
Efficient Structured Matrix Rank Minimization

Adams Wei Yu†, Wanli Ma†, Yaoliang Yu†, Jaime G. Carbonell†, Suvrit Sra‡
School of Computer Science, Carnegie Mellon University†

Max Planck Institute for Intelligent Systems‡
{weiyu, mawanli, yaoliang, jgc}@cs.cmu.edu, suvrit@tuebingen.mpg.de

Abstract

We study the problem of finding structured low-rank matrices using nuclear norm
regularization where the structure is encoded by a linear map. In contrast to most
known approaches for linearly structured rank minimization, we do not (a) use the
full SVD; nor (b) resort to augmented Lagrangian techniques; nor (c) solve linear
systems per iteration. Instead, we formulate the problem differently so that it is
amenable to a generalized conditional gradient method, which results in a practical
improvement with low per iteration computational cost. Numerical results show
that our approach significantly outperforms state-of-the-art competitors in terms of
running time, while effectively recovering low rank solutions in stochastic system
realization and spectral compressed sensing problems.

1 Introduction
Many practical tasks involve finding models that are both simple and capable of explaining noisy
observations. The model complexity is sometimes encoded by the rank of a parameter matrix,
whereas physical and system level constraints could be encoded by a specific matrix structure. Thus,
rank minimization subject to structural constraints has become important to many applications in
machine learning, control theory, and signal processing [10, 22]. Applications include collaborative
filtering [23], system identification and realization [19, 21], multi-task learning [28], among others.

The focus of this paper is on problems where in addition to being low-rank, the parameter matrix
must satisfy additional linear structure. Typically, this structure involves Hankel, Toeplitz, Sylvester,
Hessenberg or circulant matrices [4, 11, 19]. The linear structure describes interdependencies be-
tween the entries of the estimated matrix and helps substantially reduce the degrees of freedom.

As a concrete example consider a linear time-invariant (LTI) system where we are estimating the
parameters of an autoregressive moving-average (ARMA) model. The order of this LTI system,
i.e., the dimension of the latent state space, is equal to the rank of a Hankel matrix constructed
by the process covariance [20]. A system of lower order, which is easier to design and analyze,
is usually more desirable. The problem of minimum order system approximation is essentially
a structured matrix rank minimization problem. There are several other applications where such
linear structure is of great importance—see e.g., [11] and references therein. Furthermore, since
(enhanced) structured matrix completion also falls into the category of rank minimization problems,
the results in our paper can as well be applied to specific problems in spectral compressed sensing
[6], natural language processing [1], computer vision [8] and medical imaging [24].

Formally, we study the following (block) structured rank minimization problem:

miny
1
2‖A(y)− b‖2F + µ · rank(Qm,n,j,k(y)). (1)

Here, y = (y1, ..., yj+k−1) is an m× n(j + k− 1) matrix with yt ∈ Rm×n for t = 1, ..., j + k− 1,
A : Rm×n(j+k−1) → Rp is a linear map, b ∈ Rp, Qm,n,j,k(y) ∈ Rmj×nk is a structured matrix
whose elements are linear functions of yt’s, and µ > 0 controls the regularization. Throughout this
paper, we will useM = mj andN = nk to denote the number of rows and columns ofQm,n,j,k(y).

1

Problem (1) is in general NP-hard [21] due to the presence of the rank function. A popular approach
to address this issue is to use the nuclear norm ‖ · ‖∗, i.e., the sum of singular values, as a convex
surrogate for matrix rank [22]. Doing so turns (1) into a convex optimization problem:

miny
1
2‖A(y)− b‖2F + µ · ‖Qm,n,j,k(y)‖∗. (2)

Such a relaxation has been combined with various convex optimization procedures in previous work,
e.g., interior-point approaches [17, 18] and first-order alternating direction method of multipliers
(ADMM) approaches [11]. However, such algorithms are computationally expensive. The cost per
iteration of an interior-point method is no less than O(M2N2), and that of typical proximal and
ADMM style first-order methods in [11] is O(min(N2M,NM2)); this high cost arises from each
iteration requiring a full Singular Value Decomposition (SVD). The heavy computational cost of
these methods prevents them from scaling to large problems.

Contributions. In view of the efficiency and scalability limitations of current algorithms, the key
contributions of our paper are as follows.

• We formulate the structured rank minimization problem differently, so that we still find low-
rank solutions consistent with the observations, but substantially more scalably.

• We customize the generalized conditional gradient (GCG) approach of Zhang et al. [27] to our
new formulation. Compared with previous first-order methods, the cost per iteration isO(MN)
(linear in the data size), which is substantially lower than methods that require full SVDs.

• Our approach maintains a convergence rate of O
(

1
ε

)
and thus achieves an overall complexity

ofO
(
MN
ε

)
, which is by far the lowest in terms of the dependence ofM orN for general struc-

tured rank minimization problems. It also empirically proves to be a state-of-the-art method
for (but clearly not limited to) stochastic system realization and spectral compressed sensing.

We note that following a GCG scheme has another practical benefit: the rank of the intermediate
solutions starts from a small value and then gradually increases, while the starting solutions obtained
from existing first-order methods are always of high rank. Therefore, GCG is likely to find a low-
rank solution faster, especially for large size problems.

Related work. Liu and Vandenberghe [17] adopt an interior-point method on a reformulation of
(2), where the nuclear norm is represented via a semidefinite program. The cost of each iteration in
[17] is no less than O(M2N2). Ishteva et al. [15] propose a local optimization method to solve the
weighted structured rank minimization problem, which still has complexity as high as O(N3Mr2)
per iteration, where r is the rank. This high computational cost prevents [17] and [15] from handling
large-scale problems. In another recent work, Fazel et al. [11] propose a framework to solve (2).
They derive several primal and dual reformulations for the problem, and propose corresponding
first-order methods such as ADMM, proximal-point, and accelerated projected gradient. However,
each iteration of these algorithms involves a full SVD of complexityO(min(M2N,N2M)), making
it hard to scale them to large problems. Signoretto et al. [25] reformulate the problem to avoid full
SVDs by solving an equivalent nonconvex optimization problem via ADMM. However, their method
requires subroutines to solve linear equations per iteration, which can be time-consuming for large
problems. Besides, there is no guarantee that their method will converge to the global optimum.

The conditional gradient (CG) (a.k.a. Frank-Wolfe) method was proposed by Frank and Wolfe [12]
to solve constrained problems. At each iteration, it first solves a subproblem that minimizes a lin-
earized objective over a compact constraint set and then moves toward the minimizer of the cost
function. CG is efficient as long as the linearized subproblem is easy to solve. Due to its simplicity
and scalability, CG has recently witnessed a great surge of interest in the machine learning and opti-
mization community [16]. In another recent strand of work, CG was extended to certain regularized
(non-smooth) problems as well [3, 13, 27]. In the following, we will show how a generalized CG
method can be adapted to solve the structured matrix rank minimization problem.

2 Problem Formulation and Approach
In this section we reformulate the structured rank minimization problem in a way that enables us
to apply the generalized conditional gradient method, which we subsequently show to be much
more efficient than existing approaches, both theoretically and experimentally. Our starting point
is that in most applications, we are interested in finding a “simple” model that is consistent with

2

the observations, but the problem formulation itself, such as (2), is only an intermediate means,
hence it need not be fixed. In fact, when formulating our problem we can and we should take the
computational concerns into account. We will demonstrate this point first.

2.1 Problem Reformulation

The major computational difficulty in problem (2) comes from the linear transformationQm,n,j,k(·)
inside the trace norm regularizer. To begin with, we introduce a new matrix variable X ∈ Rmj×nk
and remove the linear transformation by introducing the following linear constraint

Qm,n,j,k(y) = X. (3)
For later use, we partition the matrix X into the block form

X :=


x11 x12 · · · x1k

x21 x22 · · · x2k

...
...

...
xj1 xj2 · · · xjk

 with xil ∈ Rm×n for i = 1, ..., j, l = 1, ..., k. (4)

We denote by x := vec(X) ∈ Rmjk×n the vector obtained by stacking the columns ofX blockwise,
and by X := mat(x) ∈ Rmj×nk the reverse operation. Since x and X are merely different re-
orderings of the same object, we will use them interchangeably to refer to the same object.

We observe that any linear (or slightly more generally, affine) structure encoded by the linear trans-
formation Qm,n,j,k(·) translates to linear constraints on the elements of X (such as the sub-blocks
in (4) satisfying say x12 = x21), which can be represented as linear equations Bx = 0, with an
appropriate matrix B that encodes the structure of Q. Similarly, the linear constraint in (3) that
relates y and X , or equivalently x, can also be written as the linear constraint y = Cx for a suitable
recovery matrix C. Details on constructing matrix B and C can be found in the appendix. Thus,
we reformulate (2) into

min
x∈Rmjk×n

1
2‖A(Cx)− b‖2F + µ‖X‖∗ (5)

s.t. Bx = 0. (6)
The new formulation (5) is still computationally inconvenient due to the linear constraint (6). We
resolve this difficulty by applying the penalty method, i.e., by placing the linear constraint into the
objective function after composing with a penalty function such as the squared Frobenius norm:

min
x∈Rmjk×n

1
2‖A(Cx)− b‖2F + λ

2 ‖Bx‖
2
F + µ‖X‖∗. (7)

Here λ > 0 is a penalty parameter that controls the inexactness of the linear constraint. In essence,
we turn (5) into an unconstrained problem by giving up on satisfying the linear constraint exactly.
We argue that this is a worthwhile trade-off for (i) By letting λ ↑ ∞ and following a homotopy
scheme the constraint can be satisfied asymptotically; (ii) If exactness of the linear constraint is
truly desired, we could always post-process each iterate by projecting to the constraint manifold
using Cproj (see appendix); (iii) As we will show shortly, the potential computational gains can be
significant, enabling us to solve problems at a scale which is not achievable previously. Therefore,
in the sequel we will focus on solving (7). After getting a solution for x, we recover the original
variable y through the linear relation y = Cx. As shown in our empirical studies (see Section 3), the
resulting solution Qm,n,j,k(y) indeed enjoys the desirable low-rank property even with a moderate
penalty parameter λ. We next present an efficient algorithm for solving (7).

2.2 The Generalized Conditional Gradient Algorithm

Observing that the first two terms in (7) are both continuously differentiable, we absorb them into a
common term f and rewrite (7) in the more familiar compact form:

min
X∈Rmj×nk

φ(X) := f(X) + µ‖X‖∗, (8)

which readily fits into the framework of the generalized conditional gradient (GCG) [3, 13, 27]. In
short, at each iteration GCG successively linearizes the smooth function f , finds a descent direction
by solving the (convex) subproblem

Zk ∈ arg min
‖Z‖∗≤1

〈Z,∇f(Xk−1)〉, (9)

3

Algorithm 1 Generalized Conditional Gradient for Structured Matrix Rank Minimization

1: Initialize U0, V0;
2: for k = 1, 2, ... do
3: (uk, vk)← top singular vector pair of−∇f(Uk−1Vk−1);
4: set ηk ← 2/(k + 1), and θk by (13);
5: Uinit ← (

√
1− ηkUk−1,

√
θkuk); Vinit ← (

√
1− ηkVk−1,

√
θkvk);

6: (Uk, Vk)← arg minψ(U, V) using initializer (Uinit, Vinit);
7: end for

and then takes the convex combinationXk = (1−ηk)Xk−1 +ηk(αkZk) with a suitable step size ηk
and scaling factor αk. Clearly, the efficiency of GCG heavily hinges on the efficacy of solving the
subproblem (9). In our case, the minimal objective is simply the matrix spectral norm of −∇f(Xk)
and the minimizer can be chosen as the outer product of the top singular vector pair. Both can be
computed essentially in linear time O(MN) using the Lanczos algorithm [7].

To further accelerate the algorithm, we adopt the local search idea in [27], which is based on the
variational form of the trace norm [26]:

‖X‖∗ = 1
2 min{‖U‖2F + ‖V ‖2F : X = UV }. (10)

The crucial observation is that (10) is separable and smooth in the factor matrices U and V , although
not jointly convex. We alternate between the GCG algorithm and the following nonconvex auxiliary
problem, trying to get the best of both ends:

min
U,V

ψ(U, V), where ψ(U, V) = f(UV) + µ
2 (‖U‖2F + ‖V ‖2F). (11)

Since our smooth function f is quadratic, it is easy to carry out a line search strategy for finding an
appropriate αk in the convex combinationXk+1 = (1−ηk)Xk+ηk(αkZk) =: (1−ηk)Xk+θkZk,
where

θk = arg min
θ≥0

hk(θ) (12)

is the minimizer of the function (on θ ≥ 0)
hk(θ) := f((1− ηk)Xk + θZk) + µ(1− ηk)‖Xk‖∗ + µθ. (13)

In fact, hk(θ) upper bounds the objective function φ at (1− ηk)Xk + θZk. Indeed, using convexity,
φ((1− ηk)Xk + θZk) = f((1− ηk)Xk + θZk) + µ‖(1− ηk)Xk + θZk‖∗

≤ f((1− ηk)Xk + θZk) + µ(1− ηk)‖Xk‖∗ + µθ‖Zk‖∗
≤ f((1− ηk)Xk + θZk) + µ(1− ηk)‖Xk‖∗ + µθ (as ‖Zk‖∗ ≤ 1)

= hk(θ).

The reason to use the upper bound hk(θ), instead of the true objective φ((1 − ηk)Xk + θZk), is to
avoid evaluating the trace norm, which can be quite expensive. More generally, if f is not quadratic,
we can use the quadratic upper bound suggested by the Taylor expansion. It is clear that θk in (12)
can be computed in closed-form.

We summarize our procedure in Algorithm 1. Importantly, we note that the algorithm explicitly
maintains a low-rank factorization X = UV throughout the iteration. In fact, we never need the
product X , which is a crucial step in reducing the memory footage for large applications. The
maintained low-rank factorization also allows us to more efficiently evaluate the gradient and its
spectral norm, by carefully arranging the multiplication order. Finally, we remark that we need not
wait until the auxiliary problem (11) is fully solved; we can abort this local procedure whenever
the gained improvement does not match the devoted computation. For the convergence guarantee
we establish in Theorem 1 below, only the descent property ψ(UkVk) ≤ ψ(Uk−1Vk−1) is needed.
This requirement can be easily achieved by evaluating ψ, which, unlike the original objective φ, is
computationally cheap.

2.3 Convergence analysis

Having presented the generalized conditional gradient algorithm for our structured rank minimiza-
tion problem, we now analyze its convergence property. We need the following standard assumption.

4

Assumption 1 There exists some norm ‖ · ‖ and some constant L > 0, such that for all A,B ∈
RN×M and η ∈ (0, 1), we have

f((1− η)A+ ηB) ≤ f(A) + η〈B −A,∇f(A)〉+ Lη2

2 ‖B −A‖
2.

Most standard loss functions, such as the quadratic loss we use in this paper, satisfy Assumption 1.

We are ready to state the convergence property of Algorithm 1 in the following theorem. To make
the paper self-contained, we also reproduce the proof in the appendix.

Theorem 1 Let Assumption 1 hold, X be arbitrary, and Xk be the k-th iterate of Algorithm 1
applied on the problem (7), then we have

φ(Xk)− φ(X) ≤ 2C

k + 1
, (14)

where C is some problem dependent absolute constant.

Thus for any given accuracy ε > 0, Algorithm 1 will output an ε-approximate (in the sense of
function value) solution in at most O(1/ε) steps.

2.4 Comparison with existing approaches

We briefly compare the efficiency of Algorithm 1 with the state-of-the-art approaches; more thor-
ough experimental comparisons will be conducted in Section 3 below. The per-step complexity of
our algorithm is dominated by the subproblem (9) which requires only the leading singular vector
pair of the gradient. Using the Lanczos algorithm this costs O(MN) arithmetic operations [16],
which is significantly cheaper than the O(min(M2N,N2M)) complexity of [11] (due to their need
of full SVD). Other approaches such as [25] and [17] are even more costly.

3 Experiments

In this section, we present empirical results using our algorithms. Without loss of generality, we fo-
cus on two concrete structured rank minimization problems: (i) stochastic system realization (SSR);
and (ii) 2-D spectral compressed sensing (SCS). Both problems involve minimizing the rank of
two different structured matrices. For SSR, we compare different first-order methods to show the
speedups offered by our algorithm. In the SCS problem, we show that our formulation can be gen-
eralized to more complicated linear structures and effectively recover unobserved signals.

3.1 Stochastic System Realization

Model. The SSR problem aims to find a minimal order autoregressive moving-average (ARMA)
model, given the observation of noisy system output [11]. As a discrete linear time-invariant (LTI)
system, an AMRA process can be represented by the following state-space model

st+1 = Dst + Eut, zt = Fst + ut, t = 1, 2, ..., T, (15)

where st ∈ Rr is the hidden state variable, ut ∈ Rn is driving white noise with covariance matrix
G, and zt ∈ Rn is the system output that is observable at time t. It has been shown in [20] that the
system order r equals the rank of the block-Hankel matrix (see appendix for definition) constructed
by the exact process covariance yi = E(ztz

T
t+i), provided that the number of blocks per column, j,

is larger than the actual system order. Determining the rank r is the key to the whole problem, after
which, the parameters D,E, F,G can be computed easily [17, 20]. Therefore, finding a low order
system is equivalent to minimizing the rank of the Hankel matrix above, while remaining consistent
with the observations.

Setup. The meaning of the following parameters can be seen in the text after E.q. (1). We follow
the experimental setup of [11]. Here, m = n, p = n× n(j + k− 1), while v = (v1, v2, ..., vj+k−1)

denotes the empirical process covariance calculated as vi = 1
T

∑T−i
t=1 zt+iz

T
t , for 1 ≤ i ≤ k and

0 otherwise. Let w = (w1, w2, ..., wj+k−1) be the observation matrix, where the wi are all 1’s for
1 ≤ i ≤ k, indicating the whole block of vi is observed, and all 0’s otherwise (for unobserved

5

blocks). Finally, A(y) = vec(w ◦ y), b = vec(w ◦ v), Q(y) = Hn,n,j,k(y), where ◦ is the element-
wise product and is Hn,n,j,k(·) the Hankel matrix (see Appendix for the corresponding B and C).

Data generation. Each entry of the matrices D ∈ Rr×r, E ∈ Rr×n, F ∈ Rn×r is sampled from a
Gaussian distribution N(0, 1). Then they are normalized to have unit nuclear norm. The initial state
vector s0 is drawn from N(0, Ir) and the input white noise ut from N(0, In). The measurement
noise is modeled by adding an σξ term to the output zt, so the actual observation is zt = zt + σξ,
where each entry of ξ ∈ Rn is a standard Gaussian noise, and σ is the noise level. Throughout this
experiment, we set T = 1000, σ = 0.05, the maximum iteration limit as 100, and the stopping
criterion as ‖xk+1 − xk‖F < 10−3 or |φk+1−φk|

|min(φk+1,φk)| < 10−3. The initial iterate is a matrix of all
ones.

Algorithms. We compare our approach with the state-of-the-art competitors, i.e., the first-order
methods proposed in [11]. Other methods, such as those in [15, 17, 25] suffer heavier computation
cost per iteration, and are thus omitted from comparison. Fazel et al. [11] aim to solve either the
primal or dual form of problem (2), using primal ADMM (PADMM), a variant of primal ADMM
(PADMM2), a variant of dual ADMM (DADMM2), and a dual proximal point algorithm (DPPA). As
for solving (7), we implemented generalized conditional gradient (GCG) and its local search variant
(GCGLS). We also implemented the accelerated projected gradient with singular value threshold-
ing (APG-SVT) to solve (8) by adopting the FISTA [2] scheme. To fairly compare both lines of
methods for different formulations, in each iteration we track their objective values, the squared loss
1
2‖A(Cx) − b‖2F (or 1

2‖A(y) − b‖2F), and the rank of the Hankel matrix Hm,n,j,k(y). Since square
loss measures how well the model fits the observations, and the Hankel matrix rank approximates
the system order, comparison of these quantities obtained by different methods is meaningful.

Result 1: Efficiency and Scalability. We compare the performance of different methods on two
sizes of problems, and the result is shown in Figure 2. The most important observation is, our ap-
proach GCGLS/GCG significantly outperform the remaining competitors in term of running time. It
is easy to see from Figure 2(a) and 2(b) that both the objective value and square loss by GCGLS/GCG
drop drastically within a few seconds and is at least one order of magnitude faster than the runner-up
competitor (DPPA) to reach a stable stage. The rest of baseline methods cannot even approach the
minimum values achieved by GCGLS/GCG within the iteration limit. Figure 2(d) and 2(e) show
that such advantage is amplified as size increases, which is consistent with the theoretical finding.
Then, not surprisingly, we observe that the competitors become even slower if the problem size con-
tinues growing. Hence, we only test the scalability of our approach on larger sized problems, with
the running time reported in Figure 1. We can see that the running time of GCGLS grows linearly
w.r.t. the size MN , again consistent with previous analysis.

0 1 2 3

x 10
8

0

1000

2000

3000

4000

5000

Matrix Size (MN)

R
u
n
 T

im
e

GCGLS

GCG

(2050, 10000)

(6150, 30000)

(4100, 20000)

(8200, 40000)

Figure 1: Scalability of GCGLS and
GCG. The size (M,N) is labeled out.

Result 2: Rank of solution. We also report the rank of
Hn,n,j,k(y) versus the running time in Figure 2(c) and 2(f),
where y = Cx if we solve (2) or y directly comes from the
solution of (7). The rank is computed as the number of sin-
gular values larger than 10−3. For the GCGLS/GCG, the it-
erate starts from a low rank estimation and then gradually ap-
proaches the true one. However, for other competitors, the iter-
ate first jumps to a full rank matrix and the rank of later iterate
drops gradually. Given that the solution is intrinsically of low
rank, GCGLS/GCG will probably find the desired one more ef-
ficiently. In view of this, the working memory of GCGLS is
usually much smaller than the competitors, as it uses two low
rank matrices U, V to represent but never materialize the solu-
tion until necessary.

3.2 Spectral Compressed Sensing

In this part we apply our formulation and algorithm to another application, spectral compressed
sensing (SCS), a technique that has by now been widely used in digital signal processing applications
[6, 9, 29]. We show in particular that our reformulation (7) can effectively and rapidly recover
partially observed signals.

6

10
−2

10
0

10
2

10
1

10
2

10
3

10
4

10
5

Run Time (seconds)

O
b

je
c
ti
v
e

 V
a

lu
e

GCGLS

GCG

PADMM

PADMM2

DPPA

DADMM2

APG−SVT

(a) Obj v.s. Time

10
−2

10
0

10
2

10
1

10
2

10
3

10
4

10
5

Run Time (seconds)

S
q

u
a

re
 L

o
s
s

GCGLS

GCG

PADMM

PADMM2

DPPA

DADMM2

APG−SVT

(b) Sqr loss v.s. Time

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Run Time (seconds)

R
a

n
k
 o

f
H

a
n

k
e

l(
y
)

GCGLS

GCG

PADMM

PADMM2

DPPA

DADMM2

APG−SVT

(c) Rank(y) v.s. Time

10
−2

10
0

10
2

10
1

10
2

10
3

10
4

10
5

Run Time (seconds)

O
b

je
c
ti
v
e

 V
a

lu
e

GCGLS

GCG

PADMM

PADMM2

DPPA

DADMM2

APG−SVT

(d) Obj v.s. Time

10
−2

10
0

10
2

10
1

10
2

10
3

10
4

10
5

Run Time (seconds)

S
q

u
a

re
 L

o
s
s

GCGLS

GCG

PADMM

PADMM2

DPPA

DADMM2

APG−SVT

(e) Sqr loss v.s. Time

10
−2

10
0

10
2

10
0

10
1

10
2

10
3

Run Time (seconds)

R
a

n
k
 o

f
H

a
n

k
e

l(
y
)

GCGLS

GCG

PADMM

PADMM2

DPPA

DADMM2

APG−SVT

(f) Rank(y) v.s. Time

Figure 2: Stochastic System Realization problem with j = 21, k = 100, r = 10, µ = 1.5 for formulation (2)
and µ = 0.1 for (7). The first row corresponds to the case M = 420, N = 2000, n = m = 20, . The second
row corresponds to the case M = 840, N = 4000, n = m = 40.

Model. The problem of spectral compressed sensing aims to recover a frequency-sparse signal from
a small number of observations. The 2-D signal Y (k, l), 0 < k ≤ n1, 0 < l ≤ n2 is supposed to be
the superposition of r 2-D sinusoids of arbitrary frequencies, i.e. (in the DFT form)

Y (k, l) =

r∑
i=1

die
j2π(kf1i+lf2i) =

r∑
i=1

di(e
j2πf1i)k(ej2πf2i)l (16)

where di is the amplitudes of the i-th sinusoid and (fxi, fyi) is its frequency.

Inspired by the conventional matrix pencil method [14] for estimating the frequencies of sinusoidal
signals or complex sinusoidal (damped) signals, the authors in [6] propose to arrange the observed
data into a 2-fold Hankel matrix whose rank is bounded above by r, and formulate the 2-D spectral
compressed sensing problem into a rank minimization problem with respect to the 2-fold Hankel
structure. This 2-fold structure is a also linear structure, as we explain in the appendix. Given limited
observations, this problem can be viewed as a matrix completion problem that recovers a low-rank
matrix from partially observed entries while preserving the pre-defined linear structure. The trace
norm heuristic for rank (·) is again used here, as it is proved by [5] to be an exact method for matrix
completion provided that the number of observed entries satisfies the corresponding information
theoretic bound.

Setup. Given a partial observed signal Y with Ω as the observation index set, we adopt the formu-
lation (7) and thus aim to solve the following problem:

min
X∈RM×N

1

2
‖PΩ(mat(Cx))− PΩ(Y)‖2F +

λ

2
‖Bx‖2F + µ‖X‖∗ (17)

where x = vec(X), mat(·) is the inverse of the vectorization operator on Y . In this context, as
before, A = PΩ, b = PΩ(Y), where PΩ(Y) only keeps the entries of Y in the index set Ω and
vanishes the others, Q(Y) = H

(2)
k1,k2

(Y) is the two-fold Hankel matrix, and corresponding B and

C can be found in the appendix to encode H(2)
k1,k2

(Y) = X . Further, the size of matrix here is
M = k1k2, N = (n1 − k1 + 1)(n2 − k2 + 1).

Algorithm. We apply our generalized conditional gradient method with local search (GCGLS) to
solve the spectral compressed sensing problem, using the reformulation discussed above. Following

7

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(a) True 2-D Sinosuidal Signal
10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

(b) Observed Entries

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

−4

−3

−2

−1

0

1

2

3

(c) Recovered Signal

10 20 30 40 50 60 70 80 90 100

−4

−3

−2

−1

0

1

2

3

4

5

True Signal

Observations

(d) Observed Signal on Column 1
10 20 30 40 50 60 70 80 90 100

−4

−3

−2

−1

0

1

2

3

4

5

True Signal

Recovered

(e) Recovered Signal on Column 1

Figure 3: Spectral Compressed Sensing problem with parameters n1 = n2 = 101, r = 6, solved with our
GCGLS algorithm using k1 = k2 = 8, µ = 0.1. The 2-D signals in the first row are colored by the jet
colormap. The second row shows the 1-D signal extracted from the first column of the data matrix.

the experiment setup in [6], we generate a ground truth data matrix Y ∈ R101×101 through a super-
position of r = 6 2-D sinusoids, randomly reveal 20% of the entries, and add i.i.d Gaussian noise
with amplitude signal-to-noise ratio 10.

Result. The results on the SCS problem are shown in Figure 3. The generated true 2-D signal Y is
shown in Figure 3(a) using the jet colormap. The 20% observed entries of Y are shown in Figure
3(b), where the white entries are unobserved. The signal recovered by our GCGLS algorithm is
shown in Figure 3(c). Comparing with the true signal in Figure 3(a), we can see that the result of
our CGCLS algorithm is pretty close to the truth. To demonstrate the result more clearly, we extract
a single column as a 1-D signals for further inspection. Figure 3(d) plots the original signal (blue
line) as well as the observed ones (red dot), both from the first column of the 2-D signals. In 3(e),
the recovered signal is represented by the red dashed dashed curve. It matches the original signal
with significantly large portion, showing the success of our method in recovering partially observed
2-D signals from noise. Since the 2-fold structure used in this experiment is more complicated than
that in the previous SSR task, this experiment further validates our algorithm on more complicated
problems.

4 Conclusion

In this paper, we address the structured matrix rank minimization problem. We first formulate the
problem differently, so that it is amenable to adapt the Generalized Conditional Gradient Method.
By doing so, we are able to achieve the complexity O(MN) per iteration with a convergence rate
O
(

1
ε

)
. Then the overall complexity is by far the lowest compared to state-of-the-art methods for the

structured matrix rank minimization problem. Our empirical studies on stochastic system realization
and spectral compressed sensing further confirm the efficiency of the algorithm and the effectiveness
of our reformulation.

8

References
[1] B. Balle and M. Mohri. Spectral learning of general weighted automata via constrained matrix completion.

In NIPS, pages 2168–2176, 2012.
[2] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems.

SIAM J. Imaging Sciences, 2(1):183–202, 2009.
[3] K. Bredies, D. A. Lorenz, and P. Maass. A generalized conditional gradient method and its connection to

an iterative shrinkage method. Computational Optimization and Applications, 42(2):173–193, 2009.
[4] J. A. Cadzow. Signal enhancement: A composite property mapping algorithm. IEEE Transactions on

Acoustics, Speech and Signal Processing, pages 39–62, 1988.
[5] E. J. Candès and T. Tao. The power of convex relaxation: near-optimal matrix completion. IEEE Trans-

actions on Information Theory, 56(5):2053–2080, 2010.
[6] Y. Chen and Y. Chi. Spectral compressed sensing via structured matrix completion. In ICML, pages

414–422, 2013.
[7] J. K. Cullum and R. A. Willoughby. Lanczos Algorithms for Large Symmetric Eigenvalue Computations,

Vol. 1. Elsevier, 2002.
[8] T. Ding, M. Sznaier, and O. I. Camps. A rank minimization approach to video inpainting. In ICCV, pages

1–8, 2007.
[9] M. F. Duarte and R. G. Baraniuk. Spectral compressive sensing. Applied and Computational Harmonic

Analysis, 35(1):111–129, 2013.
[10] M. Fazel. Matrix rank minimization with applications. PhD thesis, Stanford University, 2002.
[11] M. Fazel, T. K. Pong, D. Sun, and P. Tseng. Hankel matrix rank minimization with applications to system

identification and realization. SIAM J. Matrix Analysis Applications, 34(3):946–977, 2013.
[12] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics Quarterly,

3:95–110, 1956.
[13] Z. Harchaoui, A. Juditsky, and A. Nemirovski. Conditional gradient algorithms for machine learning. In

NIPS Workshop on Optimization for ML., 2012.
[14] Y. Hua. Estimating two-dimensional frequencies by matrix enhancement and matrix pencil. IEEE Trans-

actions on Signal Processing, 40(9):2267–2280, 1992.
[15] M. Ishteva, K. Usevich, and I. Markovsky. Factorization approach to structured low-rank approximation

with applications. SIAM J. Matrix Analysis Applcations, 35(3):1180–1204, 2014.
[16] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In ICML, pages 427–435,

2013.
[17] Z. Liu and L. Vandenberghe. Semidefinite programming methods for system realization and identification.

In CDC, pages 4676–4681, 2009.
[18] Z. Liu and L. Vandenberghe. Interior-point method for nuclear norm approximation with application to

system identification. SIAM J. Matrix Analysis Applications, 31(3):1235–1256, 2009.
[19] Z. Liu, A. Hansson, and L. Vandenberghe. Nuclear norm system identification with missing inputs and

outputs. Systems & Control Letters, 62(8):605–612, 2013.
[20] J. Mari, P. Stoica, and T. McKelvey. Vector ARMA estimation: a reliable subspace approach. IEEE

Transactions on Signal Processing, 48(7):2092–2104, 2000.
[21] I. Markovsky. Structured low-rank approximation and its applications. Automatica, 44(4):891–909, 2008.
[22] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via

nuclear norm minimization. SIAM Review, 52(3):471–501, 2010.
[23] J. D. M. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction.

In ICML, pages 713–719, 2005.
[24] P. J. Shin, P. E. Larson, M. A. Ohliger, M. Elad, J. M. Pauly, D. B. Vigneron, and M. Lustig. Cali-

brationless parallel imaging reconstruction based on structured low-rank matrix completion. Magnetic
Resonance in Medicine, 2013.

[25] M. Signoretto, V. Cevher, and J. A. Suykens. An SVD-free approach to a class of structured low rank
matrix optimization problems with application to system identification. Technical report, K.U.Leuven,
2013. 13-44, ESTA-SISTA.

[26] N. Srebro, J. D. M. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. In NIPS, 2004.
[27] X. Zhang, Y. Yu, and D. Schuurmans. Accelerated training for matrix-norm regularization: A boosting

approach. In NIPS, pages 2915–2923, 2012.
[28] J. Zhou, J. Chen, and J. Ye. Multi-task learning: theory, algorithms, and applications. SIAM Data Mining

Tutorial, 2012.
[29] X. Zhu and M. Rabbat. Graph spectral compressed sensing. Technical report, McGill University, Tech.

Rep, 2011.

9

Appendix: Efficient Structured Matrix Rank Minimization

Proof of Theorem 1

The proof follows the line of that in [27].

Fix the “competitor” X . We first show that

φ(Xk) ≤ (1− ηk)φ(Xk−1) + ηkφ(X) +
Ckη

2
k

2
, (18)

where Ck := L ·
∥∥∥‖X‖∗Zk −Xk−1

∥∥∥2

. Indeed,

φ(Xk) = f(Xk) + µ‖Xk‖∗
= min

θ≥0
f
(
(1− ηk)Xk−1 + θZk

)
+ µ(1− ηk)‖Xk−1‖∗ + µθ [(12)]

≤ f
(
(1− ηk)Xk−1 + ηk‖X‖∗Zk

)
+ µ(1− ηk)‖Xk−1‖∗ + µηk‖X‖∗

≤ f(Xk−1) + ηk〈‖X‖∗Zk −Xk−1,∇f(Xk−1)〉+
Ckη

2
k

2
+ µ(1− ηk)‖Xk−1‖∗ + µηk‖X‖∗ [Assumption 1]

= φ(Xk−1) + ηk〈‖X‖∗Zk −Xk−1,∇f(Xk−1)〉+
Ckη

2
k

2
− µηk‖Xk−1‖∗ + µηk‖X‖∗

≤ min
Y :‖Y ‖∗≤‖X‖∗

φ(Xk−1) + ηk〈Y −Xk−1,∇f(Xk−1)〉+
Ckη

2
k

2
− µηk‖Xk−1‖∗ + µηk‖X‖∗ [(9)]

≤ min
Y :‖Y ‖∗≤‖X‖∗

φ(Xk−1) + ηk(f(Y)− f(Xk−1)) +
Ckη

2
k

2
− µηk‖Xk−1‖∗ + µηk‖X‖∗ [convexity of f]

= (1− ηk)φ(Xk−1) + ηk min
Y :‖Y ‖∗≤‖X‖∗

(f(Y) + µ‖X‖∗) +
Ckη

2
k

2

= (1− ηk)φ(Xk−1) + ηkφ(X) +
Ckη

2
k

2
.

Note that we only need the local search (line 6 of Algorithm 1) to satisfy the descent property
ψ(UkVk) ≤ ψ(Uk−1Vk−1), so that by induction ψ(UkVk) ≤ ψ(U0V0) = C0 for some constant C0.
Thus ‖Xk‖ = ‖UkVk‖ is uniformly bounded, meaning that the term Ck in (18) can be bounded by
a universal constant C ′ (which depends on the competitor X that we fix throughout).

Therefore, we have

φ(Xk) ≤ (1− ηk)φ(Xk−1) + ηkφ(X) +
C ′η2

k

2
, (19)

Let C = max(C ′, φ(X1)− φ(X)). Then we show by induction that (14) holds.

1. When k = 1, φ(X1)− φ(X) ≤ C, (14) holds.

2. Suppose Theorem 1 holds for the k-th steps, i.e. φ(Xk) − φ(X) ≤ 2C
k+1 , we show that it

also holds for the (k + 1)-th step. Indeed, by (19) and ηk+1 = 2
k+2 , we have

φ(Xk+1)− φ(X) ≤ (1− ηk+1)(φ(Xk)− φ(X)) +
C ′η2

k+1

2

≤ k

k + 2
· 2C

k + 1
+

2C

(k + 2)2

=
2C(k2 + 3k + 1)

(k + 1)(k + 2)2

≤ 2C

k + 2
.

This concludes the proof of Theorem 1 for all steps k.

10

Linear Structured Matrices and the corresponding Matrix B and C

General Linear Matrix Structures

In general, linear matrix structures are defined [15] as:

Q(y) = Q0 +

ny∑
k=1

Qkyk (20)

where Qk ∈ Rm×n, 0 ≤ k ≤ ny and y ∈ Rny is the given data. Let Qk,i(i ≤ mn) be the i’th
element in vec(Qk).

We further assume that (1) Q0 = 0, (2) each Qk is a (0,1)-matrix and (3) for ∀i ≤ mn, there exists
at most one k such that Qk,i = 1. In other words, each element in the structured matrix Q(y) either
equals to one element in y, or is 0. Most of the linear matrix structures, including block-Hankel
and 2-fold Hankel used in our experiments, as well as Toeplitz, Sylvester and circulant, satisfy this
assumption.

We claim that for any structure Q : Rny → Rm×n under this assumption, we can construct a
“structure preserving matrix” B and a “recovery matrix” C such that for any X ∈ Rm×n

Bvec(X) = 0⇐⇒ ∃y ∈ Rny , s.t. X = Q(y) and Cvec(X) = y (21)

or in other words, Bvec(X) = 0 ⇔ X ∈ image(Q), where image(Q):= {Q(y)|y ∈ Rny}. B can
be viewed as the Lagrangian of the structural constraint.

The matrix B can be constructed in the following way. Let djk be the position of the jth 1 in
vec(Qk). Let |Qk| be the number of 1’s in Qk. The structure defined above requires that for any
X ∈ image(Q), each pair of (Xdjk

, Xdj+1
k

) must be equal. Since there are totally T =
∑ny

k=1(|Qk|−
1) such pairs, B can be constructed as a T × mn sparse matrix by only assigning Bt,djk

= 1,
Bt,dj+1

k
= −1 for the tth pair ofXdjk

= Xdj+1
k

constraint. In case we need to enforce some elements
of X to be zero, we may add more rows to B with only one 1 per row at the position of the focused
element.

The matrix C can be constructed as a ny × mn sparse matrix by assigning Ck,djk = 1/|Qk| and
leaving other entries 0. Note that this C can be applied to arbitary X ∈ Rm×n as an orthogonal
projection onto image(Q), i.e.

Q(Cvec(X)) = arg min
X̂∈image(Q)

‖X̂ −X‖2F

Thus we call this C the projection matrix Cproj. One may refer to the Appendix of [15] for the proof.
C can be also constructed in other ways to satisfy (21), for instance, a sparser C can be constructed
by assigning only Ck,d1k = 1 for 1 ≤ k ≤ ny . It’s easy to verify that the sparser one Csp is also an
inverse operator of vec(Q(·))
Example: Hankel Matrix

In the following examples, we always use Ik to denote the identity matrix of size k × k and 0k,j to
denote a zero matrix of size k × j.
For a Hankel matrix of data y ∈ Rj+k−1 parameterized by j and k:

Hj,k(y) :=


y1 y2 · · · yk
y2 y3 · · · yk+1

...
...

...
yj yj+1 · · · yj+k−1

 ∈ Rj×k (22)

The Hankel structure preserving matrix B ∈ R(j−1)(k−1)×jk(after rearranging the order or rows) is

B =


P N 0 0 · · · 0 0
0 P N 0 · · · 0 0
...

...
...

...
...

...
...

0 0 0 · · · 0 P N

 (23)

11

where P = [0j−1,1, Ij−1], N = [−Ij−1, 0j−1,1], 0 = 0j−1,j . Obviously P,N,0 ∈ R(j−1)×j .

For the recovery matrix C ∈ R(j+k−1)×jk, we show a toy example using parameters j = 2, k = 3.
The projection Cproj and the sparser Csp are

Cproj =

1 0 0 0 0 0
0 0.5 0.5 0 0 0
0 0 0 0.5 0.5 0
0 0 0 0 0 1

 , Csp =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 (24)

Example: Block-Hankel Matrix

For the block-Hankel matrix used in the stochastic system realization experiment

Hm,n,j,k(y) :=


y1 y2 · · · yk
y2 y3 · · · yk+1

...
...

...
yj yj+1 · · · yj+k−1

 ∈ Rmj×nk (25)

where each y1, . . . , yj+k−1 is a m × n data matrix. If we define vec(·) blockwise, we can write
the matrix B ∈ Rm(j−1)(k−1)×mjk in the same form as (23) where P = [0m(j−1),m, Im(j−1)],
N = [−Im(j−1), 0m(j−1),m], 0 = 0m(j−1),mj , P,N,0 ∈ Rm(j−1)×mj .

The matrix C ∈ Rm(j+k−1)×mjk can be constructed from (24) by replacing each element a with a
block aIm.

Example: Two-Fold Hankel Matrix

For a 2-D data matrix Y ∈ Rn1×n2 , the enhanced form H
(2)
k1,k2

(Y) with respect to the pencil param-
eter k1 and k2 is a block-Hankel matrix with k1 × (n1 − k1 + 1) blocks [6]:

H
(2)
k1,k2

(Y) :=


Y1 Y2 · · · Yn1−k1+1

Y2 Y3 · · · Yn1−k1+2

...
...

...
...

Yk1 Yk1+1 · · · Yn1

 (26)

and each block Yl (0 < l ≤ n1) is a (micro) Hankel matrix of size k2 × (n2 − k2 + 1)

Yl := H1,1,k2,n2−k2+1(Y (l, :)) =


Yl,1 Yl,2 · · · Yl,n2−k2+1

Yl,2 Yl,3 · · · Yl,n2−k2+2

...
...

...
...

Yl,k2 Yl,k2+1 · · · Yl,n2

 (27)

Here we use H(2) to denote the 2-fold Hankel structure. H(2) has M = k1k2 rows and N =
(n1 − k1 + 1)(n2 − k2 + 1) columns.

Here B is a matrix with k1(k2 − 1)(n2 − k2)(n1 − k1 + 1) + n2(k1 − 1)(n1 − k1) rows and MN
columns:

B :=



B1 0 · · · 0
0 B1 · · · 0
...

...
...

...
0 0 · · · B1

B2

 (28)

such that each B1 ∈ Rk1(k2−1)(n2−k2)×k1k2(n2−k2+1) preserves the micro Hankel structure of k1

blocks in one “block-wise column” of X and B2 ∈ Rn2(k1−1)(n1−k1)×MN preserves the global
block-Hankel structure. Both B1 and B2 as well as the recovery matrix Cproj are constructed using
the steps mentioned above.

12

	Introduction
	Problem Formulation and Approach
	Problem Reformulation
	The Generalized Conditional Gradient Algorithm
	Convergence analysis
	Comparison with existing approaches

	Experiments
	Stochastic System Realization
	Spectral Compressed Sensing

	Conclusion

