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Abstract

Acquiring knowledge from experts for planning sys-
tems is a rather difficult knowledge engineering task,
but is essential for any applications of planning sys-
tems. This work addresses the issue of automatic ac-
quisition of planning operators. Operators are learned
by observing the solution traces of experts agents and
by subsequently refining knowledge in a learning-by-
doing paradigm. It is domain-independent and as-
sumes minimal requirements for a priori knowledge
and expert involvement in order to reduce the bur-
den on the knowledge engineerer and domain experts.
Planning operators are learned from these observa-
tion sequences in an incremental fashion utilizing a
conservative specific-to-general inductive generaliza-
tion process. In order to refine the new operators
to make them correct and complete, the system uses
the new operators to solve practice problems, analyz-
ing and learning from the execution traces of the re-
sulting solutions or execution failures. We describe
techniques for planning and plan repair with incor-
rect and incomplete domain knowledge, and for op-
erator refinement through a process which integrates
planning, execution, and plan repair. Our learn-
ing method is implemented on top of the PRODIGY
architecture(Carbonell, Knoblock, & Minton 1990;
Carbonell et al. 1992) and is demonstrated in the
extended-strips domain(Minton 1988) and a subset of
the process planning domain(Gil 1991).

Introduction
Acquiring knowledge from experts for planning systems is
a rather difficult knowledge engineering task, but is essen-
tial for any applications of planning systems. Most of the
work on automatic acquisition of planning knowledge have
concentrated on learning search control knowledge (Fikes,
Hart, & Nilsson 1972; Mitchell, Utgoff, & Banerji 1983;�This research is sponsored by the Wright Laboratory, Aero-
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and the Advanced Research Projects Agency (ARPA) under grant
number F33615-93-1-1330. Views and conclusions contained in
this documentare those of the authors and should not be interpreted
as necessarily representing official policies or endorsements, either
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Minton 1988; Veloso 1992). The work described in this pa-
per addresses the issues of automatic acquisition of domain
knowledge, i.e. planning operators.

Previous work on acquiring planning operators mostly
requires a partially correct domain knowledge before learn-
ing(Gil 1992). Such initial knowledge may be difficult to
acquire sometimes. This work aims at further reduce the
burdern of the knowledge engineerer and domain experts
by assuming minimal requirements for a priori knowledge
and expert involvement. Our learning system no longer
requires a large chuck of inital knowledge about the plan-
ning domain. Instead, the learning system is given at the
outset only the description language for the domain, which
includes the types of objects and the predicates that describe
states and operators. Motivated by the fact that it is usu-
ally much easier for the domain experts to give a solution
to the problems than to write down the operators they use
to solve the problems, we have developed a framework for
learning planning operators by observing the solution traces
of expert agents and subsequent knowledge refinement in a
learning-by-doing paradigm(Anzai & Simon 1979). Thus
the experts involvement is reduced to simply given solutions
to problems.

Learning by observation and by practice provides a new
point in the space of approaches for planning and learning.
In addition to the problems faced in previous work such as
numerous irrelevant features in the state when the operators
are applied (Gil 1992), our learning system also needs to
plan with not only incomplete, but also incorrect operators,
plan repair is necessary when the initial plan cannot be com-
pleted because of some unmet necessary preconditions in
the operators in the plan; planning and execution must be in-
terleaved and integrated. This paper describes our approach
to address these problems. Empirical results in the process
planning domain (Gil 1991) demonstrates the effectiveness
of this approch. We also discuss some extensions that are
essential for applying our technique to real world domains.

Learning Planning Operators
We use the PRODIGY architecture(Carbonell, Knoblock,
& Minton 1990; Carbonell et al. 1992) as our test-bed for
the learning system. PRODIGY’s domain knowledge is
represented using an extended form of STRIPS-like oper-



ators (Fikes & Nilsson 1971). The goal of this work is to
learn the preconditions and the effects of the operators. We
assume for now that the operators have conjunctive precon-
ditions and no conditional effects, everything in the state is
observable, and there is no noise in the state.

The architecture for learning by observation and practice
in planning includes the observation module, the learning
module, the planning module, and the plan execution mod-
ule, as illustrated in Figure 1.
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Figure 1: Overview of the data-flow among different modules of
the learning system. The observation module provides the learning
module with observations of the expert agent. The learning mod-
ule formulates and refines operators in the domain. The planning
module is essentially the PRODIGY planner modified to use some
heuristics for planning with incomplete and incorrect operators as
well as for plan repair, it generates tentative plans to solve practice
problems. The plan execution module executes the plans, provid-
ing the learning module with the execution traces, and passing the
plan failures to the planning module for plan repair.

Learning Operators from Observation
Operators for the domain are learned from these observation
sequences in an incremental fashion utilizing a conservative
specific-to-general inductive generalization process. When
an operator is observed for the first time, we create the
corresponding operator such that its precondition is the pa-
rameterized pre-state, and its effect is the parameterized
delta-state. The type for each variable in the operator is
the most specific type in the type hierarchy that the cor-
responding parameterized object has1. This is the most
conservative constant-to-variable generalization. General-
izing the observation in Figure 2 yields the operator shown
in Figure 3.

New observations are used to further refine both the pre-
conditionsand the effects of the operators: the preconditions
are generalized by removing facts that are not present in the
pre-state of the new observation2; the effects are augmented
by adding facts that are in the delta-state of the observation.

1Objects that do not change from problem to problem are
treated as constants and are not parameterized, such as the ob-
ject ROBOT in the extended-strips domain.

2A precondition is removed iff the predicate of the precondition
is not present in the new pre-state.

Pre-state:

(connects dr13 rm1 rm3) (connects dr13 rm3 rm1)
(dr-to-rm dr13 rm1) (dr-to-rm dr13 rm3)
(inroom robot rm1) (inroom box1 rm3) (pushable box1)
(dr-closed dr13) (unlocked dr13) (arm-empty)

Delta-state: add: (next-to robot dr13)

Figure 2: An observation of the state before and after the appli-
cation of the operator GOTO-DR

(operator goto-dr
(preconds ((<v1> door) (<v2> object) (<v3> room) (<v4> room))
(and (inroom robot <v4>)

(connects <v1> <v3> <v4>)
(connects <v1> <v4> <v3>)
(dr-to-rm <v1> <v3>)
(dr-to-rm <v1> <v4>)
(unlocked <v1>)
(dr-closed <v1>)
(arm-empty)
(inroom <v2> <v3>)
(pushable <v2>)))

(effects nil ((add (next-to robot <v1>)))))

Figure 3: Learned operator GOTO-DR when the observation in
Figure 2 is given to the learning module

For example, given the observation in Figure 4, the operator
GOTO-DR is refined: (dr-closed <v1>) is removed from the
preconditions, and the effects become:

(effects ((<v5> Object))
(add (next-to robot <v1>)) (del (next-to robot <v5>)))

Pre-state:

(connects dr12 rm2 rm1) (connects dr12 rm1 rm2)
(dr-to-rm dr12 rm1) (dr-to-rm dr12 rm2)
(next-to robot a) (dr-open dr12) (unlocked dr12)
(inroom robot rm1) (inroom c rm2) (inroom b rm1)
(inroom a rm1) (pushable c) (pushable b) (arm-empty)

Delta-state: add: (next-to robot dr12) del: (next-to robot a)

Figure 4: The second observation of the operator GOTO-DR

Refining Operators with Practice
The operators acquired by the learning module are them-
selves incorrect or incomplete. They can be further refined
during practice. To do so, PRODIGY’s search algorithm
is augmented with some domain-independent heuristics to
generate plans that are possibly incomplete or incorrect.
These plans are executed in the environment to further gen-
erate learning opportunities.

Planning with incorrect operators PRODIGY’s stan-
dard planner assumes a correct action model. But before our
learner acquires a complete model of the domain, the oper-
ators can be incomplete or incorrect in the following ways:
(a) over-specific preconditions: when a learned operator has
unnecessary preconditions. In this case, the system has to
achieve its unnecessary preconditions during planning. Not
only does this force the system to do unnecessary search,
but also it can make many solvable problems unsolvable



because it may not be possible to achieve some unnecessary
preconditions. (b) incomplete effects: when some effects
of an operator are not learned because they are present in
the pre-state of the operator. While searching for a plan,
PRODIGY applies in its internal model an operator that is
missing some effects, the state becomes incorrect.

These problems make it very difficult to generate a correct
plan for a problem. Therefore, we relax the assumption that
all the plans generated by the planner are correct. The sys-
tem intentionally generate plans that only achieve a subset
of the preconditions of the operators. Of course, this intro-
duces the possibility of incomplete or incorrect plans in that
a necessary precondition may be unsatisfied, necessitating
plan repair. But if an operator with unmet preconditions
is executed in the environment, are unmet preconditions
can be removed from the preconditions, thus the operator is
further refined.

Plan repair Plan repair is necessary when a planned op-
erator fails to execute in the environment because of unmet
necessary preconditions. Since there can be multiple unmet
preconditions, and since some of them may be unneces-
sary preconditions, it is not necessary to generate a plan to
achieve all of them. Therefore, the plan repair mechanism
generates a plan fragment to achieve one of them at a time.
The unmet preconditions are ranked according to whether
or not they have they contain variables that appear in the
effects of the operators. Ties are breaked arbitrarily. If
the system fails to achieve any of the unmet preconditions,
or the operator still cannot be executed in the environment
even all its preconditionshave been achieved, the plan repair
mechanism proposes a different operator.

Learning critical preconditions As mentions in the pre-
vious section, the system only achieves a subset of the pre-
conditions of the operators. This subset of preconditions
are called critical preconditions. Critical preconditions are
incrementally learned during practice. They can be learned
in the following two ways:� If all but one precondition P of an operator OP are satisfied

in the state, and OP fails to execute in the environment,
precondition P is learned as a critical precondition.� As discussed before, if an operator OP fail to execute
in the environment because of unmet preconditions, the
system repairs the plan by generating additional plans
steps to achieve one of the preconditions. If the system
executes the additional steps, and after achieving P, OP
becomes applicable, then precondition P is learned as a
critical precondition.

The more critical precondition learned by the system, the
less likely will the plans generated fail. The critical precon-
ditions thus learned cannot be proved to be the necessary
preconditionsassuming there may be negated preconditions.
But in practice, they are highly accurate.

Learning negated preconditions The learned operators
are used to solve practice problems. During practice, if
an operator is un-executed even when all the preconditions

of the operators are satisfied, the learning module discovers
that some negated preconditions are missing. The negations
of all the predicates that are true in the current state when the
operator is un-executed, but are not true in the observations
of this operator are conjected as potential negated precon-
ditions, and are added to the preconditions of the operator.
Some of the added negated preconditions may be unneces-
sary, and they will be removed in the same way as all other
preconditions with more observations and practices.

Empirical Results

The learning algorithm described in this paper has been
tested in the extended-STRIPS(Minton 1988) domain and
a subset of the process planning domain(Gil 1991). It also
easily learns operators in more simple domains such as the
blocksworld domain and the logistics domain. The fol-
lowing results are from the process planning domain. The
learning system is first given the solutions of 30 problems
to observe, then given 25 problems to practice. 15 test
problems are used. All the above problems are randomly
generated.

Figure 5 shows how the amount of executions (i.e. the
sum of successfully and unsuccessfully executed operators)
to solve test problems decrease with more practice. Fig-
ure 6 shows how the amount of planning (i.e. the total
number of nodes generated) to solve the test problems de-
crease with more practice problems. In both cases, the solid
lines show the performance of the bassic prodigy without
control knowledge. We see that observation and practice,
the learning system has acquired the necessary operators to
solve problems effectively.
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Figure 5:

Summary

In summary, learning, planning, plan repair, and plan ex-
ecution are tightly integrated in our learning system, and
operators are learned through a specific-to-general induc-
tive generalization process. (Wang 1994) provides more
details and examples of the learning algorithm. The empir-
ical results demonstrate the effectiveness of our approch.
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On to Real Applications: Extending the
Current Framework

The framework described so far has many characteristics
that are essential for applications on real problems. These
characteristics include the incremental learning of operators,
and the ability to use partially correct domain knowledge
to solve problems through an integration of planning, plan
repair, execution, and learning. The current framework is
being further extended to deal with other important issues
in real world problems. In this section, we discuss different
possible extensions, such as handling imperfect perceptions
of the states, and dealing with variability in experts as teach-
ing agents.

Imperfect Perception of the States

In real world domains, the perception of the domain is rarely
perfect. Consider the a set of predicates that describe the op-
erators and states. We have thus far assumed all predicates
are directly observable. For example in the process plan-
ning domain (Gil 1991), most predicates, such as SHAPE-
OF, HAS-CENTER-HOLE, etc, are observable. But a sub-
set of the predicates are unobservable, e.g. HOLDING-
WEAKLY. To learn under this circumstance, we assume
that these unobservables are determinable by the system
while it is executing its own plans, but not by observations
of the expert. Take the HOLDING-WEAKLY as an exam-
ple, although the system cannot observe the other agent is
holding weakly or strongly, while it is applying the action
itself, holding-weakly is known to the system, i.e. observ-
able. Another example would be HEAVY. The weight of
an object is not determinable by remote observation, but by
actual manipulation.

Having unobservable facts in the state of the other agent
means that the observed state is a subset of the real state,
and therefore, the operators we learn may miss some pre-
conditions and effects that involve the unobservable facts.
Assuming that these unobservable facts can be determined
in the system’s own state when it is executing plans, these
missing preconditions and effects may be learned as fol-
lows: when an operator is executed by the system during its

practice, if some unobservable facts of the state are present
in the pre-state, or post-state, they can be added to the
preconditions or effects of the operator; or when an oper-
ator fails to execute even though all its preconditions are
satisfied, then the planner knows that it is missing some
preconditions. The system can propose some unobservable
facts as the preconditions of this operator, and add them
to the operator The relevance of the added preconditions
will be determined in later executions and retained or not
accordingly, until a version of the operator that executes
correctly is formulated.

There may also be random noise in the state so that a fact
may be incorrectly observed as true in state when it is not,
or vice versa. To handle such noise, we can have a threshold
for each precondition so that a predicate is removed from
the preconditions only when it is absent from the state more
often than the threshold.

Teaching Agent Variability

While it is important to alleviate the burden on the experts
in the process of knowledge engineering, the variability of
experts as teaching agent affects the speed (e.g. the number
of observations needed to learn the operators) and qual-
ity (e.g. the percentage of unnecessary preconditions in
the learned operators) of knowledge engineering. While in
general it is difficult for the expert to write the exact precon-
ditions and effects of the operators, it is easier for them to
help the learning systems in other ways, such as maximiz-
ing the state diversity in which the operators are applied,
maximizing different ways to solve similar problems etc, as
illustrated roughly in Figure 7.

Teaching Agent Variability

malignant indifference          helpful

communicate more
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(i.e. choose different 
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Figure 7: Teaching agent variability

We are currently exploring the impact of teaching agent
variability in our learning system. We have implemented a
preliminary version of a helpful teacher that increases learn-
ing opportunity by increasing state diversity and by trying
different operators to solve problems. The operators learned
by observation and practice under the helpful teacher have
a higher accuracy in terms of the percentage of unnecessary
preconditions in the learned operators. Because of the noise
in the observations in real world domains, it is especially
critical to explore more helpful teacher in order to reduce
the number of observations needed to learn the operators.
We plan to explore other aspects of helpful teachers, such as
learning control knowledge assuming the experts can tell the
learning system the top level goals that they are achieving.



Related Work and Conclusions

Learning by observation and practice is a for of learning
from the environment (Shen 1994). LIVE (Shen 1994)
is a system that learns and discovers from environment.
It integrates action, exploration, experimentation, learning,
problem solving.

EXPO(Gil 1992) is a learning-by-experimentation mod-
ule for refining incomplete planning operators. Learning is
triggered when plan execution monitoring detects a diver-
gence between internal expectations and external observa-
tions. Our system differs in that: 1) The initial knowledge
given to the two systems is different. EXPO starts with a set
of operators that are missing some preconditionsand effects.
Our system starts with no knowledge about the precondi-
tions or the effects of the operators. 2) EXPO only copes
with incomplete domain knowledge, i.e. over-general pre-
conditions and incomplete effects of the operators, while
our system also copes with incorrect domain knowledge,
i.e. operators with over-specific preconditions. 3) Oper-
ators are learned from general-to-specific in EXPO, while
they are learned from specific-to-general in our system.

Other work on learning from observations:??
Generalizing the preconditions and effects of the opera-

tors is similar to inductive logic programming (ILP), which
constructs quantified definite clause theories from examples
and background knowledge. Efficient algorithms such as
FOIL (Quinlan 1990), GOLEM (Muggleton & Feng 1990)
have been developed within the framework of ILP. Unfortu-
nately, our language for describing operators cannot be rep-
resented using first-order logic. Although the preconditions
of our operators are a subset of first-order logic, both FOIL
and GOLEM learns only a restricted subset of first-order
language that is not sufficient to describe the preconditions
of our operators.

On the planning side, some planning systems do plan
repair (Simmons 1988; Wilkins 1988; Hammond 1986;
Kambhampati 1990). However, all these plan repair sys-
tems use a correct domain model. In our system, on the
other hand, a correct domain model is not available, there-
fore it is necessary to plan and repair plan using incomplete
and incorrect domain knowledge.

In conclusion, we have described a framework for learn-
ing planning operators by observation and practice and have
demonstrated its effectiveness in several domains. In our
framework, operators are learned from specific-to-general
through an integration of plan execution as well as planning
and plan repair with possibly incorrect operators.
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