
Learning approaches for Detecting and Tracking News Events(LaTex version: with minor di�erences from the IEEE-formatted version)Yiming Yang, Jaime Carbonell, Ralf Brown,Tom Pierce, Brian T. Archibald, Xin Liufyiming,jgc,ralf,tomp,ba2e,xliug@cs.cmu.eduLanguage Technologies Institute, Carnegie Mellon University,Pittsburgh, PA 15213-3702, USAAbstractThis paper studies the e�ective use of information retrieval and machine learning techniques ina new task, event detection and tracking. The objective is to automatically detect novel eventsfrom chronologically-ordered streams of news stories, and track events of interest over time. Weextended existing supervised learning and unsupervised clustering algorithms to allow documentclassi�cation based on both information content and temporal aspects of events. A task-orientedevaluation was conducted using Reuters and CNN news stories. We found agglomerative documentclustering highly e�ective (82% in the F1 measure) for retrospective event detection, and single-passclustering with time windowing a better choice for on-line alerting of novel events. We also observedrobust learning behavior for k-nearest neighbor (kNN) classi�cation and a decision-tree approachin event tracking, under the di�cult condition when the number of positive training examples isextremely small.1 IntroductionThe rapidly-growing amount of electronically available information threatens to overwhelm human attention,raising new challenges for information retrieval (IR) technology. Traditional query-driven retrieval is usefulfor content-focused queries, but de�cient for generic queries such as \What happened?" or \What's new?".Consider, for example, a person who just returns from an extended vacation and needs to �nd out quicklywhat happened in the world during her absence. Reading the entire news collection is a daunting task, whilegenerating speci�c queries without any knowledge of recent events is rather unrealistic. Another examplewould be a foreign-policy specialist who wants to study the Asian economic crisis including precursor andconsequent events in the surrounding time period. A keyword-based search on the query \Asian economycrisis" would most likely miss many relevant stories reporting the stock market crashes in Indonesia or Korea,or the banking-sector insolvency problem in Japan, or the stories about Habibi's rise to power in Indonesia.In other words, query-based retrieval is useful when one knows more precisely the nature of the events orfacts one is seeking, and less useful when one wants speci�c information but can only formulate a largercategory-query sharing few if any terms with the potentially most useful texts. In short, retrieval based onimmediate-content-focused queries is often insu�cient for obtaining a variety of relevant stories and trackingthe gradual evolution of events through time.In the examples above, it would be equally di�cult for the user to formulate \the right query" or \theright level of abstraction", or to check through all the stories potentially relevant. It would be desirable foran intelligent system to detect automatically signi�cant events from large volumes of news stories, presentthe main content of events to the user in a summarized form with multiple levels of abstraction, alert theonset of novel events as they happen, and track events of interest based on user-given sample stories. This is1

the goal of a new line of research, namely, Topic Detection and Tracking (TDT) 1. The task is de�ned overchronologically-ordered news stories frommultiple channels of TV/radio broadcasts or newswire sources. Theinput data can be in the form of original or transcribed text, or the output of automated speech recognitionwhich is typically with about 25% to 50% word-recognition error. The TDT problem consists of three majorsub-problems: segmenting speech-recognized TV/radio broadcasts into news stories, detecting events fromunsegmented or segmented news streams, and tracking stories for particular events based on user-identi�edsample stories. Topic in this context is used to mean dynamically changing events, which is di�erent fromthe traditional sense of topic in the literature, as discussed further in Section 2.In this paper we report our work on event detection and event tracking on manually segmented docu-ments only; the CMU work at segmentation has been reported in separate papers[4]. The detection workwas partially reported in a previous paper[33]. Directly related to our work is the on-going research inthe other TDT-member groups, among which UMass and Dragon have published their approaches[1, 2].UMass adapted their benchmark IR systems (InQuery and InRoute) to the TDT problems, using a combi-nation of statistical phrase �nding, part-of-speech tagging, TF-IDF term weighting and a Rocchio clas-si�cation method[2]. Dragon applied speech recognition techniques, including unigram (and later bi-gram) language modeling for event representation and a k-means clustering method for document clas-si�cation. Indirectly related work includes document clustering methods applied to retrieval and cor-pus navigation problems[25, 26, 12, 29, 24, 8, 34], and supervised learning algorithms applied to textcategorization[13, 7, 31, 27]. Those results provide a rich background to our research, but do not directlyaddress the problems of event detection and event tracking in temporal text and audio streams.2 Event AnalysisBefore exploring the solution space, let us observe the properties of events in news stories, which may shedlight on what makes event detection and tracking a new challenge to traditional information retrieval andmachine learning technology.The TDT1 corpus, developed by the researchers in the TDT Pilot Research Project, is the �rst bench-mark evaluation corpus for TDT research2 . Table 1 shows the 25 events manually identi�ed in this corpus.TDT1 consists of 15,863 chronologically-ordered news stories spanning the period from July 1, 1994 to June30, 1995. Roughly half of these stories are randomly sampled Reuters articles, and the other half are CNNbroadcasts which were manually transcribed by the Journal Graphics Institute (JGI). The event identi�ca-tion process consists of randomly sampling from the corpus, de�ning the events discussed in the sampledstories, and making exhaustive relevance judgements for each of those events. Each story was assigned alabel of YES, NO or BRIEF with respect to each of the 25 events. YES indicates that the article focuseson a particular event, while BRIEF indicates that the article mentions the event in passing, but does notdiscusses it as a major focus. Note that this process resulted in only a subset of the existing events in thecorpus, and that the random sampling made larger events (those reported more often) to be more likely tobe included, compared to smaller events.There is a di�erence between an event, as speci�ed in the TDT problems, and a topic in the conventionalsense. An event identi�es something (non-trivial) happening in a certain place at a certain time. For example,USAir-427 crash is an event but not a topic, and \airplane accidents" is a topic but not an event. One couldthink events as instances of topics, associated with certain actions. In event detection and tracking, thesedistinctions must be drawn automatically by the system. Another interesting characteristic of news-story1The Topic Detection and Tracking research was initiated and supported by the U.S. Government since 1996.Three research groups participated the TDT Pilot Research Project (1996-1997), including Carnegie Mellon University(CMU), the University of Massachusetts at Amherst (UMass) and Dragon Systems Corporation (Dragon). A muchlarger number of research groups participates in the current TDT Project, Phase-2 (TDT2, 1998-1999), includingCMU, UMass, Dragon, UPenn, IBM, BBN, SRI, etc.2The TDT1 corpus is made available recently via the Linguistic Data Consortium (LDC). Larger and richercorpora (TDT2 and TDT3) have been and continue to be developed by the LDC { see www.ldc.upenn.edu/TDT. Inthis paper, we report our experiments on the TDT1 corpus only.2

events is that they are often associated with news bursts. Figures 1 and 2 illustrate the temporal histogramsof a few events, where the X-axis of each graph is time (numbered from day 1 to 365), and the Y-axis is thestory count per day. Figure 2 shows the histograms of all the 25 events in TDT1.Several patterns emerged from our observations of temporal event distributions:� News stories discussing the same event tend to be temporally proximate, suggesting the use of a combinedmeasure of lexical similarity and temporal proximity as a criterion for document clustering.� A time gap between bursts of topically similar stories is often an indication of di�erent events (e.g.,di�erent earthquakes, airplane accidents, political crises, etc.). This suggests that monitoring clusterevolution over time is necessary and that using a time window to restrict the temporal extent of anevent would be bene�cial.� A signi�cant vocabulary shift and rapid changes in term frequency distribution are typical of storiesreporting a new event, indicating the importance of dynamically updating the corpus vocabulary andstatistical term weights. A timely recognition of new patterns, including previously unseen proper namesand proximity phrases, in the streams of stories is potentially useful for detection of the onset of a newevent.� Events are typically reported in a relatively brief time window (e.g. 1-4 weeks) and contain fewer reportsthan broader topics. Hence we need learning methods that require few positive training examples toachieve satisfactory tracking performance, and that can exploit the temporal decay inherent in reportingof events.3 Event Detection MethodsEvent detection is a unsupervised learning task, sub-divided into two forms. One is retrospective detection,which entails the discovery of previously unidenti�ed events in an chronologically-ordered accumulation ofdocuments (stories). The other is on-line detection, where the goal is to identify the onset of new events fromlive news feeds in real-time. Both forms of detection intentionally lack advance knowledge of novel events,but may have access to unlabelled historical news stories for use as contrast sets.Given that each event is usually discussed by multiple news stories, document clustering appears to be anatural approach to event discovery. We implemented two clustering methods: a divide-and-conquer versionof a Group-Average Clustering (GAC) algorithm [29], and a single-pass incremental clustering algorithm(INCR). GAC is for agglomerative clustering, resulting in hierarchically organized document clusters. It isdesigned for batch processing, and has been used for retrospective detection. INCR is designed for sequentialprocessing, and has been used for both retrospective detection and on-line detection. INCR results in a non-hierarchical partition of the input collection.
0

5

10

15

20

0 50 100 150 200 250 300 350

Oc
cu

ra
nc

es

Days (7/1/94 - 6/30/95)

Serbs violate Bihac
Serians down F-16Figure 1: Histogram of Serbian-related events 0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350

Oc
cu

ra
nc

es

Days (7/1/94 - 6/30/95)

NYC Subway bombing
OK-City bombingFigure 2: Histogram of bombing-related events3

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Aldrich Ames

"evY1.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Carlos the Jackal

"evY2.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Carter in Bosnia

"evY3.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Cessna on White House

"evY4.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Clinic Murders (Salvi)

"evY5.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Comet into Jupiter

"evY6.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Cuban riot in Panama

"evY7.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Death of Kim Jong Il (N. Korea)

"evY8.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

DNA in OJ trial

"evY9.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Haiti ousts observers

"evY10.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Hall’s copter (N. Korea)

"evY11.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Humble, TX, flooding

"evY12.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Justice-to-be Breyer

"evY13.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Karrigan/Harding

"evY14.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Kobe Japan quake

"evY15.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Lost in Iraq

"evY16.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

NYC Subway bombing

"evY17.dat"

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

OK-City bombing

"evY18.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Pentium chip flaw

"evY19.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Quayle lung clot

"evY20.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Serbians down F-16

"evY21.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Serbs violate Bihac

"evY22.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

Shannon Faulker

"evY23.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

USAir 427 crash

"evY24.dat"

0

5

10

15

20

0 50 100 150 200 250 300 350

O
c
c
u

ra
n

c
e

s

Days (7/1/94 - 6/30/95)

WTC Bombing trial

"evY25.dat"

Figure 3: Histograms of the 25 TDT events4

EventID Count StartTime Name1 8 94-02-22 Aldrich Ames2 10 94-08-15 Carlos the Jackal (his capture)3 34 94-12-25 Carter in Bosnia4 14 94-09-12 Cessna on White House5 41 94-12-30 Clinic Murders (Salvi)6 45 94-07-16 Comet into Jupiter7 2 94-12-08 Cuban riot in Panama8 58 94-07-08 Death of Kim Jong Il (N. Korea)9 114 94-07-?? DNA in OJ trial10 12 94-07-11 Haiti ousts observers11 97 94-12-17 Hall's copter (N. Korea)12 22 94-10-19 Humble, TX,
ooding13 8 94-07-12 Justice to be Breyer14 2 94-01-06 Karrigan/Harding15 84 95-01-17 Kobe Japan quake16 44 95-03-13 Lost in Iraq17 24 94-12-21 NYC Subway bombing18 273 95-04-19 OK City bombing19 4 94-11-22 Pentium chip
aw20 12 94-11-29 Quayle lung clot21 65 95-06-02 Serbians down F-1622 91 94-11-11 Serbs violate Bihac23 7 94-07-22 Shannon Faulkner24 39 94-09-08 USAir-427 crash25 22 95-01-09 WTC Bombing trialTable 1: Events in the TDT1 Corpus3.1 Cluster RepresentationOur clustering algorithms are rooted in the conventional vector space model[23] and traditional clusteringtechniques in information retrieval[8, 25, 29]. Each document is represented using a vector of weighted termswhich can be either words or phrases. For term weighting we use a standard version (\ltc") of the TF-IDFscheme 3 : w(t; d) = (1 + log2 tf(t; d))� log2(N=nt)k~dkwhere w(t; d) is the weight of term t in document d;tf(t; d) is the within-document term frequency (TF);log2(N=nt) is the Inverted Document Frequency (IDF);N is the size of the training corpus used to compute IDF;n(t) is the number of training documents where term t occurs;k~dk =pPtw(t; d)2 is the 2-norm of vector ~d.3TF-IDF based term weighting has been intensively studied in the IR literature. The implementation of thestandard versions (more than a dozen) are provided in the SMART benchmark retrieval system (developed at Cornell).We tested a few common options and found the ltc option yielded the best detection results in our limited experiments.This does not mean that ltc is the best possible term weighting scheme for document clustering or for event detection.Finding the best term weighting scheme is an open research question at the current stage.5

As for cluster representation, a prototype vector (also called the centroid of the cluster) is obtained bysumming the vectors of the member documents and selecting the k most signi�cant terms per prototype.Each document is treated as an initial cluster with a single member. To measure the distance between twoclusters, we use the standard cosine similarity, i.e., the cosine value of the two prototype vectors.A modi�cation we made to standard TF-IDF term weighting is to use adaptive IDF instead of staticIDF. Since new stories arrive continuously, how should we deal with the new vocabulary from incoming doc-uments and update the corpus-level IDF statistics (which impact term weighting and vector normalization)?Related work shows that incremental IDF can be e�ectively used for document retrieval after a su�cientnumber of \past" documents have been processed[5]. For on-line event detection, we used a retrospectivecorpus (e.g., a six-month collection of CNN news stories prior to the TDT1 corpus) to compute the initialIDF values, and then incrementally update them with each incoming document. The incremental version ofthe IDF is de�ned to be: IDF (t; p) = log2(N (p)=n(t; p))where p is the current time point, N (p) is the number of accumulated documents up to the current point(including the retrospective corpus if used), and n(t; p) is the document frequency of term t at time p. Theincremental IDF is used in our on-line event detection and tracking systems. For retrospective detection, onthe other hand, the static IDF trained on the entire TDT corpus is used.3.2 Group-average-based hierarchical clusteringGACmaximizes the average similaritybetween document pairs in the resulting clusters by merging clusters ina greedy, bottom-up fashion[25, 29]. Straightforward GAC algorithms typically have a complexity in time andspace quadratic to the number of input documents, which is less economical or tractable for large applicationsthan simpler methods, such as single-link clustering or single-pass k-mean clustering. This problem wasaddressed by Cutting et al. [8] using a divide-and-conquer strategy (referred to as \fractionation") whichachieves a compromise between cluster quality and computational e�ciency. It grows clusters iteratively;in each iteration, the current pool of clusters is divided into evenly-sized buckets, and GAC is applied toeach bucket locally, merging smaller clusters into larger ones. We implemented this fractionation algorithmwith GAC locally applied, and refer this approach as \GAC" in this paper if not otherwise speci�ed. Thisalgorithm has a time complexity of O(mn) where n is the number of documents in the input corpus, m isthe bucket size, and m � n.The bucketing strategy is particularly well-suited for the event detection problem; we found that buck-eting stories based on the order that they are reported produces gains not only in computational e�ciency,but also improves the cluster quality and indeed the detection e�ectiveness. In other words, this strategygives a higher priority to grouping temporally-proximate stories rather then temporally disparate ones.The input to our algorithm is a collection of documents sorted in chronological order, and a set of user-speci�ed parameters (see the Steps below). The output is a forest of binary trees of clusters. The algorithmconsists of the following steps:1. Treat each document in the input collection as a singleton cluster, and set the initial partition to be thefull set of the singleton clusters.2. Divide the current partition into non-overlapping and consecutive buckets of size m (a user-speci�edparameter).3. Apply GAC to each bucket, which repeatedly combines the two closest lower-level clusters into a higherlevel cluster, until the number of clusters in the bucket is reduced by a factor of � (a user-speci�ed pa-rameter), or if all the similarity scores between two clusters are below a pre-selected clustering threshold(another user-speci�ed parameter).4. Remove the bucket boundaries (assemble all the GAC clusters) while preserving the time order of theclusters. Use the resulting cluster series as the updated partition of the corpus.6

5. Repeat steps 2-4, until the size of the partition is no larger than m, or stops being reduced due to theminimum similarity constraint.6. Periodically (once per k iterations in Step 5) re-cluster the stories within each of the top-level clusters,by
attening the component clusters and re-growing clusters internally from the leaf nodes.The temporal-bucketing and re-clustering are our modi�cation to Cutting's algorithm. Re-clustering is useful when events straddle the initial temporal-bucket boundaries, or when the bucketingcaused non-desirable grouping of stories about di�erent events. Re-clustering reduces the systematic bias ofthe initial bucketing, at a cost of increased computation time.3.3 Single-pass clusteringThe INCR algorithm is straightforward. It sequentially processes the input documents, one at a time,and grows clusters incrementally. A new document is absorbed by the most similar cluster in the past ifthe similarity between the document and the cluster is above a pre-selected clustering threshold (tc);otherwise, the document is treated as the seed of a new cluster. By adjusting the threshold, one can obtainclusters at di�erent levels of granularity. Suitable choice of clustering threshold, therefore, is important forthe e�ectiveness of retrospective event detection where the granularity levels of document clusters shouldmatch the concepts of events.For the application of INCR to on-line event detection, we introduced an additional threshold, namely,the novelty threshold (tn). If the maximal similarity score between the current document and any clusterin the past are below the novelty threshold, then this document is labelled as \NEW", meaning that it isthe �rst story of a new event; otherwise a
ag of \OLD" is issued. By tuning the novelty threshold, one canadjust the sensitivity to novelty in on-line detection.Both the clustering threshold and the novelty threshold are user-speci�ed parameters to INCR. Thechoice for one threshold is independent of the choice for the other. Using both thresholds permits betterempirical optimization for di�erent tasks. For instance, we found that setting tc = tn is appropriate forretrospective clustering (i.e., tn is not needed), but for on-line detection choosing tc =1 is better (i.e., notgrowing any clusters).Another functionality we added to INCR is the time penalty in documents clustering. The simplestway is to use a uniformly weighted time window. Given the current document (x) in the input stream toINCR, we impose a time window of m documents prior to x, and de�ne the modi�ed similarity between xand any cluster (c) in the past to be:sim(~x;~c)0 = � sim(~x;~c) if c has any member-document in the time window;0 otherwise.Alternatively, we can introduce a linear decaying-weight function in the above formula:sim(~x;~c)0 = � (1� im)� sim(~x;~c) if c has any member-document in the time window;0 otherwisewhere i is the number of documents between document x and the most recent member-document in clusterc. The decaying-weight function makes a smoother use of the temporal proximity, compared to using auniformly weighted window4. These windowing strategies yielded measurable and consistent improvementsin our event detection experiments, enhancing precision with only a small sacri�ce in recall, compared tonot using time penalty.4For simplicity we only de�ne a linear function for the decay weighting; however, it is easy to generalize thisde�nition to a more elaborate form if necessary, such as the interpolated decay pro�le extracted from an earlierdevelopment or training corpus. 7

In addition to the binary (New or Old) prediction, a score is also computed for each incoming document,indicating the how new this document is as measured by the system. This score is de�ned to be:score(x) = 1� argmaxc fsim(x; c)0gwhere x is the currently new document and c is any cluster in the past. The scores of documents are used forevaluating the potential trade-o� between di�erent types of errors. That is, by adjusting the threshold onthese scores for binary decisions, one can obtain the trade-o� curve between recall and precision, or betweenmiss and false alarm (refer to Section 4.3 for more details).4 Event Detection Evaluation4.1 Examples of Resulting ClustersTable 2: Clusters generated by GAC on TDT1 Corpus, Jan-Feb 1995 SubsetDocuments included Top-ranking Words (stemmed)330 republ clinton congress hous amend217 simpson o prosecut trial jury98 israel palestin gaza peac arafat97 japan kobe earthquak quak toky93 russian chech chechny grozn yeltsin56 somal u mogadishu iraq marin55
ood rain californ malibu rive48 serb bosnian bosnia croat u35 game leagu play basebal season33 crash airlin
ight airport passeng28 clinic sav abort massachuset norfolk27 shuttl spac astronaut mir discov26 patient drug virus holtz infect24 chin beij deng trad copyright...Table 2 shows a corpus summary obtained by applying our hierarchical clustering algorithm (GAC)to a few thousand news stories, i.e., CNN news and Reuters articles from January to February in 1995,and by presenting a few top-ranking terms for each cluster. As the table shows, domestic politics reignedsupreme as usual, the OJ trial received media attention in early 1995, etc. However, the table also revealsthat disasters struck Kobe Japan and Malibu California, and unrest in Chechnya has
ared up again, eventswhich were not present the months before. The key terms provide content information, and the story countsimply signi�cance, as measured by media attention. New multi-document summarization methods [6, 14]applied to the clusters provide additional information as to the nature of the events. And, if further detailis desired, the clusters, sub-clusters, and individual documents can be examined via query-driven retrieval.The utility of summarization and cluster-based browsing tools is evident from our prototypes, even thoughsome clusters may be imperfect and the current user interface is rudimentary.Figures 3-6 show the temporal distributions of two events, The upper half of each graph is the histogramof human-labeled documents for an event; the lower half is the histogram of the system-generated cluster forthe same event. The absolute value on the Y-axis is the story count for the event or cluster in a particularday. If an event and a cluster are a perfect match, then their histograms will completely mirror each other.As the �gures show, GAC and INCR have complementary strengths and weaknesses. GAC showsalmost symmetric graphs for most events, except those with signi�cant temporal extent, and thereforeit is particularly suitable for recognition of news bursts. INCR, on the other hand, has less symmetric8

-40

-20

0

20

40

0 50 100 150 200 250 300 350

Oc
cur

anc
es

Days (7/1/94 - 6/30/95)

Event OK City bombing

Cluster by GAC with bucketingFigure 3: Event OK City bombing vs GAC-cluster -40

-20

0

20

40

0 50 100 150 200 250 300 350

Oc
cur

anc
es

Days (7/1/94 - 6/30/95)

Event OK City bombing

Cluster by INCRFigure 4: Event OK City bombing vs INCR-cluster
-8

-6

-4

-2

0

2

4

6

8

0 50 100 150 200 250 300 350

Oc
cur

anc
es

Days (7/1/94 - 6/30/95)

Event DNA in OJ trial

Cluster by GAC with bucketingFigure 5: Event DNA in OJ trial vs GAC-cluster -8

-6

-4

-2

0

2

4

6

8

0 50 100 150 200 250 300 350

Oc
cur

anc
es

Days (7/1/94 - 6/30/95)

Event DNA in OJ trial

Cluster by INCRFigure 6: Event DNA in OJ trial vs INCR-clusterperformance compared to GAC, but is better at tracking long-lasting events (e.g. DNA in O.J. trail andOK City bombing). The observed behavior may come partly from the di�erent biases in these algorithmsand partly from the parameter settings in the particular experiments.4.2 Retrospective Detection ResultsThe TDT1 evaluation in 1998 is the �rst controlled study[1] where comparative results are available. There-fore we use that evaluation as a reference for the results presented here. The entire TDT1 corpus was used asthe test set for evaluating detection systems, although it would be preferable if an additional cross-validationcorpus were available for setting global system parameters. Nevertheless, since detection is an un-supervisedclassi�cation task which does not involve labeled training data, there was no contamination of the test datain that sense, except possibly with respect to setting a handful of system parameters. Subsequent work inprogress on independently developed TDT2 corpora indicate that the parameter values can be e�ectivelychosen using a retrospective corpus and cross validation. For example, we found that the clustering thresholdoptimal on the TDT1 corpus for on-line event detection is nearly optimal on the TDT2 corpus.Each detection system was run on the entire corpus of TDT1, resulting in system-generated clusterswhich are either a partition of the corpus (i.e., no overlapping stories between clusters), or a forest ofhierarchies (overlapping stories between clusters are allowed). Recall that there are 25 human-labeled events(consisting of 1131 stories; about 7% of the total stories). Each system was evaluated using the 25 clustersthat best matched the 25 manually-labeled events. The goodness of matching between each cluster/labeled-event pair was evaluated using a contingency table, as shown in Table 35.Performance measures are de�ned using the contingency table:5Note that there are more events in the TDT1 corpus beyond the 25 labelled ones; also, there are more than 25clusters generated by each detection system. However, the match between clusters and events beyond the 25 cluster-event pairs was not measured in the evaluation. I.e. the system detected many potential events, but it was onlyevaluated on a subset of the system-generated clusters which best matched the manually-labelled events. The factthat there are many clusters corresponding to other potential events suggests a natural usage of a detection system,i.e., as a browsing support to the user for the navigation through the event space. Although we expect hierarchicalclustering to be a suitable choice for navigation support, how to evaluate the practical impact of various kinds ofnavigation support requires future research. 9

Table 3: Per-event contingency tablein event not in eventin cluster a bnot in cluster c dTable 4: Retrospective detection resultsPartition required Cluster overlap allowedCMU UMass Dragon CMU UMass(INCR) (no-dupl) (multi-pass) (GAC) (dupl)micro-avg Recall (%) 62 34 61 75 73micro-avg Precision (%) 82 53 69 90 78micro-avg Miss (%) 38 66 39 25 27micro-avg False Alarm (%) .04 .09 .08 .02 .06micro-avg F1 .71 .42 .65 .82 .75macro-avg F1 .79 .60 .75 .84 .81� Miss m = c=(a+ c) if a+ c > 0, otherwise unde�ned;� False Alarm f = b=(b+ d) if b+ d > 0, otherwise unde�ned;� Recall r = a=(a+ c) if a+ c > 0, otherwise unde�ned;� Precision p = a=(a+ b) if a+ b > 0, otherwise unde�ned;� F1 = 2rp=(r+ p) = 2a=(2a+ b+ c) if (a+ b + c) > 0, otherwise unde�ned.where F1, originially de�ned by van Rijsbergen[25], is the harmonic mean of recall and precision.In order to measure global performance, two averaging methods are used. The micro-average is obtainedby merging the contingency tables of the 25 events (by summing the corresponding cells), and then usingthe merged table to produce global performance measures. The macro-average is obtained by producing per-event performance measures �rst, and then averaging the corresponding measures. The former introducesa scoring bias towards frequently-reported events, and the latter towards less-reported ones, hence bothmeasures are given to minimize the e�ect of hidden bias.Table 4 summarizes the retrospective-detection results. Tables 5 and 6 provide the parameter settingsin the two CMU detection systems: GAC and INCR. For comparison, we indlude the results for approachesdeveloped at theUniversity of Massachusetts (temporal-TF based event detection and agglomerative cluster-ing) and by Dragon systems (multipass k-means clustering)[1]. Algorithms that permit cluster hierarchies(GAC) or potentially-overlapping clusters (dupl) performed better than non-hierarchical algorithms whichadhere to the strict partition requirement.In the results of the partition-producing algorithms, we were surprised that the simplest approach { thesingle-pass clustering by INCR { worked as well as the multi-pass k-means clustering method by Dragon.This may be partly because of the temporal proximity of events which simpli�es the clustering problem. Wefound time windowing highly e�ective for the performance of INCR; with other parameters �xed, using awindow of 2000 documents (covering about 1.5 months of time) improved the performance score from 0.64to 0.70 in the F1 measure, versus no time window.The better results obtained by hierarchical clustering (CMU's GAC) or overlapping clustering (UMass'sdupl) is less surprising. We believe the main reason for the better results of GAC is the multi-leveled clusterswhich enable the detection of events at any degree of granularity. This representational power of GAC comes10

Table 5: Parameters used in retrospective GACbucket size = 400clustering threshold = .2terms per vector = 100term weighting = ltcreduction factor � = 0.5# of iterations between re-clustering = 5 Table 6: Parameters used in retrospective INCRwindow size = 2000clustering threshold = .23terms per doc vector = 125term weighting = ltcwith the cost of producing a larger number of clusters (about 12,000 in this particular run), than the numberof clusters (5,907) in the partition by INCR. The increase in the number of clusters may not add a signi�cantburden to the end user in scatter-gather navigation or query-driven retrieval[8, 15], where only a small subsetof the clusters would actually be visited by the user via selected paths on the hierarchy.4.3 On-line Detection ResultsOnline detection performance is evaluated using a contingency table as shown in Table 7. Since there are only25 events de�ned, and each event has only one �rst story, the total number of true New stories is 25 for theentire corpus. This is too small a number for a statistically reliable estimation of performance. To improvethe reliability, an 11-pass evaluation was conducted. The �rst pass used the entire corpus; the second passused the modi�ed corpus after removing (\skipping") the �rst story of each event; the third pass used themodi�ed corpus after removing the �rst two stories of each event, and so on. The eleven passes are labeled asNskip = 0; 1; : : : ; 10. A contingency table was computed for each value of Nskip; a global contingency tablethen was obtained by summing the corresponding cells in the per-Nskip contingency tables. Performancescores were derived from those contingency tables in the same way as described for retrospective detectionevaluation. Table 7: On-line detection contingency tableNew is true Old is truePredicted New a bPredicted Old c dTable 8 summarizes the o�cial TDT1 results, including those by UMass and Dragon for on-line detection.Both CMU and UMass conducted multiple runs with di�erent parameter settings in the TDT workshop[1];here we present the best result for each site with respect to the F1 measure. A possible reason for thesigni�cantly higher F1 scores by UMass and CMU over those by Dragon is that both UMass and CMUchose to use individual documents instead of clusters to represent the past in on-line detection; Dragon, onthe other hand, grew clusters instead6. Keeping individual documents without clustering them makes thenovelty test more di�cult for the current story to pass, because this story must be su�ciently di�erent fromall of the past stories, a stronger condition compared to being di�erent from an average of past stories.In addition to the scores presented in Table 8, a Detection-Error Tradeo� (DET) curve[19] is also usedto evaluate each on-line detection system in the TDT evaluation. A DET curve is de�ned to be the sequenceof interpolated values in the false-alarm/miss space, and is obtained by retrospectively thresholding on thesystem-generated scores for individual documents. At a particular threshold, any document with a scoreabove the threshold is labelled as New, and Old otherwise. This process results in a set of performance6UMass used a single-pass algorithm to compare a new document with all the past documents, which is similarto our INCR; Dragon used a single-pass version of their k-means clustering method for on-line detection. Multi-passclustering cannot be used for on-line detection because, by the task de�nition, future knowledge is not available atthe decision making point. 11

Table 8: On-line event detection resultsCMU UMass Dragonmicro-avg Recall (%) 50 49 42micro-avg Precision (%) 37 45 21micro-avg Miss (%) 50 51 58micro-avg False Alarm (%) 1.89 1.31 3.47micro-avg F1 .42 .47 .28 Table 9: Parameters used in on-line INCRwindow size = 2500 linear decayclustering threshold = 1novelty threshold = .16terms per vector = no limitterm weighting = ltcIDF = adaptive** initially trained on a retrospective corpus
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n
(n

on
-in

te
rp

ol
at

ed
)

Recall

CMU (INCR)
UMass (100 Terms)

Figure 7: On-line detection Recall-Precision curves 1

 2

 5

 10

 20

 40

 60

 80

 90

 .01 .02 .05 0.1 0.2 0.5 1 2 5 10 20 40 60 80 90

Mi
ss

 Pr
ob

ab
ility

 (in
 %

)

False Alarm Probability (in %)

random performance
CMU (INCR)

UMass (100 term)
DRADON (1 pass)

Figure 8: On-line detection DET curvesscores such as those in Table 8 for each threshold value. By changing the threshold value and interpolatingthe corresponding miss and false-alarm values, one can observe the trade-o� between them (Figure 8). EachDET curve axis (miss and false-alarm) is scaled to a Gaussian (thereby compressing the midrange andexpanding the extremes) so that a "random"-decision plot is a straight line passing through the 50%-50%error point. As an alternative to DET curves, one can also plot the corresponding non-interpolated recalland precision (Figure 7). In these curves, the CMU results show better performance at the high precisionarea. As is especially evident in Figure 7, the CMU, UMass and Dragon approaches exhibit very di�erentbehaviors, inviting further detailed investigation. Note the recall-precision curves are, in IR terminology[10],non-interpolated, and exhibit the typical non-monotonic behavior as analyzed in [23].5 Event Tracking MethodsEvent tracking is a supervised learning task, aiming to automatically assign event labels to news stories at thetime they arrive based on a small number of previously identi�ed past stories that de�ne the event. Adaptivelearning is needed due to the dynamic nature of events, i.e., they start at certain time points and trail o� aftera while. Making �ne distinctions between topically related events is another task-speci�c requirement; forexample, NYC Subway bombing and OK City bombing should be identi�ed as di�erent events. Moreover,quick learning is highly desirable, which means that the classi�er needs only a small number of positivetraining examples per event in order to achieve satisfactory tracking performance. We found that two well-known learning methods, i.e., k-Nearest Neighbor (kNN) classi�cation and a Decision-Tree Induction (d-tree)well suited to this task, after some extensions to the standard algorithms.The kNN algorithm uses the same document representation used for event detection, i.e., a document isrepresented as a bag of terms with statistical weights. The decision tree algorithm, on the other hand, usesbinary term weighting only (1 for terms present and 0 for terms absent).12

5.1 K-Nearest Neighbor Classi�cation (kNN)kNN is an instance-based classi�cation method well-known in in pattern recognition[9] and machinelearning[21], and has been applied to text categorization (TC) since the early stages of the research[20, 30, 16].It has been used as a baseline in recent TC comparative research on the benchmark Reuters corpus ofnewswire stories, where the top-performing methods include kNN and the Linear Least Squares Fit mappingby Yang et al.[31], Generalized Instance Sets by W. Lam et al.[18], decision trees with boosting by Weisset al.[27], Support Vector Machines by Joachims[17, 11], and neural networks by Wiener et al. [28] Othermethods that performed less well in TC include Naive Bayes classi�ers, decision trees without boosting, andrule induction algorithms[31, 32]. We chose kNN for event tracking because, in addition to its generallygood performance, it makes the fewest assumptions about terms, stories and optimal decision surfaces forthe tracking task.A requirement in o�cial TDT evaluations is that each event be tracked independently, without anyknowledge about other events. That is, for each particular event, the training stories are labelled eitherYES, NO or Brief; no event labels are given for the negative stories. According to this constraint, weadapted our conventional M -ary classi�cation kNN (developed for text categorization in general)[30, 31]to the binary classi�cation problem of event tracking. We trained a speci�c kNN classi�er for each event.The system converts an input story into a vector as it arrives and compares it to the training stories (seeSection 6 for the training-set construction), and select the k nearest neighbors based on the cosine similaritybetween the input story and the training stories. The con�dence score for a YES prediction on the inputstory is computed by summing the similarity scores for the positive and negative stories respectively in thek-neighborhood, and taking the di�erence between the two sums:s1(Y ESj~x) =P~d2P (x;k) cos(~d; ~x)�P~d2N(x;k) cos(~d; ~x)where ~x is the input story;P (x; k) is the set of positive training stories in the k-neighborhood;N (x; k) is the negative training stories in the k-neighborhood.Binary decisions are obtained by thresholding locally on the con�dence scores generated by each event-speci�c classi�er. Our experiments showed good results (Section 6) for kNN in making binary decisions whenthreshold at the zero value of the con�dence score. However, when moving the threshold beyond that point,we foundthat it resulted in a somewhat unsatisfactory DET curve. More speci�cally, it has di�culty gaininga high recall without sacri�cing precision signi�cantly. The reason, we believe, is that the positive examplesare extremely sparse (for most events) in the training set, and therefore often \blocked away" by denselypopulated negative examples. One solution to this problem is to discount the in
uence of negative examplesby sampling a small portion in the k-neighborhood, and ignoring the remaining one. This idea leads to amodi�ed version of kNN; for distinction, we refer to the original version as kNN-a, and the modi�ed versionas kNN-b. In the modi�ed version, we take k1 (� k) nearest positive examples (P (x; k1)) and k2 (� k)nearest negative examples (N (x; k2)) from the k-neighborhood, and average the similarity scores of the twosubsets respectively. The con�dence score for a YES prediction on the input story is de�ned to be:s2(Y ESj~x) = 1k1 X~d2P (x;k1) cos(~d; ~x) � 1k2 X~d2N(x;k2) cos(~d; ~x)By introducing the parameters k1 and k2 in addition to k, and by suitably choosing the parametervalues, we can e�ectively adjust the DET behavior of our tracking system. In principle, these parameterscan be empirically tuned based on the optimization of event tracking on a validation collection of stories. Inreality, when only a very small number of positive examples are identi�ed for an events, one would not want touse these positive examples for validation instead of training. The o�cial event tracking evaluation restrictedthe number (Nt) of positive training examples per event to be 1, 2, 4, 8 and 16, respectively(Section 6).13

Under such an condition, we used a rule of thumb for determine the values of our parameters:in kNN-a: k = minfNt; 5gin kNN-b: k1 = minfP (x; 100); Ntg; k2 = minfN (x; 100); 16gAnother heuristic we used in event tracking is a time window. That is, any test story which is k-storiesaway from the last positive training example is assigned a NO decision. We empirically set the window sizeto 1800-2000 stories (about 1.5 months worth of data), based on the common sense that most events last nolonger than one or two months, and on the observation that a 1.5-month window is close to optimal for theon-line detection task discussed earlier.5.2 Decision TreesDecision trees are classi�ers built based on the principle of a sequential greedy algorithm which at eachstep strives to maximally reduce system entropy[21, 22]. Decision trees are constructed by selecting thefeature with maximal information gain (IG) as the root node, and dividing the training data according tothe values of this feature; then for each branch �nding the feature which maximizes information gain overthe training instances for that branch, and so on recursively. We chose d-trees as an alternative approach tokNN for TDT tracking because it represents a very di�erent technology, and one with relatively reasonableperformance in text categorization evaluations on the benchmark Reuters collection[3, 27]. One potentialdisadvantage of d-trees is that, unlike kNN, they cannot generate a continuously varying tradeo� betweenmiss and false alarm, or recall and precision.We developed our own d-tree method, rather than using C4.5[22] primarily because we wanted a versionthat is fast, scalable. and easily tunable for text categorization, though not necessarily optimized for othermachine learning tasks, and without extra features such as C4.5's rules-from-trees option. Training 25decision trees (one per event tracked) each with up to 15,000 stories requires less than two minutes inaggregate on a standard 300 MHz Sun Ultra II. We use the same information gain metric (minimizing totalentropy) and greedy root-to-leaves d-tree construction as in C4.5. The primary tunable parameters are:1. minimal number of training instances at leaf node2. percentage of positive instances at leaf node3. whether or not to use word roots/stems instead of surface forms4. whether or not do distinguish between single and multiple occurrences of a word in a document5. size of time window for training data (�xed or adaptive)6. limit on positive or negative training examples7. limit features to top N (e.g. top 1000) by global information gain8. single feature nodes (as in C4.5) vs m-of-n feature decisionsThese parameters are tuned by cross-validation. Some parameters, such as the time window, make asigni�cant di�erence. Performance is optimized by using only the most recent 1.5 to 2 months training data.Other parameters such as stemming, or using only the top-N features make only a small di�erence in overallperformance. 14

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

M
icr

o-
av

g
F_

1

Nt value

DTree
kNN-a

Figure 9: Micro-averaged learning curves of eventtracking systems 0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

M
ac

ro
-a

vg
 F

1

Nt value

DTree
kNN-a

Figure 10: Macro-averaged learning curves of eventtracking systems6 Event Tracking Results6.1 Tracking results on TDT1The event tracking systems were evaluated using Nt positive training examples plus all available negativeexamples, where Nt takes on values 1, 2, 4, 8, and 16, respectively. For each event and a particular Nt value,the TDT1 corpus was split at the point right after the Nt-th positive example of that event; the storiesbefore that split point were used for training, and the remaining stories were used for testing. Fifteen ofthe 25 events have more than 16 YES stories 7; those were used for event tracking evaluation. Each systemwas tested on all the pairs (15� 5) of training/test sets, resulting in 75 two-by-two contingency tables (forthe cases of the predicted YES or NO versus the true YES or NO given an event). The micro-averaged andmacro-averaged performance scores were computed from the 75 contingency tables. The results are shownin Table 10.Table 10: Event tracking results: performance averaged over all events and all Nt = 1,2,4,8 and 16.Classi�er kNN-a d-tree UMass (RF-10T) Dragonmicro-avg Recall (%) 89 80 64 65micro-avg Precision (%) 44 50 51 30micro-avg Miss (%) 56 50 36 70micro-avg False Alarm (%) .04 .08 .39 .10micro-avg F1 .59 .61 .57 .41macro-avg F1 .62 .53 .63 .42To observe the learning behavior of kNN-a and d-tree with respect to the number of positive trainingexamples, we present in Figure 9 the interpolated curves of the micro-averaged F1 values. Figure 10 showsthe corresponding curves for the macro-averaged performance. We see that both methods work reasonablywell with the small Nt values. Interestingly, d-tree is not as good as kNN when Nt = 1 or 2; also, its curveasymptotes at Nt = 8. Our interpretation of this kind of behavior is that d-trees select only a few \good"features, but they (over)generalize quickly. This proves to be problematic when the input data is noisy asevidenced by the speech-recognition-result discussed below. On the other hand, kNN is based on the localtraining examples surrounding a test story, but uses all the terms in those stories as features.15

 1

 2

 5

 10

 20

 40

 60

 80

 90

 .01 .02 .05 0.1 0.2 0.5 1 2 5 10 20 40 60 80 90

M
is

s
P

ro
ba

bi
lit

y
(in

 %
)

False Alarm Probability (in %)

random performance
DTree
kNN-a
kNN-b

Figure 11: Detection Error Trade-o� (DET) curves of d-trees and kNN6.2 Trade-o� improvementTo investigate the trade-o� potential, we evaluated the false-alarm and miss rates of kNN-a and kNN-b whenvarying the decision thresholds on their con�dence scores. Decision thresholding was applied locally withineach event-speci�c kNN in the experiment with a �xed value of Nt. This resulted in 75 local DET curvesper system for the 15 events and 5 Nt values in total. To observe the trade-o� in average, we divided therange of false alarm into 5000 evenly-sized intervals, computed the average miss rate within each interval atthe per-event and per-Nt basis, and then averaged these averages over events. Finally, we interpolated theresulting points in all the intervals. Figure 11 shows the average DET curves of d-trees, kNN-a and kNN-b,respectively, at the Nt value of 8. The comparison indicates that kNN-a has a better performance for high-precision (or low false-alarm) event tracking, while kNN-b would be a better choice for high-recall orientedapplications. Note that this comparison is under the (crucial) condition of having very small Nt values,and is not necessarily generalizable to di�erent conditions. In other words, our focus here is to evaluate oursystems under a task-speci�c constraint, and we found that kNN-b e�ectively smoothes the detection errortrade-o� in event tracking, better than d-trees or kNN-a.7 SummaryTo summarize the main points in this paper, event detection and tracking represent a new family of tasks forinformation retrieval and machine learning. We studied a set of retrieval techniques and learning algorithmsaddressing the following challenges:� analyzing the nature of events in news stories;� identifying suitable learning algorithms for event detection and tracking;� suggesting special-purpose changes to standard learning algorithms;� evaluating the suggested techniques and comparing the results to those by other research groups usingdi�erent techniques.More speci�cally, our empirical evaluations suggest the following points:� For retrospective detection, we have shown that conventional document representation and relativelysimple clustering algorithms (GAC and INCR) can be highly e�ective, especially when they are adaptedto make a combined use of context similarity and temporal proximity in document clustering.7The stories judged as BRIEF were allowed to be used for training; however, they were excluded from testing.16

� On-line novel-event detection is somewhat more di�cult than retrospective detection. We observedbetter detection accuracy when using a non-clustering approach instead of clustering, although deeperunderstanding about this requires further investigation.� For event tracking, both kNN and d-trees exhibit encouraging performance in quick learning, with theirperformance curve approaching a plateau after a very small number (Nt = 4 or 8) of positive trainingexamples.� For better detection error trade-o�
exibility in event tracking, kNN-b shows a signi�cant improvementby a suitable nearest-neighbor sampling and score normalization.Important research questions for further investigation include:� Are there better learning algorithms for the TDT problems?� How can we model event evolution over time more accurately than via time windowing or simple lineardecay?� How can we combine document clustering and text summarization for user support in event detectionand tracking?Finally, it should be pointed out that the current TDT research and evaluations have not yet thoroughlyaddress the questions about how to optimally use system-generated clusters, and how to best match theseclusters to the \true events". In principle, �nding a meaningful mapping without any information (e.g.,positive and negative examples given an event) or knowledge about the target events (e.g., event descriptions)is an unrealistic task. Document clustering can be useful only if the user input (or interaction) is takeninto account in the loop of the event identi�cation. Further more, the system-generated clusters shouldbe provided along with suggested browsing strategies to the users. Investigating potential strategies fortraversing through cluster hierarchies or corpus partitions, and measuring the practical impact in terms oftime saving and error reduction for the end users will be a crucial part of the future work in event detectionand tracking.8 AcknowledgmentsThe authors wish to thank Charles Wayne and George Doddington for their guidance in the TDT taskde�nition and evaluation, and James Allan at UMass and Jon Yamron at Dragon for sharing ideas andresults in the research.The TDT research is sponsored in part by the Department of Defense. However, any opinions orconclusions in this paper are the authors' and do not necessarily re
ect those of the sponsors.References[1] James Allan, Jaime Carbonell, George Doddington, Jonathan Yamron, and Yiming Yang. Topic detec-tion and tracking pilot study: Final report. In Proceedings of the DARPA Broadcast News Transcriptionand Understanding Workshop, 1998.[2] James Allan, Ron Papka, and Victor Lavrenko. On-line new event detection and tracking. In Proceedingsof the 21th Ann Int ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR'98), pages 37{45, 1998.[3] C. Apte, F. Damerau, and S. Weiss. Towards language independent automated learning of text catego-rization models. In Proceedings of the 17th Annual ACM/SIGIR conference, 1994.17

[4] D. Beeferman, A. Berger, and J. La�erty. Statistical models for text segmentation. InMachine Learning,volume 34, pages 1{34, 1999.[5] Jamie Callan. Document �ltering with inference networks. In Proceedings of the 19th AnnualACM/SIGIR conference, pages 262{269, 1996.[6] J.G. Carbonell and J. Goldstein. The use of mmr, diversity-based reranking for reordering documentsand producing summaries. In Proceedings of the 21th Ann Int ACM SIGIR Conference on Researchand Development in Information Retrieval (SIGIR'98), pages 335{336, 1998.[7] R.H. Creecy, B.M. Masand, S.J. Smith, and D.L. Waltz. Trading mips and memory for knowledgeengineering: classifying census returns on the connection machine. Comm. ACM, 35:48{63, 1992.[8] D.R. Cutting, D.R. Karger, J.O. Pedersen, and J.W. Tukey. Scatter/gather: a cluster-based approachto browsing large document collections. In 15th Ann Int ACM SIGIR Conference on Research andDevelopment in Information Retrieval (SIGIR'92), pages 318{329, 1992.[9] Belur V. Dasarathy. Nearest Neighbor (NN) Norms: NN Pattern Classi�cation Techniques. McGraw-Hill Computer Science Series. IEEE Computer Society Press, Las Alamitos, California, 1991.[10] Ed. DK Harman. The Second Text REtrieval Conference (TREC-2). US Government Printing O�ce,Washington, DC, 1994.[11] S.T. Dumais. Using svms for text categorization. In Support Vector Learning In: IEEE IntelligentSystems, pages July{August, 13(4), 1998.[12] T. Feder and D. Greene. Optimal algorithms for approximate clustering. In Poceedings of the 20thAnnual ACM Symposium on the Theory of Computing (STOC), pages 434{444, 1988.[13] N. Fuhr, S. Hartmanna, G. Lustig, M. Schwantner, and K. Tzeras. Air/x - a rule-based multistageindexing systems for large subject �elds. In 606-623, editor, Proceedings of RIAO'91, 1991.[14] Jade Golsdstein and Jaime Carbonell. The use of mmr and diversity-based reranking in documentreranking and summarization. In Proceedings of the 14th Twente Workshop on Language Technology inMultimedia Information Retrieval, pages 152{166, Enschede, the Netherlands, December 1998.[15] M. Hearst and J.O. Pedersen. Reexamining the cluster hypothesis: Scatter/gather on retrieval re-sults. In 19th Ann Int ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR'96), pages 76{84, 1996.[16] Makato Iwayama and Takenobu Tokunaga. Cluster-based text categorization: a comparison of cate-gory search strategies. In Proceedings of the 18th Ann Int ACM SIGIR Conference on Research andDevelopment in Information Retrieval (SIGIR'95), pages 273{281, 1995.[17] Thorsten Joachims. Text Categorization with Support Vector Machines: Learning with Many RelevantFeatures. In European Conference on Machine Learning (ECML), 1998.[18] W. Lam and C.Y. Ho. Using a generalized instance set for automatic text categorization. In Proceedingsof the 21th Ann Int ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR'98), pages 81{89, 1998.[19] A. et al. Martin. The det curve in assessment of detection task performance. In EuroSpeech 1997Proceedings, volume 4, 1997.[20] B. Masand, G. Lino�, and D. Waltz. Classifying news stories using memory based reasoning. In 15thAnn Int ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'92),pages 59{64, 1992.[21] Tom Mitchell. Machine Learning. McGraw Hill, 1996.[22] J.R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81{106, 1986.18

[23] G. Salton. Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information byComputer. Addison-Wesley, Reading, Pennsylvania, 1989.[24] R.H. Tohompson and B.W. Croft. Support for browsing in an intelligent text retrieval system. InInternational Journal of Man-Machine Studies, pages 30(6)639{668, 1989.[25] C.J. van Rijsbergen. Information Retrieval. Butterworths, London, 1979.[26] Ellen M. Voorhees. Implementing allgomerative hierarchic clustering algorithms for use in documentretrieval. In Information Processing & Management, volume 22:6, pages 465{476, 1986.[27] S.M. Weiss, C. Apte, F. Damerau, D. Johnson, F.J. Oles, T. Goetz, and T. Hampp. Boosting text-mining performance. IEEE EXPERT, Special Issue on Applications of Intelligent Information Retrieval,1999.[28] E. Wiener, J.O. Pedersen, and A.S. Weigend. A neural network approach to topic spotting. In Proceed-ings of the Fourth Annual Symposium on Document Analysis and Information Retrieval (SDAIR'95),1995.[29] R. Willett. Recent trends in hierarchic document clustering: a critical review. Information Processingand Management., 25(5):577{597, 1988.[30] Y. Yang. Expert network: E�ective and e�cient learning from human decisions in text categorizationand retrieval. In 17th Ann Int ACM SIGIR Conference on Research and Development in InformationRetrieval (SIGIR'94), pages 13{22, 1994.[31] Y. Yang. An evaluation of statistical approaches to text categorization. Journal of Information Retrieval(to appear), 1:69{90, 1999.[32] Y. Yang and X. Liu. A re-examination of text categorization methods. In The 22th Ann Int ACMSIGIR Conference on Research and Development in Information Retrieval (SIGIR'99), page (to appearin August 99), 1999.[33] Y. Yang, T. Pierce, and J. Carbonell. A study on retrospective and on-line event detection. In Pro-ceedings of the 21th Ann Int ACM SIGIR Conference on Research and Development in InformationRetrieval (SIGIR'98), pages 28{36, 1998.[34] Oren Zamir and Oren Etzioni. Web document clustering: A feasibility demonstration. In Proceedingsof the 21th Ann Int ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR'98), pages 46{54, 1998.
19

