Maximal Lattice Overlap
in Example-Based Machine Translation

Rebecca Hutchinson Paul N. Bennett Jaime Carbonell
Peter Jansen Ralf Brown
June 6, 2003

CMU-CS-03-138

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Also appears as Language Technologies Institute TechRigjabrt
CMU-LTI-03-174

Abstract

Example-Based Machine Translation (EBMT) retrieves pre-translatedes from a sentence-aligned bilin-
gual training corpus to translate new input sentences. EBMT uses leriggmslated phrases effectively but
is subject to disfluencies at phrasal translation boundaries. We adtireproblem by introducing a novel
method that exploits overlapping phrasal translations and the increaséderwe in translation accuracy
they imply. We specify an efficient algorithm for producing translationsgiswverlap. Finally, our empir-
ical analysis indicates that this approach produces higher quality tramsldtian the standard method of
EBMT in a peak-to-peak comparison.
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1 Introduction

Corpus-Based Machine Translation (MT), including Statistical MT (SMBFp{vn et al., 1990; Brown et al.,
1993; Yamada and Knight, 2002) and Example-Based EBMT) (Nagao, 1984; Nirenburg et al., 1994;
Sumita and lida, 1991; Veale and Way, 1997; Brown, 2001), use arsemtdigned bilingual corpus to train
translation models. The former relies on word and n-gram statistics to seekasteprobable translation,
and the latter relies on finding translated maximal-length phrases that combirrenta feanslation. Each
method has its strengths and weaknes&8dAT can exploit long translated phrases but does not combine
phrasal translations well, whereas SMT combines word and shortm4gaaslations well but cannot exploit
long pre-translated phrases. This paper addresses in part the majtmosiing of EBMT: how to better
combine phrasal translations. When standaBMT approaches find several long n-grams with known
translations in the sentence being translated, they can only exploit thes&#ghents are non-overlapping.
We have developed a method of combining overlapping fragments whostatians are consistent. This
method, which we call “maximal left-overlap compositioB®#MT” or for short “maximal overlagEBMT”,
forms a translation more likely to be accurate than sequentially-abutting trath$tatgments. Although
we had previously experimented with one-word overlagB¥T fragment boundaries, theword overlap
version is clearly more powerful.

This paper is organized as follows. First, we give a presentation andaltisstrof the maximal overlap
EBMT method. Then we describe the scoring method for incorporating overlaph@EBMT lattice search
and the new lattice search algorithm. Finally, we present results that cleamypristrate the power of
overlapEBMT on the Hansard Corpus.

2 Maximal Overlap Method

When theEBMT engine is given a sentence for translation, it outputs a list of sourceéats (contiguous
portions) from the input sentence and candidate translations obtainedits@lignment of the example
translations it was originally given. Each source/target fragment pairitsaown alignment score, and
we refer to a pair as simply a fragment below (specifying source or tagekecessary). A method that
uses overlap must balance the fragment scores obtained froBBMWE engine with the amount of overlap
between these fragments as well as other possible fagarsfagment length).

Table 1 shows an excerpt from &BMT translation lattice. After thEBMT engine retrieves fragments
from its parallel training corpus, translation proceeds by finding a patiugir the translation lattice that
combines the fragments in some manner. Traditionally, such combination preseldave required the
source fragments to have no overlap. Our method stems from the motivatiowtkea both the source
and target of two adjacent fragments overlap, then there is an incrigsidtbod their combination is an
accurate translatioh.

In the example in Table 1, the standard combination procedure yields a tyalftgacoherent but se-
mantically incorrect translation. The result is a sentence where the usigatif implies a referent, and thus,
the statement is interpreted as: “A specific condition is not required to stalttinvestigation.” The com-
bination procedure that uses overlap produces a translation with thecteamantics: “It is the speaker’s
opinion that a full investigation is not necessary.” This is a direct refudbosidering overlap in the frag-
ments. The reason is that the “il” in the context of “qu’iléaessaire de” should never be translated as a word
with a referent. Thus, a training set with correct translations will nevatain a fragment that begins like
Fragment 2 and extends all the way to “de”. However, when overlapgpaggnents are used, an example
of the initial portion of the phrase (Fragment 1) and an example continuingtigtidiomatic “qu’il soit”

!Sometimes there is no opportunity to exploit overlap when translating a senteecause the full sentence and its translation
occur verbatim in the training corpus. One such amusing example is:g@bernment does not know what it is doing.”



Input: Je doute quil soit @cessaire de lancer une eBtp compdte pour linstant.

Fragment
1 Je doute quiil

I do not think it is
2 Je doute quil soit

| doubt whether that will be
3 qu’il  soit nécessaire de

not think it is necessary to
4 nécessaire de lancer
necessary to start
5 une engéte compdte
a full investigation
6 pour linstant.
for the moment.

Human reference translation:

“I do not think it is necessary to launch a full inquiry at thise.”
Standard EBMT translation combines fragments 2, 4, 5, abal soduce the output:

“I doubt whethetthatwill be necessary to start a full investigation for the mortien
EBMT translation with overlap combines fragments 1, 3, 4r 6, to produce the output:

“I do not think it is necessary to start a full investigatimr the moment.”

Table 1: A Portion of areBMT Translation Lattice. In order to combine fragments with overlap, they must
match in both the source and target language. Thus, Fragments 1 andb8 cambined while 2 and 3
cannot. The full translation lattice for this example has approximately 60 fraigmen

(Fragment 3) can be combined to produce an accurate translation. énagjdyoth syntactic and semantic
problems can occur when overlap is not considered.

21 TheEBMT Engine

Similar to (Frederking et al., 1994), tHEBMT system that we used for our experiments was originally
intended to act as one engine in a multi-engine machine translation (MEMT )rsylitence, it differs in a
number of aspects from most implementationEBMT. For our purposes, the important difference is that
the engine itself need not find a single best overall translation becausgpts @ intended to be fed into

a separate selection step. Instead,BEB®T engine outputs translations of all the phrasal matches it finds
in the training corpus that it is able to align at the word level. These partiagdlaions may be ambiguous
and can overlap (either partially or subsuming some shorter translatioagigdisuch a list of all candidate
partial translations available as the engine’s output makes it straightiteamplement a new selection
mechanism.

2.2 Scoring Function

The scoring function that guides fragment combination in our algorithm @ssig overall score to each
candidate translation. This score is simply the sum of the scores for eastitaent fragment. The score
of a fragment depends only on that fragment and the immediately precedgmént in the translation. By
choosing an overall scoring function that is additive and dependé&nbarthe fragment and its predecessor,



we can conduct an efficient search for the best scoring translatiahidzze.

The scoring function weights four different attributes of a fragment: Helgetween the source fragment
and its predecessor, the length of the source fragment, the alignmeatfsmortheEBMT engine, and the
overlap between a fragment and its predecessor. Four parametérs, ), weight the relative influence
of each of these factors.

The scoreg(F'), assigned to a fragment,, is:

s(F) = gx* SourceGaplLength GapPenalty+ s'(F')

s'(F) = 1/(ax*Align(F) + o * OverlapLengtht [ * SourceLength- 1).

Scores ofs(F') closer to zero are better. That is, we desire to minimize this function. We nseride
each component of the scoring function.

The SourceGapLengtls the number of untranslated words from the input sentence that fall betvee
fragment and its predecessor. TBapPenaltyis defined dynamically in terms af as thes’ score given to
a perfectly aligned single word translation. We get2, so the final weight a gap in translation carries is
twice as bad as replacing each word with a perfect dictionary look-up.

Align(F') is the score obtained from tHEBMT engine that indicates the engine’s confidence that the
source and target fragments are well-aligned.

OverlapLengthis defined to be zero if the source of a fragment and its predecessootduoverlap
in the input sentence. Therefore, a non-zero overlap implies that théeggfh is zero. When there is
source overlap between the end of a predecessor fragment andgihaibg of the current fragment, then
OverlapLengths the maximum number of target words from the end of the predecesgandrat that match
the beginning of the current target fragment. In Table 1, Fragments B aasle arOverlapLengthof four
(“not think it is”).

Finally, SourceLengtlis simply the length of the fragment in the source language. Each of the com-
ponents Align, OverlapLengthvary from zero to approximatelgourceLengthwith higher values being
better. The coefficients a, ando were optimized empirically as described in Section 3.3.2.

2.3 Search Discipline

Since the scoring function is additive over fragments and dependerichtstep only upon a fragment
and its immediate predecessor, we can udgremic programmingolution to avoid an exponential search
problem. Dynamic programming approaches take advantage of problems thikebest solution at a point
A in a lattice can be defined in terms of the best solution at all points that cam Aemcone step and the
cost of that step.

Despite these efficiencies, the search is still computationally expensive $iaEBMT engine can
output hundreds of fragment pairs for a single sentence. Since the agtiioniz we have described so
far result in an algorithm that is rought9(n?) in the number of fragment pairs, this can sometimes be a
computational burden.

Therefore, we further optimize our search by usingeat-first beansearch. Abest-firstsearch expands
the best-scoring unfinished candidate translation firditeAmsearch only retains the tapunfinished can-
didate translations. The top scoring finished candidate is stored and dpddietter scoring translations are
found. Once the beam is empty, the top scoring candidate is output as thhsktion. Our experiments
use a beam of twenty.



24 Overlap EBMT Algorithm

We are now in a position to give pseudocode for the oveERIT system. Given the set of output fragments
E from theEBMT engine and a beam width, we have:

Algorithm 2.1: OverlapTranslatioGr, BeamWidth

Candidates— BOS
Translation— < EmptyTranslation>
while not emptyCandidate$
F — popBestCandidate$
NewCandidates—
Successof§, ) U EOS
for each ¢ € NewCandidates
do if UpdateScorer,, ¢’)
comment: Best translation to end wité

if ¢ = EOS
then Translation—
then BackTracéc)
deleté’, NewCandidates

else deletéc’, NewCandidates
comment: Update remaining candidates

sort(NewCandidates) Candidate$
cut(CandidatesBeamWidth
Output Translation

do

For simplicity, we introduce two auxiliary fragmenBQSandEOS(for beginning and end of sentence,
respectively). We assume the functiBoccessors(F,Eeturns the set of all fragments E@whose source
starts after fragmerf and can validly followF — either source overlap of zero or both source and target
overlap greater than zero. The functibipdateScore(P,Flooks-up the best score to end with fragment
P in a table and updates the best score to end with fragmehextending the path fron to F scores
better; additionally, a backpointer frofto P is stored. The final translation is produced by tracing these
backpointers.

Since the scoring function was carefully designed to depend only on threntfragment and its imme-
diate predecessddpdateScorean be performed in constant tim@(1). With a data-structure that provides
apopBesiandpopWorst the merge and sort can be done&lfn) time instead of a full re-sort)(nlogn).
Thus, even with an infinite beam, the overall complexit®is:?) wheren is the number of fragments output
from theEBMT engine. Since the scoring function is additive and non-negative, enéagis only popped
from the candidate list once. A second time would imply that there was a ahpajbeto some fragment
which was not explored first, in contradiction to the best-first searcht iBhthe heuristic is admissible and
with an infinite beam would be guaranteed to find the optimal candidate acgdodihe scoring function.
Finally, the score of the best full translation candidate can be usedrgiteanination or candidate pruning.



3 Experiments

3.1 Data Set

All of the data used for the following experiments came from the Hansaglispwhich consists of parallel
French and English versions of Canadian parliamentary debates atetirétecuments. In all experiments

the source language was French and the target language was Engkstaliiation data used to optimize

the parameters for tHEBMT engine and the overlap scoring function consisted of two one-hundredrsce

files selected arbitrarily. The test data consisted of ten different ondrbad sentence files also selected
arbitrarily. At all times the training, test, and validation data sets were mutuallygixe. We constructed

two training sets for th&BMT engine. The larger training set had 960,000 sentence pairs and the smaller
set had 100,000 sentence pairs drawn from the large training set.

3.2 MT Quality Scoring Function

For empirical evaluation, we use the metric proposed by IBM, ca#leglJ 2 (Papineni et al., 2002) and the
metric developed by NIST, called simpNIST below (NIST, 2002). Both metrics try to assess how close
a machine translation is to a set of reference translations generated bpsumaur experiments this set
consists of just the single reference translation provided by the Hatraatripts.

To compute the BEU score, one counts the numberefvord fragments{-grams) in the candidate
translations that have a match in the corresponding reference translafibes:-gram precisionis this
number divided by the total number ofgrams in the candidate translations.E® actually uses anodified
n-gram precision calledp,,. This precisionclips the count for eacm-gram in any candidate translation
to prevent it from exceeding the count of thisgram in the best matching reference translation. The
differentn-gram precisions are averaged geometrically (fobEB N = 4 andn = 1..4), then multiplied by
abrevity penaltyto discourage short but high-precision translation candidaiiéss leads to the following

formula: N
BLEU = €min(17£’o).e(zn:1(l/]v) 10gpn)-

Here,r andc are the total number of words in the reference and candidate translatgpectively. The
brevity penalty,emin(l‘gvo), is less than one i < r, i.e., the candidate translations are shorter than the
reference translations on average.

The NIST score is based on similar considerations, with three major differences.iFimsorporates an
information weighto place more emphasis on infrequengrams. Second, it uses an arithmetic rather than
geometric average to combine the scores for eachhird, it uses a brevity penalty that is less sensitive to
small variations.

The following formula describes thelSIT metric:

NIST = eﬁlogQ [min(%,l)]
N .
. Z <Zall co-occurringw, . . . w,, INfO (w1... wn)) .

|all w; ... w, in candidate translatign

n=1
Here,n-grams up toN = 5 are considered, and is set such that the brevity penalty is about 0.5 for a
translation candidate length that is ab@yg of the reference translation length. The information weights
are calculated over the reference translation corpus as:

# occurrences ofyy ... w,—1 )

Info(wy...w, ) =10 (
(w1 ) &2 # occurrences o, . . . wy,

2For BiLingual Evaluation Understudy.
3Note that it is not necessary to penalize overly long candidate translasdnsthose cases thegram precisions are already
forced lower by the clipping.



Both BLEU and NST scores are sensitive to the number of reference translations. Althatghake
also sensitive to the number of words in the reference corplss, i much more so because of the language
model implied by the information weights, which are often zero for large small corpora.

3.3 Experimental Conditions

We compare three different systems, each evaluated at their peaknpanice levels according to the.BU
scores for the two different sized sets of training data, for a total obgieemental conditions. We refer to
our implementation of the overlap algorithm described abov@waslapbelow. In this section, we describe
the other two systems we evaluated to understand the relative gains Olvthap system. To ensure a
peak-to-peak comparison of the highest possible performance okgatdm we optimized the parameters
of all three systems empirically as described below.

| Training Set| System | Mean B.EU | St. Dev. BEU | Mean NST | St. Dev. NST |

Standard]  0.1420 0.0409 4.9842 0.6610
Small | Overlap | 0.1640* 0.0380 5.2327* 05711
LM 0.1591* 0.0329 5.1306 0.6408
Standard] 0.1719 0.0379 5.4189 0.5191
Large | Overlap | 0.1900% 0.0386 5.6408 0.5178
LM 0.1897 0.0428 5.8247* 0.6389

Table 2: A performance summary of the described methods. The bestrparfce for each measure is
set in bold. Starred results are significant against the Standard systemdiag to the t-testy( < 0.01).
Underlined results are significant against the Standard system aaroodime sign testy( < 0.05).

33.1 Systems

Recall thaDverlapuses the translation candidate fragments output b EMT engine described in Section
2.1. We have implemented a search mechanism oveétBMT engine output similar t®verlapexcept that

it disallows fragment overlap to serve as a control system for our @rpats. This system uses the same
scoring function and search procedure@eerlap except that since overlap is not allowed to occur, the
overlap coefficient is effectively set to zero. This search therefodriven entirely by alignment scores
on the fragments plus bonuses for longer fragments and a penalty fanatatted words. We refer to this
control search mechanism over thBMT engine output aStandardbelow.

We also compared the effectivenessferlapagainst our existing MEMT implementation when us-
ing only theEBMT engine and a language model component. Since the effective diffebeteeen this
system andstandardis the anguage radel, we refer to it atM. The language model component of the
MEMT system uses a trigram model of the target language (with smoothingaankdoff where necessary)
plus a number of other weighting factors to select the best-scoring ouenadllation with no overlapping
fragments. The weighting factors include the quality scores assigned Irattstation engines, the lengths
of the fragments, and a penalty for untranslated words, just as arerused new selection mechanism.
The language model we used was built from approximately 250 million word&ngfish text, including
broadcast news transcriptions, Associated Press newswire, Wadlt Strarnal text, and other sources of
news.



3.3.2 Parameter Optimization

Itis important to note that the parameter optimizations fol@BMT engine and the overlap scoring function
are with respect to thelEEU scoring method only. All optimizations were doae the validation dataThe
NIST scores for the same parameter settings are included in the results in Sectioncrpleteness but
have not been optimized.

The EBMT engine takes three parameters to define its search space. The engiestisdly searches
through its parallel corpus of training data from the most recently addachpbes to the earliest added ex-
amples. As it searches, it returns matches between each unique sagroerit of the input sentence and
the corpus until any of the following conditions are met. First, the number oftreatwith perfect align-
ment scores equals the parameter-specified maxinMiax-Perfect. Second, the number of matches with
alignment scores better than a given threshold equals the specified maxMauxaNgar-Perfegt Finally,
the search ends when the number of matches considered equals a dpeakimum Max-Alternatives
Since these parameters control how many alternative translations a singie smgment has in the trans-
lation lattice, they interact with the size of the lattice and the quality of translatiohsahabe produced by
traversing the lattice.

We also optimized three of the parameters for the overlap scoring functieco#fficients for the length
of the fragmentl{), the length of the overlaj; and the alignment score); Under the assumption that the
ratio of these coefficients is more important than their specific values, we thvecalignment coefficient to
one and optimized the values for the length and overlap coefficients. Tiisipgtion was performed after
optimizing the thre&BMT parameters discussed above.

3.4 Experimental Results

In Table 2, we show results for each of the six experimental conditionsrided above. The highest
performing systems are highlighted in the table for the small and large trainiag ¥é also report two
types of significance tests to compare @werlapandLM systems against ti&tandardsystem. The first is
a sign test. The null hypothesis is that each of the two systems being contizargldtes a given sentence
better about half the number of times their performance score on a sewliffiece. This test is performed
on the set of individual sentence scores of the test set. The secorglaéwo-sided t-test on the difference
between each pair of scores over the ten files that comprised the testhgehull hypothesis is that the
difference is zero. The significance levels of our results are summarizeble 2.

The scores in Table 2 are evaluated using only one reference transi&tn BLEU and NST met-
rics yield higher scores as the number of reference translations is gected-or example, a Chinese-to-
English translation system evaluated on 993 sentences for which fewenee translations were available
as opposed to the average of scores obtained using the referenslatioans individually improved the
BLEUscores by 85% and thelSIT scores by 51%. The reader should bear this in mind when comparing
the scores reported here to scores published elsewhere that evadtfatenance over corpora with more
reference translations.

| Training Set| System | Avg. Words/Fragment

Small Standard 2.92
Overlap 3.02
Large Standard 3.45
Overlap 3.34

Table 3: Average number of target words per fragment inQlierlapandStandardsystems.



4 Discussion

We conclude from the results presented above thaOwerlapsystem is superior to th8tandardsystem.
For the large training seQverlapprovides a 10.53% improvement over tBeandardmethod, and for the
small training set it provides a 15.49% improvement. This shows that oventdgisater importance when
little training data is available.

There are several things to note about FigufeFirst, it is clear that increasing the size of the training set
increases the percentage of fragments in a sentence having overlapvétathe relative increase in training
set size {0x) is much larger than the relative increase in overlap percentage. Thesatitfe indicates that
we will get diminishing returns in overlap by further increasing the trainirigseze. Another point to note
about this figure is that even in the small training set, more than 75% of thédtians use overlap (80%
for the large training set).

In comparing theOverlapandLM systems, we note that the differences between the two are not statisti-
cally significant. Thus, th®verlapapproach produces better or comparable translations. This is impressive
given the fact that overlap is only used in translating 75-80% of the seege/dditionally, we are currently
pursuing a method of combining tiigverlapandLM systems (Brown et al., 2003); current results indicate
that using overlap in combination with a language model leads to significantly bedtdts than using the
either approach on its own. This further demonstrates that overlap aitéditjgnguage model approaches
take advantage of different types of information.
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Figure 1: A histogram of the percentage of fragFigure 2: A histogram of the number of fragments
ments in each output translation that have som@mbined to form the output translation for each
overlap with their preceding fragments. sentence in the test set.

Figure 2 provides some insight into ha@werlap produces better translations. This histogram shows
that on average, th@verlapsystem uses more fragments per sentence thasttmardsystem. This trend
also occurs whe®verlapis compared td&tandardusing the small training set. To help understand how
the Overlapsystem benefits from using more fragments, we are interested in wheth®wénap system
is making use of longer or shorter fragments than$tendardsystem (Table 3). Surprisingly, the answer
changes with the amount of training data available. In the small training datatsst the percentage of
overlapping fragments is much lower, tBeerlapsystem is able to use longer fragments thanStandard
system (which cannot use the same fragments because they overlagvéfas the amount of training data
increases and therefore the percentage of overlapping fragmen@yénkapmethod makes use of shorter

“To obtain the percentage of fragments in a sentence with overlap, theenhiabing overlap is actually divided by the number
of fragments minus one (since the first fragment has no prededesseerlap).



fragments than th8tandardmethod, but because of the frequent and consistent overlap in thedrdas, it
can still produce more accurate translations.

Based on the results of this paper, we are pursuing several promigieigsens to this work. We are
excited about the prospect of combining Beerlapmethod with other sources of information tB8MT
system is given. For instance, we plan to investigate using overlap in atigarwith grammar rules.

5 Conclusions

In summary, we have presented BBMT method that exploits the reinforcement inherent in overlapping
translated phrases. Our overlap method produces a statistically signifigaotement in translation quality
over a system in the traditional non-overlapping paradigm. Overlap sedvedateneficial in two ways. The
firstis that it allows a system to use long phrasal translations that caanstdal by standaEBMT because
they overlap with each other. Additionally, systems benefit when overlapredrequently enough to take
advantage of consistent translations of shorter fragments.
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