Automatic Rule Learning for Resource-Limited
MT

Jaime Carbonell, Katharina Probst, Erik Peterson, Christian Monson, Alon
Lavie, Ralf Brown, and Lori Levin

Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA 15213

{jgc, kathrin, eepeter, cmonson, alavie, ralf, lsl}@cs.cmu.edu

Abstract. Machine Translation of minority languages presents unique
challenges, including the paucity of bilingual training data and the un-
availability of linguistically-trained speakers. This paper focuses on a
machine learning approach to transfer-based MT, where data in the
form of translations and lexical alignments are elicited from bilingual
speakers, and a seeded version-space learning algorithm formulates and
refines transfer rules. A rule-generalization lattice is defined based on
LFG-style f-structures, permitting generalization operators in the search
for the most general rules consistent with the elicited data. The paper
presents these methods and illustrates examples.

1 Introduction

Machine Translation (MT) for minority languages offers significant potential
benefits, but also presents serious scientific and economic challenges. Among the
benefits are: communication between isolated, often economically disadvantaged
groups (i.e. indigenous groups in Latin America) and the speakers of majority
languages, and the potential preservation of endangered languages — over half
of the 6,000 presently existing languages worldwide. The primary scientific chal-
lenge is the creation of MT systems for languages of little economic importance
at very low cost per language, including the acquisition of linguistic information
with minimal pre-existing bilingual corpora and little or no previous linguistic
analysis of the minority language.

In order to address these needs, we are investigating omnivorous MT sys-
tems, including statistical and example-based MT when some parallel training
corpora can be acquired, and machine learning of transfer-based MT rules when
access to a native non-linguist informant permits partial elicitation of linguistic
information, such as translations of model sentences and lexical-level bilingual
alignments. This paper focuses on this last objective of our project: supervised
learning of transfer rules with the aid of an elicitation interface to a bilingual
native speaker without any assumptions regarding his or her linguistic sophis-
tication. While our technology is eventually aimed at low-density languages, it
is intended to be target language independent. Hence, we are developing the

system using examples from various languages, such as Chinese, German, Ma-
pudungun’, and Swahili. For illustration purposes, we present examples in these
languages throughout the paper.

2 Elicitation Corpus

Since there are usually little or no bilingual translated data available for mi-
nority languages, we elicit the minimal amount of information required from a
bilingual informant. The informant translates a set of constituents or sentences
constructed prior to learning — the same set for all languages — designed to elicit
all the basic grammatical constructions, based on the principles of field linguis-
tics. The informant supplies lexical alignments as well as translations from the
source language (SL) into the target language (TL). Currently, the source lan-
guage is English or Spanish.

The elicitation corpus contains sentences and sub-sentential constituents
carefully constructed to obtain information about typologically prevalent fea-
tures (such as tense and number) and their possible values in the target language
(such as singular, dual, plural). To this end, we rely on research done in field
linguistics, and use lists that were designed for this task, such as [2] and [1].
The corpus exploits compositionality, starting with smaller constituents and re-
cycling them in higher level ones, paralleling the compositional machine learning
for version spaces discussed below.

In designing the corpus, we strive to maximize coverage while minimizing
size by targeting specific constructions. For instance, in order to infer rules for
relative clauses, we developed a set of sentences that exhibit different types of
relative clauses, such as subject and object relative clauses. If an uncontrolled
corpus was used, it would need to be several orders of magnitude larger to cover a
comparable range of linguistic variability, and therefore it would impose a much
larger burden on the bilingual informant. Further, a controlled corpus allows us
to plan a process where the informant only translates part of the corpus, and
leaves other parts that have been determined to be irrelevant for the given target
language untranslated. For more detail on the elicitation process, please refer to
[7] and [8].

3 Translation Engine

Rule-based translation is done through a custom-built translation engine using
an integrated transfer approach with analysis, transfer, and generation stages. In
the engine, as in the early METAL system [4], each analysis rule is also coupled
with a corresponding transfer action, as enforced by the transfer rule formalism.
Table 1 provides examples: Comments are indicated by one or more semicolons.
The first line contains the SL and TL category, followed by the constituent
sequences.

! Mapudungun, spoken in Chile, is one of the minority languages we focus on.

The formalism is able to handle a variety of common translation divergences,
including head-switching, changes in grammatical relations such as an object
in the source language being expressed as a subject in the target language,
structural changes such as having an NP become a PP in another language, and
lexical gaps where one target word replaces an entire source phrase [9].

Rule to handle non-auxiliary|Sample lexical rule 1|Sample lexical rule 2
verb question transfer
from Chinese to English

S:S AUX:AUX |: AUX:AUX |:

[NP VP MA] — [V NP VP ”?”] |[zuo4] — [do] [zuo4] — [does]
(;;alignments: (;;alignments: (;;alignments:
(x1::y2) ((x1::y1) (x1::y1)

(x2::y3)

;;x-side constraints: ;;x-side constraints: ;;x-side constraints:
;; (parsing) 5 (parsing) ;; (parsing)

((x0 subj) == x1)

((x0 subj case) = nom)

(x0 = x2)

((x0 act) = *quest)

;;Xy-constraints: ;;xy-side constraints: ;;Xy-constraints:

;; (transfer) ;; (transfer) ;; (transfer)

(y0 = x0)

((y0 act) =c *quest)

;;y-side constraints: ;;y-side constraints: ;;y-side constraints:
;; (generation)

((y1 form) = *do)
((v1 agr) = (v2 agr))

((Y0 form) = *do) ((y0 form) = *do)

((y0 agr) =

(*or* *1-sg *2-sg *plu))|((y0 agr) = *3-sg)
(y2 == (y0 subj)) ((y0 tense) = *pres)) |((y0 tense) = *pres))
(3 = y0))

Table 1. Sample Transfer Rules

Translation starts with a bottom-up unification-based chart parser that pro-
duces an ambiguity-packed representation of the source language input. If at
any one point more than one rule can be applied to a structure, the rules are
applied in the order in which they appear in the grammar. Analysis builds both
a syntactic constituent (or for short c-)structure and an associated feature (f-
)structure. For example, in the structural transfer rule in figure 3, which handles
the transfer of some types of interrogative sentences from Mandarin to English,
the feature structure for the source language (SL) S constituent, represented by
x0, is built using the x-side, i.e. parsing, constraints.

Transfer is done from the top down, starting at the top node in the chart
created during parsing. Transfer rules explicitly state the alignment of source
and target constituents through equations such as (x1::y2) and (x2::y3) in the

example rule, indicating that the first source constituent maps to the second
target constituent, and the second source constituent maps to the third target
constituent. Not all source constituents need to map to the target (such as the
Chinese question particle MA at x3 in this rule which is deleted during transfer).
Target constituents that are not aligned to a source constituent will be created
based upon the feature structure assigned to them in the transfer and gener-
ation equations. During transfer, the engine uses these alignments to reorder
constituents.

Features may also be passed from source to target using xy-constraints. For
example, the (y0 = x0) equation in table 3 copies the entire source sentence
feature structure to the target.

During generation, the target side feature structures are built using the y-
side constraints. In the example rule, the first constituent V (y1) has its form
set to ‘do’, which is used later to choose the correct verb to insert. To enforce
that the form of ‘do’ agrees with the subject NP at y2, the ((y1l agr) = (y2 agr))
is used.

Once a selected transfer rule is applied, transfer and generation continues
by recursively running applicable transfer rules on the sub-constituents of the
rule until the lexical level is reached. Lexical transfer rules then apply to select
the appropriate translation. In the example, the auxiliary ‘do’ is inserted at the
start of the sentence. The appropriate form of ‘do’ is selected based upon the
agreement constraint between the subject NP and initial V in the sentence rule
and the agreement features in the individual lexical rules.

4 Seeded Version Spaces for Transfer Rule Learning

Transfer rule learning consists of three steps. The first step, feature detection, de-
termines what lingustic features are present in the target language. For instance,
does the language have a number-agreement feature? If so, is the distinction be-
tween singular and plural, or between singular, dual and plural? The details
of feature detection are beyond the scope of this paper; the interested reader
should refer to [7]. The second step is seed-rule generation, where preliminary
transfer rules are generated based on lexically-aligned translated constituents.
Seed generation produces transfer rules that are very specific to the training ex-
amples, essentially defining the operational S-boundary (specific boundary) for
Version-Space learning [6] [5] [3]. The third step, Seeded Version Space Learning,
generalizes the seed rules in order to produce transfer rules that can be used to
translate larger classes of unseen examples.

4.1 Seed Generation

Version Space learning suffers worst-case exponential behavior as a function of
the number of generalization (or specialization) steps required from initial in-
stances. But if the initial instances are already generalized and the number of

additional generalization steps k-bounded, or limited to a greedy-search, the pro-
cess is at worst a k-degree polynomial. Hence, to ensure computational tractabil-
ity, we first build generalized rule-instances called ‘seed rules,’ to the extent that
we can build first-level, error-free deterministic generalization. Future work will
relax the error-free assumption by substituting a retractable S-boundary.

Seed rules represent generalizations over the lexical level, but are still very
specific to the lexically-aligned sentence pair from which they are derived. The
major-language (English) sentences in the training corpus have been pre-parsed
and disambiguated in advance, so that the system has access to a correct f-
structure and a correct phrase or c-structure for each sentence. The seed genera-
tion algorithm can proceed in different settings based on how much information
is available about the target language. In one extreme case, we assume that we
have a fully-inflected target language dictionary. The other extreme is the ab-
sence of any information, in which case the system makes assumptions about
what linguistic feature values transfer to the target language. For example, we
assume that number and definiteness transfer across languages, but not gender
or case. This information is either defaulted or extracted in the earlier feature
detection phase.

During seed generation, all transfer rule components are produced from the
sentence pair, with the exception of xy-constraints.?. Table 2 below summarizes
how each part of the seed rule is produced.

SL part-of-speech sequence |[English c-structure
TL part-of-speech sequence|1) from the TL dictionary
2) from the English POS sequence

Alignments from the user
x-side constraints from the English f-structure
y-side constraints 1) from the TL dictionary
2) from the corresponding English words
xy-constraints Not produced during seed generation

Table 2. Summary of Seed Generation

To make these concepts more concrete, consider an example of a seed rule as
produced by our algorithm for simple NPs in English-German (for expositionary
simplicity), as illustrated in table 4 in section 4.3: The English part-of-speech
sequence was obtained from the English parse. The German part-of-speech se-
quence was obtained from a combination of the target language dictionary and
the assumption that in the absence of unambiguous target language informa-
tion, parts of speech transfer into the target language for aligned words. The
lexical alignments were given by the bilingual informant. The x-side constraints
were read off the English c- and f-structures. The y-side constraints were again
obtained by a combination of target language information and ‘safe’ transfer

% xy-constraints are inferred during the Seeded Version Space Learning.

heuristics. If feature information is given in the target language, it is used. If no
such information is available, features such as agreement and count project their
values onto the target language. This means that target language words obtain
their feature values from their corresponding words in the source language.

4.2 Compositionality

In order to scale to more complex examples, the system learns compositional
rules: when producing a rule e.g. for a sentence, we can make use of sub-
constituent transfer rules already learned. Then, the new seed rule (the higher-
level rule) is no longer a flat rule, but consists of previously learned transfer
constituents (lower-level rules) such as NPs or ADJPs.

Compositional rules are learned by first producing a flat rule as was described
above from the bilingual constituent (phrase or sentence). In the following, the
system traverses the c-structure parse of the English constituent. Each node in
the parse is annotated with a label such as NP, and roots a subtree, which itself
covers part of the constituent. The system then checks if there exists a lower-level
rule that can be used to correctly translate the words in this subtree. Consider
the following example:

(<NP> (<DET> ((ROOT +THE)) THE)

(<NBAR>

(<ADJP> (<ADVP> (<ADV> ((ROOT *VERY)) VERY))
(<ADJP> (<ADJ> ((ROOT *TALL)) TALL)))

(KNBAR> (<N> ((ROOT *WOMAN)) WOMAN))))

This c-structure represents the parse tree for the NP ‘the very tall woman’.
The system traverses the c-structure from the top in a depth-first fashion. For
each node, such as NP, NBAR, etc., it extracts the part of the constituent that
is rooted at this node. For example, the node ADJP covers the chunk ‘very
tall’. The question is now if there already exists a learned transfer rule that
can correctly translate this chunk. To determine what the reference translation
should be, the system consults the user-specified alignments and the given target
language translation of the training example. In this way, it gains access to a
bilingual sentence chunk. In our example the bilingual sentence chunk is ‘very
tall’ - ‘sehr grosse’. It also obtains its SL category, in this example ADJP.

In the following, it calls the transfer engine with this chunk, and is returned
zero or more translations, together with the f-structures that are associated
with each translation. In case there exists a transfer rule that can translate the
sentence chunk in question, the system takes note of this and traverses the rest
of the c-structure, excluding the chunk’s subtree. After this step is completed,
the original flat transfer rule is modified to reflect any compositionality that was
found. The rightmost column in table 3 presents an example of how the flat rule
is modified to reflect the existance of an ADJP rule that can translate the chunk

Lower-level rule

Uncompositional Rule

Compositional Rule

;;SL: very tall
;;TL: sehr gross
ADJP::ADJP
[ADV ADJ]

— [ADV ADJ]
(;;alignments:
(x1::y1)
(x2::y2)

;;x-side constraints:

(x0 = x2)
;;y-side constraints:

(y0 = y2)

;;39L: the very tall woman
;;TL: die sehr grosse Frau
NP::NP

[DET ADV ADJ N]

— [DET ADV ADJ N]
(;;alignments:

(x1::y1)

(x2::y2)
(x3::y3)
(x4::y4)
;;x-side constraints:
((x1 agr) = *3-sing)
((x1 def) = *def)
(x2 agr) = *3-sing)
(x2 count) = +)
(x3 agr) = *3-sing)
(x4 agr) = *3-sing)
((x4 count) = +)
(x0 = x4)

;;y-side constraints:
((y1 gender) = *f)

(
(
(
(

((y1 case) = (*or* *acc *nom))
((v1 agr) = *3-sing)

((y1 def) = *def)

((y3 gender) = *f)

((y3 case) = (*or* *acc *nom))
((y3 def) = *def)

((y3 agr) = *3-sing)

((y4 gender) = *f)

((y4 case) = (*or* *acc *nom))
(74 agr) = *3-sing)

((y4 count) = +)

(0 = y4)

;;39L: the very tall woman
;;TL: die sehr grosse Frau
NP:NP

[DET ADJP N]

— [DET ADJP N]
(;;alignments:

(x1::y1)

(x2::y2)

(x3::y3)

;;x-side constraints:
((x1 agr) = *3-sing)
((x1 def) = *def)

((X3 agr) = *3—Sing)

((x3 count) = +)

((x3 count) = +)

(x0 = x3)

;;y-side constraints:

((y1 gender) = *f)

((y1 case) = (*or* *acc *nom))
((y1 agr) = *3-sing)

((y1 def) = *def)

((y2 gender) = *f)

((y2 case) = *nom)

((y2 def) = *def)

((y2 agr) = *3-sing)

((y3 gender) = *f)

((y3 case) = (*or* *acc *nom))
((y3 agr) = *3-sing)

((y3 count) = +)

(y0=y3)

Table 3. Example of Compositionality

‘very tall’. The flat, uncompositional rule can be found in the middle column,
whereas the lower-level ADJP rule can be found in the leftmost column.

First, the part-of-speech sequence from the flat rule is turned into a con-
stituent sequence on both the SL and the TL sides, where those chunks that
are translatable by lower-level rules are represented by the category information
of the lower-level rule, in this case ADJP. The alignments are adjusted to the
new sequences. Lastly, the constraints must be changed. The x-side constraints
are mostly retained (with the indices adjusted to the new sequences). However,
those constraints that pertain to the sentence/phrase part that is accounted for
by the lower-level rule are eliminated. In the example in table 3, all the x-side
constraints on the indices x2 and x3 are removed.

Finally, the y-side constraints are adjusted. For each sentence chunk that
was correctly translated by a lower-level rule, the compositionality module com-
pares the f-structures of the correct translation and the incorrect translations
as returned by the transfer engine. This is done so as to determine what con-
straints need to be added to the higher level rule in order to produce the correct
translation in context. For each constraint in the correct translation, the system
checks if this constraint appears in all other translations. If this is not the case,
a new constraint is constructed and inserted into the compositional rule. Before
simply inserting the constraint, however, the indices need to be adjusted to the
higher-level constituent sequence, as can again be seen in the example in table
3.

4.3 Seeded Version Space Learning

The first step in Seeded Version Space Learning is to group the seed rules by
their constituent sequences, alignments, and category information. This means
that in each group the seed rules differ only in the constraints. The learning
algorithm is run on each group separately, as each group corresponds to a target
concept (i.e. a target generalized transfer rule), thus it defines a version space.
At the heart of the version space learning is the merging of two transfer rules
to a more general transfer rule. To this end, it is necessary to clearly define the
partial order by which the generality of transfer rules can be assessed (i.e. how
the implicit generalization lattice is constructed):

Definition 1 A transfer rule try is strictly more general than another transfer
rule tro if all f-structures that are satisfied by tro are also satisfied by try. The
two transfer rules are equivalent if and only if all f-structures that are satisfied
tr1 are also satisfied by tro.

Based on this definition, we can define operations that will turn a transfer
rule ¢r; into a strictly more general transfer rule ¢rs. In particular, we identified
three generalization operations:

1. Deletion of a value constraint
2. Deletion of an agreement constraint
3. Merging of two value constraints into one agreement constraint. Two value con-
straints can be merged if they are of the following format:
((X; featurer) = value;)
((X; featurer) = value;)
— ((X; featurer) = (X; featurer)),
or similarly for y-side and xy-constraints.

Generalization is achieved by merging transfer rules, which in turn is based
on the three generalization operations defined above. Suppose we wish to merge
two transfer rules ¢rq and try to produce the most specific generalization of the
two, stored in trpyergeq- The algorithm proceeds in three steps:

[DET N] — [DET N]
(;;alignments:
(x1::y1)

(x2::y2)

;;x-side constraints:
((x1 agr) = *3-sing)
((x1 def) = *def)
((x2 agr) = *3-sing)
((x2 count) = +)
;;y-side constraints:
((y1 agr) = *3-sing)
((y1 case) = *nom)

y1 def) = *def)
y2 gender) = *m)

[DET N] — [DET N]
(;;alignments:
(x1::y1)

(x2::y2)

;;x-side constraints:
((x1 agr) = *3-sing)
((x1 def) = *def)
((x2 agr) = *3-sing)
((x2 count) = +)
;;y-side constraints:
((y1 agr) = *3-sing)
((y1 case) =

(*not* *gen *dat))
((y1 def) = *def)
((y2 gender) = *f)
((y2 agr) = *3-sing)

SeedRulel SeedRule2 Generalized Rule
;;SL: the man ;;SL: the woman 33SL:

;;TL: der Mann ;;TL: die Frau ;i TL:

NP:NP NP::NP NP:NP

[DET N] — [DET N]
(;;alignments:
(x1::y1)

(x2::y2)

;;x-side constraints:
((x1 agr) = *3-sing)
((x1 def) = *def)
((x2 agr) = *3-sing)
((x2 count) = +)
;;y-side constraints:
((y1 agr) = *3-sing)

((y1 def) = *def)
((y2 gender) = *f)
((y2 agr) = *3-sing)

y2 case) = *nom)

((
((
EEyQ agr) = *3-sing)
((y2 gender) = *m)

((y2 gender) = *f) ((y2 gender)
= (y1 gender))
Table 4. Seed Rules and Generalized Transfer Rule

1. Insert all constraints that appear in ¢tr; and try into trmergeq and subsequently
eliminate them from t¢r; and trs.

2. Consider tr1 and tro separately. Perform all instances of operation 3 that are
possible given the constraints.

3. Repeat step 1.

Figure 4 is an example of a very simple version space, seeded with only two
transfer rules, a rule produced by ‘the man’ and one produced by ‘the woman’.
In this case, the merged rule can be used to translate both ‘the man’ and ‘the
woman’, whereas each of the seed rules can only be used to translate the NP
they were produced from.

The Seeded Version Space algorithm itself is the repeated application of
merging two transfer rules in a group and checking whether the merged rule
is specific enough to translate correctly all those sentences that the unmerged
rules could translate. If this is the case, a merge is accepted. Merging continues
until no two transfer rules in the cluster can be merged any more. Note that this
method is a greedy approach to generalization, without guaranteeing that the
optimal (most general) transfer rule will be found. However, the method is sound
with respect to allowable generalizations and it is computationally tractable.

5 Conclusions and Future Work

We presented a novel approach to learning in machine translation, a method
that we hope will open MT up to a variety of languages in which little training
data are available. We realize that our approach presents a large undertaking:
it requires a specially adapted transfer engine, as well as a system that infers
transfer rules. This paper presents the current state of our system. The focus
of the future will be to scale to complex constructions and alignments. Aside
from performing a baseline evaluation, we plan to refine the search through the
seeded version space by definining a function that determines what merge is the
best at any one step, given that there is more than one possible merge. Further,
we plan to revisit the generalization operations that have been defined, so as to
determine what the optimal step size of generalization should be. Also, currently
no retraction is possible from overgeneralization. This issue will be addressed by
adding specialization operations. The transfer engine will be extended to output
partial translations if no full translation can be given. Also, work is underway to
order the rule application by the complexity of the rule and the specificity of its
constraints. This will be especially important as our system will be integrated
into a multi-engine system, together with statistical and example-based MT
methods.

References

1. Luc Bouquiaux and Jacqueline M.C. Thomas: Studying and Describing Unwritten
Languages. The Summer Institute of Linguistics. (1992)

2. Bernard Comrie and Norval Smith: Lingua Descriptive Series: Questionnaire. In:
Lingua. 42 (1977) 1-72

3. Hirsh Haym: Theoretical Underpinnings of Version Spaces. In: Proceedings of the
Twelfth International Joint Conference on Artificial Intelligence (IJCAI91). Mor-
gan Kaufmann Publishers. (1991) 665-670

4. Hutchins, W. John and Somers, Harold L.: An Introduction to Machine Transla-
tion. Academic Press, London. (1992)

5. Tom Mitchell: Machine Learning. McGraw Hill (1996)

6. Mitchell, T. M.: Version Spaces: An Approach to Concept Learning. Stanford Uni-
versity. December (1978)

7. Katharina Probst and Ralf Brown and Jaime Carbonell and Alon Lavie and Lori
Levin and Erik Peterson: Design and Implementation of Controlled Elicitation
for Machine Translation of Low-density Languages. Workshop MT2010, Machine
Translation Summit 2001. (2001)

8. Katharina Probst and Lori Levin: Challenges in Automated Elicitation of a Con-
trolled Bilingual Corpus. TMI 2002. (2002)

9. Trujillo, A.: Translation Engines: Techniques for Machine Translation. Springer-
Verlag London Limited, London. (1999)

