multi-engine machine translation (MEMT) system. Hence, it differs in a
number of aspects from most implementations ofEBMT. For our purposes, the important difference is that
the engine itself need not find a single best overall translation because its output is intended to be fed into
a separate selection step. Instead, theEBMT engine outputs translations of all the phrasal matches it finds
in the training corpus that it is able to align at the word level. These partial translations may be ambiguous
and can overlap (either partially or subsuming some shorter translations). Having such a list of all candidate
partial translations available as the engine’s output makes it straightforward to implement a new selection
mechanism.

2.2 Scoring Function

The scoring function that guides fragment combination in our algorithm assigns an overall score to each
candidate translation. This score is simply the sum of the scores for each constituent fragment. The score
of a fragment depends only on that fragment and the immediately preceding fragment in the translation. By
choosing an overall scoring function that is additive and dependent only on the fragment and its predecessor,
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we can conduct an efficient search for the best scoring translation candidate.
The scoring function weights four different attributes of a fragment: the gap between the source fragment

and its predecessor, the length of the source fragment, the alignment score from theEBMT engine, and the
overlap between a fragment and its predecessor. Four parameters, (g, l, a, o), weight the relative influence
of each of these factors.

The score,s(F ), assigned to a fragment,F , is:

s(F ) = g ∗ SourceGapLength∗GapPenalty+ s′(F )

where

s′(F ) = 1/(a ∗ Align(F ) + o ∗OverlapLength+ l ∗ SourceLength+ 1).

Scores ofs(F ) closer to zero are better. That is, we desire to minimize this function. We now describe
each component of the scoring function.

TheSourceGapLengthis the number of untranslated words from the input sentence that fall between a
fragment and its predecessor. TheGapPenaltyis defined dynamically in terms ofs′ as thes′ score given to
a perfectly aligned single word translation. We setg=2, so the final weight a gap in translation carries is
twice as bad as replacing each word with a perfect dictionary look-up.

Align(F ) is the score obtained from theEBMT engine that indicates the engine’s confidence that the
source and target fragments are well-aligned.

OverlapLengthis defined to be zero if the source of a fragment and its predecessor do not overlap
in the input sentence. Therefore, a non-zero overlap implies that the gaplength is zero. When there is
source overlap between the end of a predecessor fragment and the beginning of the current fragment, then
OverlapLengthis the maximum number of target words from the end of the predecessor fragment that match
the beginning of the current target fragment. In Table 1, Fragments 1 and3 have anOverlapLengthof four
(“not think it is”).

Finally, SourceLengthis simply the length of the fragment in the source language. Each of the com-
ponents,Align, OverlapLength, vary from zero to approximatelySourceLength, with higher values being
better. The coefficientsl, a, ando were optimized empirically as described in Section 3.3.2.

2.3 Search Discipline

Since the scoring function is additive over fragments and dependent at each step only upon a fragment
and its immediate predecessor, we can use adynamic programmingsolution to avoid an exponential search
problem. Dynamic programming approaches take advantage of problems where the best solution at a point
A in a lattice can be defined in terms of the best solution at all points that can reach A in one step and the
cost of that step.

Despite these efficiencies, the search is still computationally expensive since theEBMT engine can
output hundreds of fragment pairs for a single sentence. Since the optimizations we have described so
far result in an algorithm that is roughlyO(n2) in the number of fragment pairs, this can sometimes be a
computational burden.

Therefore, we further optimize our search by using abest-first beamsearch. Abest-firstsearch expands
the best-scoring unfinished candidate translation first. Abeamsearch only retains the top-n unfinished can-
didate translations. The top scoring finished candidate is stored and updated as better scoring translations are
found. Once the beam is empty, the top scoring candidate is output as the best translation. Our experiments
use a beam of twenty.
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2.4 Overlap EBMT Algorithm

We are now in a position to give pseudocode for the overlapEBMT system. Given the set of output fragments
E from theEBMT engine and a beam width, we have:

Algorithm 2.1: OverlapTranslation(E, BeamWidth)

Candidates← BOS
Translation← < EmptyTranslation>
while not empty(Candidates)

do
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F ← popBest(Candidates)
NewCandidates←

Successors(F, E) ∪ EOS
for each c′ ∈ NewCandidates

do if UpdateScore(F, c′)

then
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comment: Best translation to end withc′

if c′ = EOS

then











Translation←
BackTrace(c′)

delete(c′, NewCandidates)
else delete(c′, NewCandidates)

comment: Update remaining candidates

sort(NewCandidates∪ Candidates)
cut(Candidates, BeamWidth)

Output Translation

For simplicity, we introduce two auxiliary fragments,BOSandEOS(for beginning and end of sentence,
respectively). We assume the functionSuccessors(F,E)returns the set of all fragments inE whose source
starts after fragmentF and can validly followF — either source overlap of zero or both source and target
overlap greater than zero. The functionUpdateScore(P,F)looks-up the best score to end with fragment
P in a table and updates the best score to end with fragmentF if extending the path fromP to F scores
better; additionally, a backpointer fromF to P is stored. The final translation is produced by tracing these
backpointers.

Since the scoring function was carefully designed to depend only on the current fragment and its imme-
diate predecessor,UpdateScorecan be performed in constant time,O(1). With a data-structure that provides
a popBestandpopWorst, the merge and sort can be done inO(n) time instead of a full re-sort,O(n log n).
Thus, even with an infinite beam, the overall complexity isO(n2) wheren is the number of fragments output
from theEBMT engine. Since the scoring function is additive and non-negative, a fragment is only popped
from the candidate list once. A second time would imply that there was a cheaper path to some fragment
which was not explored first, in contradiction to the best-first search. That is, the heuristic is admissible and
with an infinite beam would be guaranteed to find the optimal candidate according to the scoring function.
Finally, the score of the best full translation candidate can be used for early termination or candidate pruning.
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3 Experiments

3.1 Data Set

All of the data used for the following experiments came from the Hansard corpus, which consists of parallel
French and English versions of Canadian parliamentary debates and related documents. In all experiments
the source language was French and the target language was English. The validation data used to optimize
the parameters for theEBMT engine and the overlap scoring function consisted of two one-hundred sentence
files selected arbitrarily. The test data consisted of ten different one-hundred sentence files also selected
arbitrarily. At all times the training, test, and validation data sets were mutually exclusive. We constructed
two training sets for theEBMT engine. The larger training set had 960,000 sentence pairs and the smaller
set had 100,000 sentence pairs drawn from the large training set.

3.2 MT Quality Scoring Function

For empirical evaluation, we use the metric proposed by IBM, calledBLEU 2 (Papineni et al., 2002) and the
metric developed by NIST, called simplyNIST below (NIST, 2002). Both metrics try to assess how close
a machine translation is to a set of reference translations generated by humans. In our experiments this set
consists of just the single reference translation provided by the Hansardtranscripts.

To compute the BLEU score, one counts the number ofn-word fragments (n-grams) in the candidate
translations that have a match in the corresponding reference translations. The n-gram precisionis this
number divided by the total number ofn-grams in the candidate translations. BLEU actually uses amodified
n-gram precision, calledpn. This precisionclips the count for eachn-gram in any candidate translation
to prevent it from exceeding the count of thisn-gram in the best matching reference translation. TheN
differentn-gram precisions are averaged geometrically (for BLEU N = 4 andn = 1..4), then multiplied by
a brevity penaltyto discourage short but high-precision translation candidates.3 This leads to the following
formula:

BLEU = emin(1− r

c
,0).e

(
∑

N

n=1
(1/N) log pn

)

.

Here,r andc are the total number of words in the reference and candidate translations respectively. The

brevity penalty,emin(1− r

c
,0), is less than one ifc < r, i.e., the candidate translations are shorter than the

reference translations on average.
The NIST score is based on similar considerations, with three major differences. First, it incorporates an

information weightto place more emphasis on infrequentn-grams. Second, it uses an arithmetic rather than
geometric average to combine the scores for eachn. Third, it uses a brevity penalty that is less sensitive to
small variations.

The following formula describes the NIST metric:

NIST = eβ log2[min( c

r
,1)]

∗
N
∑

n=1

(∑

all co-occurringw1 . . . wn

Info(w1 . . . wn)

|all w1 . . . wn in candidate translation|

)

.

Here,n-grams up toN = 5 are considered, andβ is set such that the brevity penalty is about 0.5 for a
translation candidate length that is about2/3 of the reference translation length. The information weights
are calculated over the reference translation corpus as:

Info(w1 . . . wn ) = log2

(

# occurrences ofw1 . . . wn−1

# occurrences ofw1 . . . wn

)

.

2For BiLingual Evaluation Understudy.
3Note that it is not necessary to penalize overly long candidate translations as for those cases then-gram precisions are already

forced lower by the clipping.
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Both BLEU and NIST scores are sensitive to the number of reference translations. Although both are
also sensitive to the number of words in the reference corpus, NIST is much more so because of the language
model implied by the information weights, which are often zero for largen in small corpora.

3.3 Experimental Conditions

We compare three different systems, each evaluated at their peak performance levels according to the BLEU
scores for the two different sized sets of training data, for a total of six experimental conditions. We refer to
our implementation of the overlap algorithm described above asOverlapbelow. In this section, we describe
the other two systems we evaluated to understand the relative gains of theOverlapsystem. To ensure a
peak-to-peak comparison of the highest possible performance of eachsystem we optimized the parameters
of all three systems empirically as described below.

Training Set System Mean BLEU St. Dev. BLEU Mean NIST St. Dev. NIST

Standard 0.1420 0.0409 4.9842 0.6610
Small Overlap 0.1640* 0.0380 5.2327* 0.5711

LM 0.1591* 0.0329 5.1306 0.6408

Standard 0.1719 0.0379 5.4189 0.5191
Large Overlap 0.1900* 0.0386 5.6408* 0.5178

LM 0.1897* 0.0428 5.8247* 0.6389

Table 2: A performance summary of the described methods. The best performance for each measure is
set in bold. Starred results are significant against the Standard system according to the t-test (p ≤ 0.01).
Underlined results are significant against the Standard system according to the sign test (p ≤ 0.05).

3.3.1 Systems

Recall thatOverlapuses the translation candidate fragments output by theEBMT engine described in Section
2.1. We have implemented a search mechanism over theEBMT engine output similar toOverlapexcept that
it disallows fragment overlap to serve as a control system for our experiments. This system uses the same
scoring function and search procedure asOverlap except that since overlap is not allowed to occur, the
overlap coefficient is effectively set to zero. This search thereforeis driven entirely by alignment scores
on the fragments plus bonuses for longer fragments and a penalty for untranslated words. We refer to this
control search mechanism over theEBMT engine output asStandardbelow.

We also compared the effectiveness ofOverlapagainst our existing MEMT implementation when us-
ing only theEBMT engine and a language model component. Since the effective differencebetween this
system andStandardis the language model, we refer to it asLM. The language model component of the
MEMT system uses a trigram model of the target language (with smoothing andback-off where necessary)
plus a number of other weighting factors to select the best-scoring overalltranslation with no overlapping
fragments. The weighting factors include the quality scores assigned by thetranslation engines, the lengths
of the fragments, and a penalty for untranslated words, just as are usedin our new selection mechanism.
The language model we used was built from approximately 250 million words ofEnglish text, including
broadcast news transcriptions, Associated Press newswire, Wall Street Journal text, and other sources of
news.
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3.3.2 Parameter Optimization

It is important to note that the parameter optimizations for theEBMT engine and the overlap scoring function
are with respect to the BLEU scoring method only. All optimizations were doneon the validation data. The
NIST scores for the same parameter settings are included in the results in Section 3.4for completeness but
have not been optimized.

The EBMT engine takes three parameters to define its search space. The engine sequentially searches
through its parallel corpus of training data from the most recently added examples to the earliest added ex-
amples. As it searches, it returns matches between each unique source fragment of the input sentence and
the corpus until any of the following conditions are met. First, the number of matches with perfect align-
ment scores equals the parameter-specified maximum (Max-Perfect). Second, the number of matches with
alignment scores better than a given threshold equals the specified maximum (Max-Near-Perfect). Finally,
the search ends when the number of matches considered equals a specified maximum (Max-Alternatives).
Since these parameters control how many alternative translations a single source fragment has in the trans-
lation lattice, they interact with the size of the lattice and the quality of translations that can be produced by
traversing the lattice.

We also optimized three of the parameters for the overlap scoring function: the coefficients for the length
of the fragment (l), the length of the overlap (o); and the alignment score (a). Under the assumption that the
ratio of these coefficients is more important than their specific values, we fixed the alignment coefficient to
one and optimized the values for the length and overlap coefficients. This optimization was performed after
optimizing the threeEBMT parameters discussed above.

3.4 Experimental Results

In Table 2, we show results for each of the six experimental conditions described above. The highest
performing systems are highlighted in the table for the small and large training sets. We also report two
types of significance tests to compare theOverlapandLM systems against theStandardsystem. The first is
a sign test. The null hypothesis is that each of the two systems being comparedtranslates a given sentence
better about half the number of times their performance score on a sentencediffers. This test is performed
on the set of individual sentence scores of the test set. The second test is a two-sided t-test on the difference
between each pair of scores over the ten files that comprised the test set. The null hypothesis is that the
difference is zero. The significance levels of our results are summarizedin Table 2.

The scores in Table 2 are evaluated using only one reference translation. Both BLEU and NIST met-
rics yield higher scores as the number of reference translations is increased. For example, a Chinese-to-
English translation system evaluated on 993 sentences for which four reference translations were available
as opposed to the average of scores obtained using the reference translations individually improved the
BLEUscores by 85% and the NIST scores by 51%. The reader should bear this in mind when comparing
the scores reported here to scores published elsewhere that evaluate performance over corpora with more
reference translations.

Training Set System Avg. Words/Fragment

Small Standard 2.92
Overlap 3.02

Large Standard 3.45
Overlap 3.34

Table 3: Average number of target words per fragment in theOverlapandStandardsystems.
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4 Discussion

We conclude from the results presented above that theOverlapsystem is superior to theStandardsystem.
For the large training set,Overlapprovides a 10.53% improvement over theStandardmethod, and for the
small training set it provides a 15.49% improvement. This shows that overlap isof greater importance when
little training data is available.

There are several things to note about Figure 1.4 First, it is clear that increasing the size of the training set
increases the percentage of fragments in a sentence having overlap. However, the relative increase in training
set size (10×) is much larger than the relative increase in overlap percentage. This difference indicates that
we will get diminishing returns in overlap by further increasing the training set size. Another point to note
about this figure is that even in the small training set, more than 75% of the translations use overlap (80%
for the large training set).

In comparing theOverlapandLM systems, we note that the differences between the two are not statisti-
cally significant. Thus, theOverlapapproach produces better or comparable translations. This is impressive
given the fact that overlap is only used in translating 75-80% of the sentences. Additionally, we are currently
pursuing a method of combining theOverlapandLM systems (Brown et al., 2003); current results indicate
that using overlap in combination with a language model leads to significantly better results than using the
either approach on its own. This further demonstrates that overlap and typical language model approaches
take advantage of different types of information.
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Figure 1: A histogram of the percentage of frag-
ments in each output translation that have some
overlap with their preceding fragments.

Figure 2: A histogram of the number of fragments
combined to form the output translation for each
sentence in the test set.

Figure 2 provides some insight into howOverlapproduces better translations. This histogram shows
that on average, theOverlapsystem uses more fragments per sentence than theStandardsystem. This trend
also occurs whenOverlap is compared toStandardusing the small training set. To help understand how
theOverlapsystem benefits from using more fragments, we are interested in whether theOverlapsystem
is making use of longer or shorter fragments than theStandardsystem (Table 3). Surprisingly, the answer
changes with the amount of training data available. In the small training data set,where the percentage of
overlapping fragments is much lower, theOverlapsystem is able to use longer fragments than theStandard
system (which cannot use the same fragments because they overlap). However, as the amount of training data
increases and therefore the percentage of overlapping fragments, theOverlapmethod makes use of shorter

4To obtain the percentage of fragments in a sentence with overlap, the number having overlap is actually divided by the number
of fragments minus one (since the first fragment has no predecessor to overlap).
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fragments than theStandardmethod, but because of the frequent and consistent overlap in the fragments, it
can still produce more accurate translations.

Based on the results of this paper, we are pursuing several promising extensions to this work. We are
excited about the prospect of combining theOverlapmethod with other sources of information theEBMT
system is given. For instance, we plan to investigate using overlap in conjunction with grammar rules.

5 Conclusions

In summary, we have presented anEBMT method that exploits the reinforcement inherent in overlapping
translated phrases. Our overlap method produces a statistically significantimprovement in translation quality
over a system in the traditional non-overlapping paradigm. Overlap seems tobe beneficial in two ways. The
first is that it allows a system to use long phrasal translations that cannot be used by standardEBMT because
they overlap with each other. Additionally, systems benefit when overlap occurs frequently enough to take
advantage of consistent translations of shorter fragments.
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